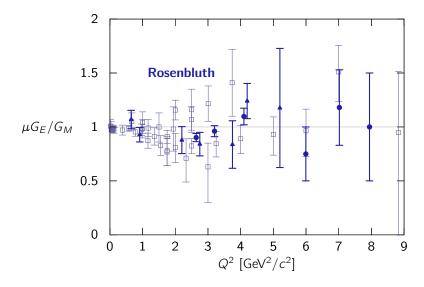
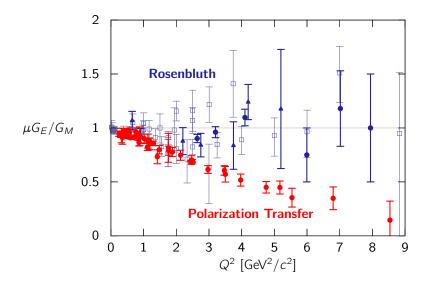
## Measuring Hard Two-Photon Exchange at Jefferson Lab

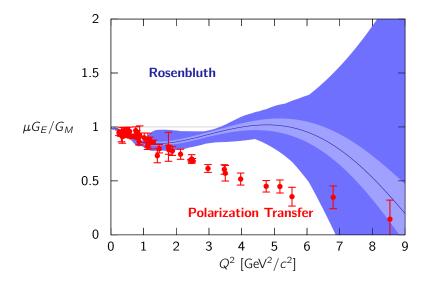
### Axel Schmidt


#### 2024 JLUO Annual Meeting

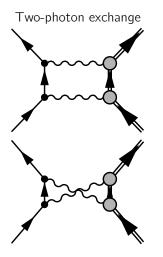
June 11, 2024


This work is supported by the US DOE Office of Science, Office of Nuclear Physics, under contract no. DE-SC0016583.

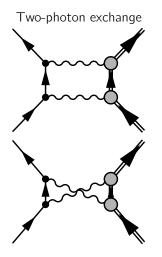



Measurements of the proton's form factors are discrepant.




Measurements of the proton's form factors are discrepant.




Measurements of the proton's form factors are discrepant.



### The current status is uncomfortable.



## The current status is uncomfortable.



- Proton FFs are ambiguous.
- TPE is hard to calculate.
- Recent experiments inconclusive
- Field is embarking on 3d imaging campaign of the nucleon.

## E12+23-08: Measuring two-photon exchange at CLAS12 with positrons.

- Spokespeople: J. C. Bernauer, V. D. Burkert, E. Cline, I. Korover, **A. Schmidt**, N. Santiesteban, T. Kutz
- Experimental details:
  - 55 days in Hall B with CLAS12
  - $e^+$ ,  $e^-$  beams at 2.2., 4.4, 6.6 GeV, unpolarized,  $\approx$  75 nA
  - Unpolarized H<sub>2</sub> target
  - Measure  $e^+p/e^-p$  elastic cross section ratio:  $R_{2\gamma}$
- Developed from LOI12-18-004

"Determination of two-photon exchange via  $e^+p/e^-p$  scattering with CLAS12"

- J. C. Bernauer et al., EPJA 57:144 (2021)
- Conditionally approved by PAC51 (2023) with an 'A' rating.

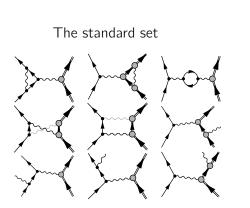
## In my talk today:

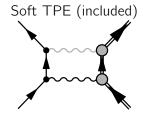
#### Recent History

Theoretical and experimental efforts on two-photon exchange

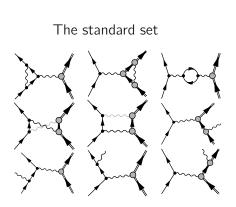
#### Our Proposed Experiment

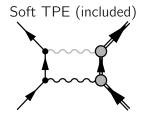
Our plan for using positrons at CLAS12


#### Alternate Approaches

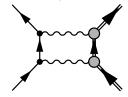

Work by others to nail down two-photon exchange

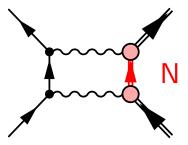
The one "missing" radiative correction is hard two-photon exchange (TPE).


The standard set


The one "missing" radiative correction is hard two-photon exchange (TPE).

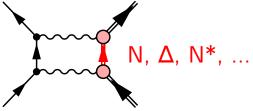






The one "missing" radiative correction is hard two-photon exchange (TPE).





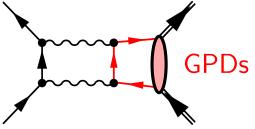

Hard TPE (*not included!*)





#### **Hadronic Approaches**

- Treat off-shell propagator as collection of hadronic states.
- e.g. Blunden, Melnitchouk, PRC '17, Ahmed et al., PRC '20, '23




#### Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Blunden, Melnitchouk, PRC '17, Ahmed et al., PRC '20, '23

#### Partonic Approaches

- Treat interaction of  $\gamma\gamma$  with quarks, distributed by GPDs, e.g.
- e.g. Afanasev et al., PRD '05, Kivel, Vanderhaeghen, PRL '09



#### Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Blunden, Melnitchouk, PRC '17, Ahmed et al., PRC '20, '23

#### Partonic Approaches

- Treat interaction of  $\gamma\gamma$  with quarks, distributed by GPDs, e.g.
- e.g. Afanasev et al., PRD '05, Kivel, Vanderhaeghen, PRL '09

#### Phenomenology

- Assume the discrepancy is caused by TPE, estimate the effect.
- e.g. Bernauer et al., PRC '14 A. Schmidt, JPG '20



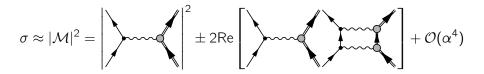
#### Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Blunden, Melnitchouk, PRC '17, Ahmed et al., PRC '20, '23

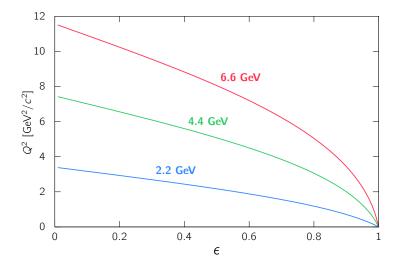
#### Partonic Approaches

- Treat interaction of  $\gamma\gamma$  with quarks, distributed by GPDs, e.g.
- e.g. Afanasev et al., PRD '05, Kivel, Vanderhaeghen, PRL '09

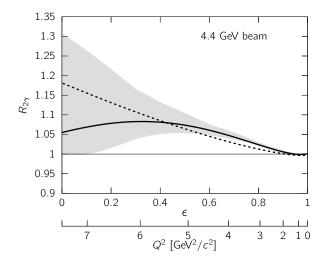
#### Phenomenology


- Assume the discrepancy is caused by TPE, estimate the effect.
- e.g. Bernauer et al., PRC '14 A. Schmidt, JPG '20

#### Alternate Approaches

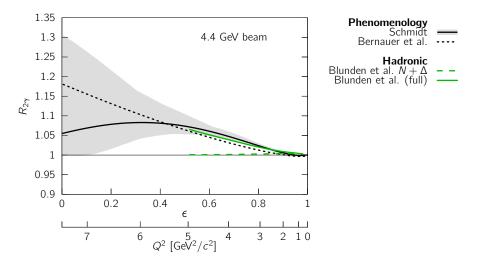

■ e.g., Kuraev et al., PRC '08

TPE produces an asymmetry between electron and positron scattering.

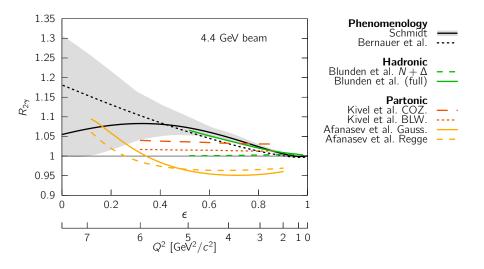




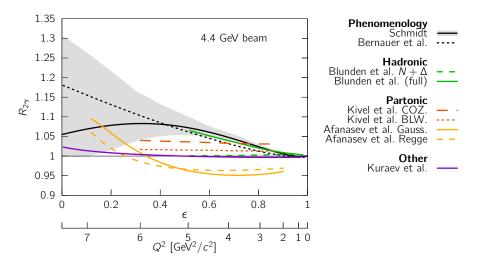

### Elastic scattering is a 2D space



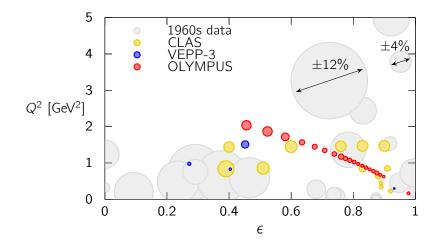

Predictions for  $R_{2\gamma} = \sigma_{e^+p} / \sigma_{e^-p}$ 





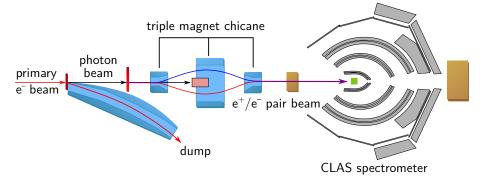


Predictions for  $R_{2\gamma} = \sigma_{e^+p} / \sigma_{e^-p}$ 



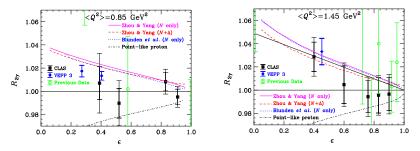

Predictions for  $R_{2\gamma} = \sigma_{e^+p} / \sigma_{e^-p}$ 



Predictions for  $R_{2\gamma} = \sigma_{e^+p} / \sigma_{e^-p}$ 

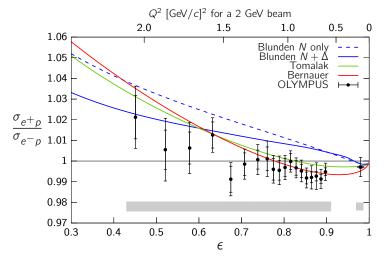



### Three recent experiments measured hard TPE.



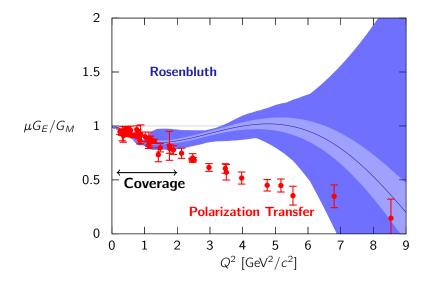

## CLAS Two-Photon Exchange Experiment

TPE/eg5 run period (2010-11)

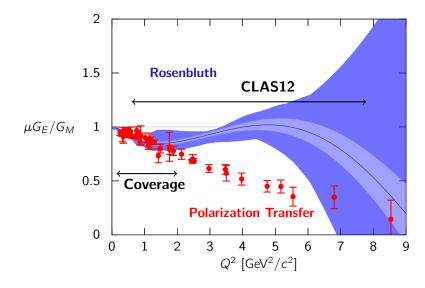



## CLAS Two-Photon Exchange Experiment

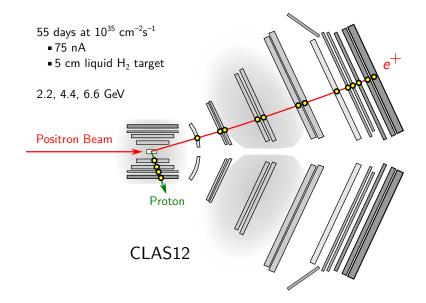



D. Adikaram et al., PRL 114, 062003 (2015)
D. Rimal et al., PRC 95, 065201 (2017)

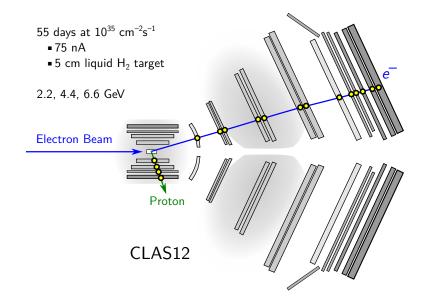
## OLYMPUS observed a small TPE effect.




Henderson et al., PRL 118, 092501 (2017)


## Recent measurements lacked the kinematic reach to be decisive.



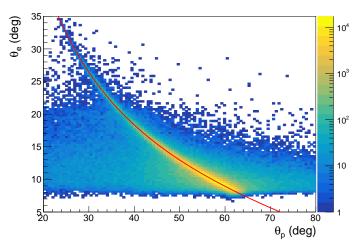

## Recent measurements lacked the kinematic reach to be decisive.



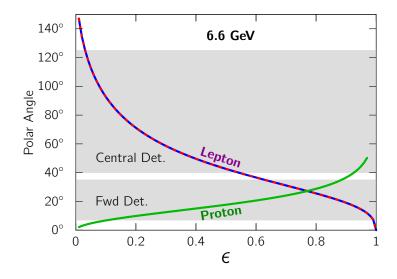
## Our proposed experiment



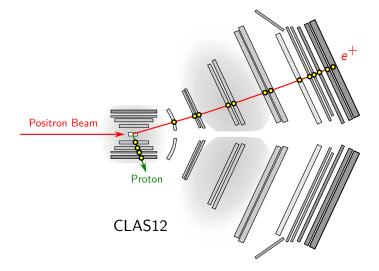
## Our proposed experiment



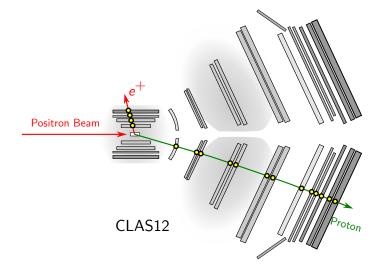

## CLAS12 holds several key advantages over OLYMPUS


|                      | OLYMPUS              | CLAS12           |
|----------------------|----------------------|------------------|
| Azimuthal acceptance | $\pi/4$              | $2\pi$           |
| Luminosity           | 2 · 10 <sup>33</sup> | 10 <sup>35</sup> |
| Beam energy          | 2 GeV                | 6.6 GeV          |

### Elastic scattering is easy to identify in CLAS12.


2021 Run Group M data (6 GeV  $e^-$  on hydrogen)




## We want to trigger on events with a lepton in the CLAS12 central detector.



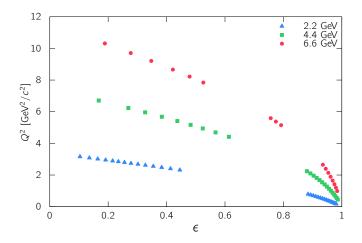
## We want to trigger on events with a lepton in the CLAS12 central detector.

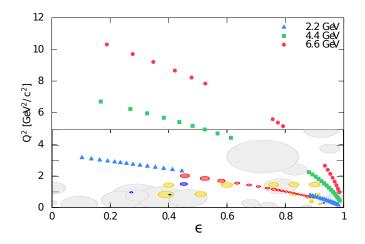


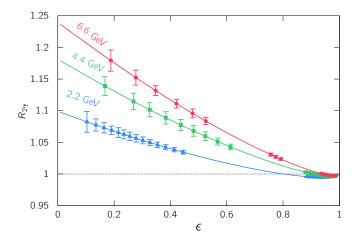
We want to trigger on events with a lepton in the CLAS12 central detector.

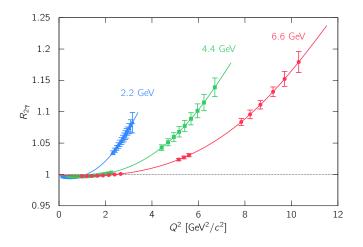


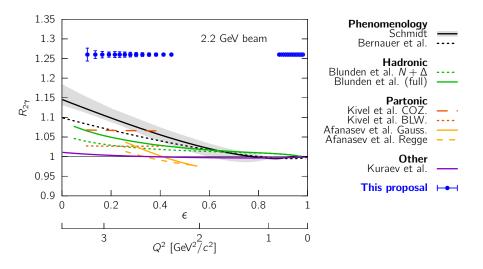
## Triggering our experiment

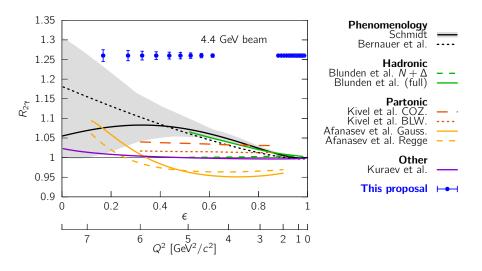

Recent data with similar conditions

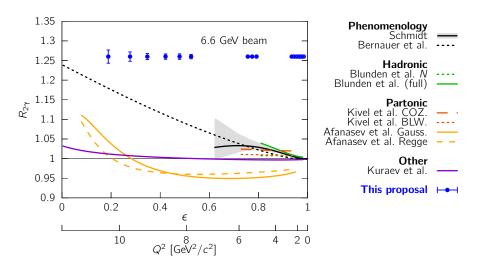

- Forward hadron trigger rate of 420 kHz
- Planned rate after high luminosity upgrade: 100 kHz
- Need a 5× reduction


Possible trigger additions


- CTOF/CND Coincidence
- CVT Coincidence, including "roads"
  - $\mathbf{a} \approx 5 \times$  reduction
- Kinematic Correlations between forward and central hits
  - further  $\approx 10 \times$  reduction


Cherenkov veto














#### Jefferson Lab Positron Working Group



2023 Positron Working Group Meeting University of Virginia March 7–8, 2023



#### Read our white paper: EPJA 2022



The European Physical Journal A An Experimental Program with Positron Beams at Jefferson Lab

Nicolas Alamanos, Marco Battaglieri, Douglas Higinbotham, Silvia Niccolai, Axel Schmidt and Eric Voutier (Guest Editors)

Join our mailing list: pwg-request@jlab.org

See talks tomorrow:

- Thia Keppel
- Yves Roblin

#### Theoretical work on other reactions



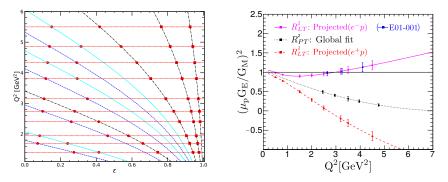
Stinson Lee



Atharva Naik

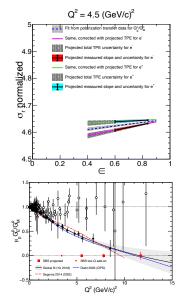
(adv. Andrei Afanasev)

#### Some recent theory results


- Transverse Single Spin Asymmetries
  - Ahmed, Blunden, Melnitchouk, PRC 108, 055202 (2023)
  - Goity, Weiss, Willemyns, PLB 835, 137580 (2022)
  - Goity, Weiss, Willemyns, PRD 107, 094026 (2023)
- TPE and the Proton Radius
  - Naik, Afanasev, arXiv:2401.13892 (2024)
  - Lensky, Hagelstein, Pascalutsa, EPJA 58, 224 (2022)
- Effective Field Theory
  - P. Choudhary et al., EPJA 60, 3 (2024)

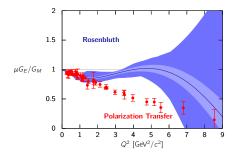
# Positron Super-Rosenbluth Experiment (Hall C) E12+23-012

Spokespeople: M. Nycz, J. Arrington, N. Santiesteban, M. Yurov


Only detect recoiling proton

• Fixed  $Q^2 \longrightarrow$  fixed spectrometer setting

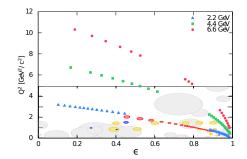



#### Super Big Bite nucleon form factor program

- **Rosenbluth** separation of  $G_E^n$ ,  $G_M^n$ 
  - E12-20-010 (E. Fuchey et al.)
  - 2024 Positron LOI
- Polarization transfer
  - LOI12+23-008, Puckett, Bernauer, Schmidt
  - 2024 Proposal: 2 days (e<sup>-</sup>) at Q<sup>2</sup> = 3.7

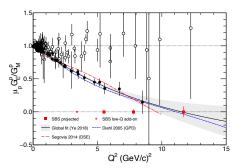


Recap:


TPE is still a problem.



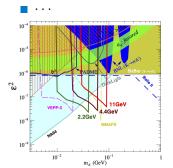
Recap:

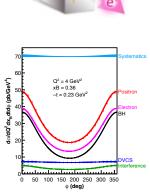

TPE is still a problem.

 CLAS12 can make a definitive measurement

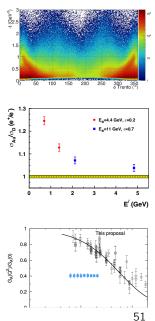


Recap:


- TPE is still a problem.
- CLAS12 can make a definitive measurement
- Lots of other exciting developments!

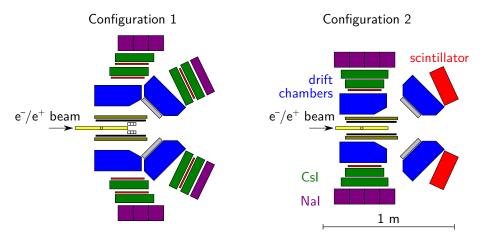



### Let's make positrons happen!

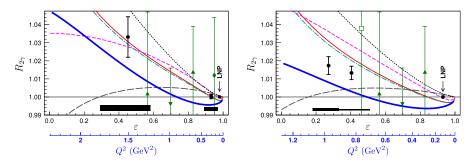

In addition to TPE:

- DVCS and GPDs
- Coulomb corrections
- Dark photon searches
- Axial form factors



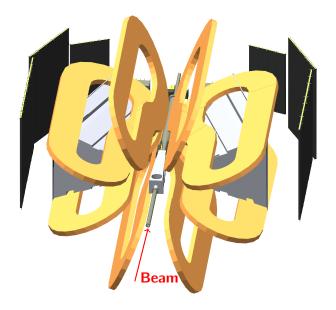



0

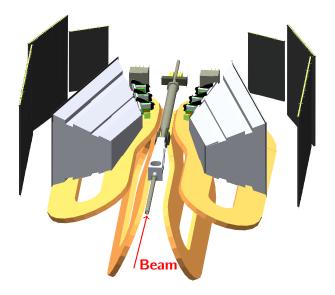



### Back Up

#### VEPP-3, Novosibirsk, Russia




#### VEPP-3, Novosibirsk, Russia



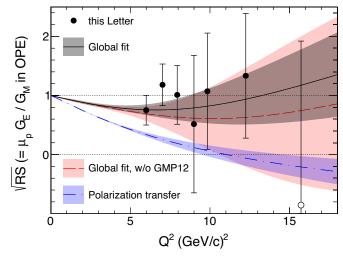

I. A. Rachek et al., PRL 114, 062005 (2015)

#### OLYMPUS, DESY, Germany



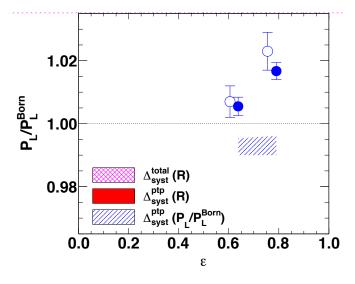
### OLYMPUS, DESY, Germany




The polarization transfer results are not necessarily correct.

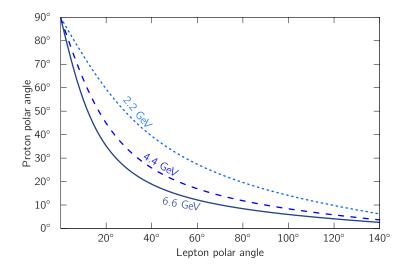
$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} = 1 - 4G_M \operatorname{Re}\left(\delta \tilde{G}_M + \frac{\epsilon \nu}{M^2} \tilde{F}_3\right) - \frac{4\epsilon}{\tau} G_E \operatorname{Re}\left(\delta \tilde{G}_E + \frac{\nu}{M^2} \tilde{F}_3\right) + \mathcal{O}(\alpha^4)$$

$$\frac{P_t}{P_I} = \sqrt{\frac{2\epsilon}{\tau(1+\epsilon)}} \frac{G_E}{G_M} \times [1+\ldots] + \operatorname{Re}\left(\frac{\delta\tilde{G_M}}{G_M}\right) + \frac{1}{G_E} \operatorname{Re}\left(\delta\tilde{G_E} + \frac{\nu}{m^2}\tilde{F}_3\right) - \frac{2}{G_M} \operatorname{Re}\left(\delta\tilde{G_M} + \frac{\epsilon\nu}{(1+\epsilon)m^2}\tilde{F}_3\right) + \mathcal{O}(\alpha^4) + \ldots]$$

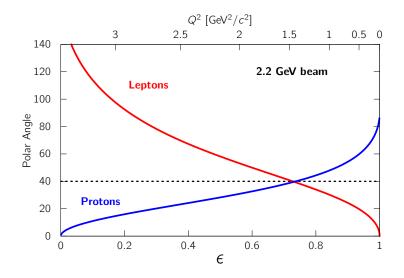

Formalism of Carlson, Vanderhaeghen, Annu. Rev. Nucl. Part. Sci., 2007

Hall A  $G_M^p$  Experiment confirms FF discrepancy to  $Q^2 = 10$ .

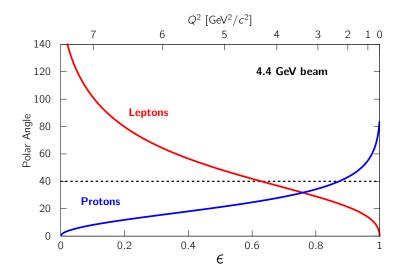



M. E. Christy et al., PRL 128, 102002 (2022)

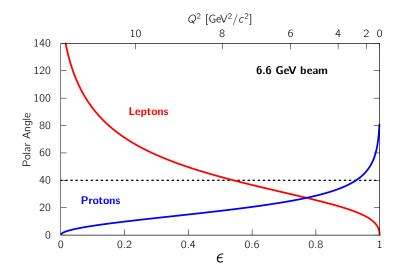
#### GEP-2 $\gamma$ finds $\epsilon$ -dependence in $P_{l}$ .



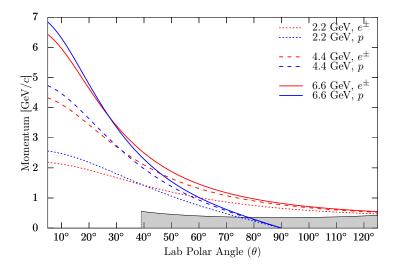

A. J. R. Puckett et al., PRC 98 019907 (2018)


#### Kinematics: Lepton Angle vs. Proton Angle

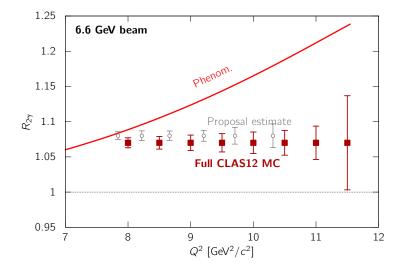



#### Kinematics: Angles at 2.2 GeV




#### Kinematics: Angles at 4.4 GeV




#### Kinematics: Angles at 6.6 GeV



#### Kinematics: Momenta vs. Angles



#### Impact of full CLAS12 MC



#### Our team



Precision Form Factors

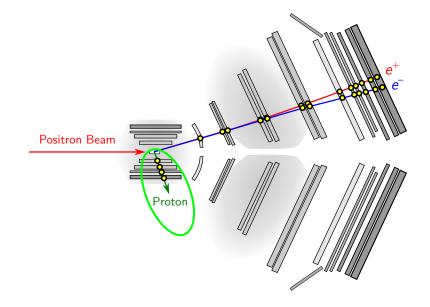
#### Limiting Systematics

• Over-all Scale: Relative  $e^+/e^-$  luminosity

- Typical Hall B abs. accuracy: 2–5%
- **Relative should be much better:** < 1%
- High- $\epsilon$  data is a cross check

#### Limiting Systematics

• Over-all Scale: Relative  $e^+/e^-$  luminosity


- Typical Hall B abs. accuracy: 2–5%
- **Relative should be much better:** < 1%
- High- $\epsilon$  data is a cross check
- Point-to-Point: Local efficiency
  - Magnetic fields bend  $e^+$ ,  $e^-$  to different parts of the detector.

Polarity switching of solenoid and torus

$$R_{2\gamma} = \left[ \left( \frac{\sigma_{e^+\rho}}{\sigma_{e^-\rho}} \right)_{\uparrow\uparrow} \cdot \left( \frac{\sigma_{e^+\rho}}{\sigma_{e^-\rho}} \right)_{\uparrow\downarrow} \cdot \left( \frac{\sigma_{e^+\rho}}{\sigma_{e^-\rho}} \right)_{\downarrow\uparrow} \cdot \left( \frac{\sigma_{e^+\rho}}{\sigma_{e^-\rho}} \right)_{\downarrow\downarrow} \right]^{1/4}$$

- Need heavy-duty Monte Carlo
- Fast-switching  $e^+ \leftrightarrow e^-$  helps

#### Lesson 1: Define kinematics based on the proton



### Lesson 2: Compare CLAS12 sectors to make unbiased checks.

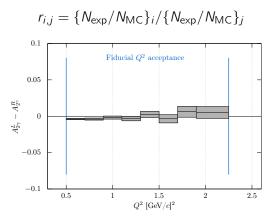
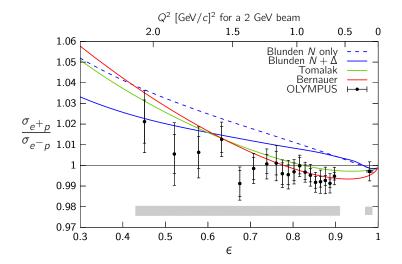
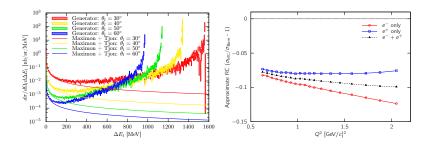
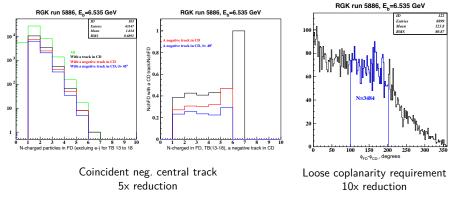





Fig. 9-2 from my thesis

#### Lesson 3: Independent normalization is valuable.




#### Lesson 4: Radiative corrections will be critical.



- Significant charge-odd corrections that are not hard TPE
- OLYMPUS tested several RC prescriptions, built custom radiative event generator.
- See white paper (https://arxiv.org/abs/2306.14578) from the recent ECT Workshop, as well as 2020 CFNS Workshop.

# Run Group K data shows that we can get to a manageable trigger rate.



Study by S. Stepanyan