Recent progress on dihadron correlations in eA scattering with CLAS

Dr. Sebouh Paul UC Riverside 6/11/2024

How are the various hadrons produced in a single scattering process correlated with one another...

... and how does hadronization change in a dense partonic environment?

And what are the timescales of color neutralization and hadron formation?

Dataset/Experimental Setup

- CLAS detector at JLab
- 5 GeV e⁻ beam
- Liquid deuterium target in tandem with nuclear targets*: C, Fe, and Pb
- Reduces systematic errors for A vs. D comparisons

Event topologies

Di-pion:

- High energy π + and low energy π -
 - Pion pair can be produced together in hard scattering, or secondary pion produced in secondary reactions

Pion+proton

- High energy π+ and knocked-out proton
 - either the leading hadron (from the struck quark) or a cascade can knock protons out

Presented at the previous JLUO meeting... **Discovery of back-to-back pion suppression in eA scattering**

How are the various hadrons produced in a scattering process correlated with one another ? Leading π^+ , subleading π^-

Our observable: correlation function

$$C(\Delta \phi) = C_0 rac{1}{N_{eh}} rac{dN_{ehh}}{d\Delta \phi}$$

- $\Delta \phi$ is the difference in azimuth
- N_{eh} is the number of events with scattered electron and a "leading hadron" (z=E_h/v>0.5)
- N_{ehh} is the number of "subleading hadrons" in those events
- C₀ is the normalization factor (use same value for all targets)
- First measurement of this observable in eA scattering
 - Only possible due to CLAS's large acceptance

*Results to be submitted for publication in PRC next week

Derived quantities: RMS widths and broadenings

RMS width:

$$\sigma = \sqrt{rac{\int_{0}^{2\pi} d\Delta \phi \, C(\Delta \phi) (\Delta \phi - \pi)^2}{\int_{0}^{2\pi} d\Delta \phi \, C(\Delta \phi)}}$$

Broadening:
$$b=\sqrt{\sigma_A^2-\sigma_D^2}$$

Derived quantities: RMS widths and broadenings

- RMS widths and broadening increase with larger nuclei
- Most of these models are new, developed for the EIC rather than JLab energies, yet predict this trend correctly

Multidimensional measurements

Correlation functions can be measured in bins of multiple variables, such

as

- rapidity difference, 0 $\Delta Y = Y_1 - Y_2$
- transverse momentum of Ο the leading hadron, p_{τ}^{1}
- subleading hadron p_{τ}^2 Ο

Multidimensional measurements

Multidimensional measurements

 Correlation functions get narrower as p₁^T gets larger

Multidimensional measurements

Results for the pion-proton analysis

- Similar to di-pion analysis...,
 - Peak is at $\Delta \phi = \pi$,
 - Wider correlation functions for nuclear than for deuterium
- But unlike di-pion case...
 - Taller peaks for nuclear than for deuterium...

Multidimensional πp results:

- Peak heights largest at low $|\Delta Y^*|$
- Wider correlation functions for larger positive ΔY^*
- Nuclear data has larger peak heights than deuterium for most ΔY^* bins, especially at large positive ΔY^*

 $\Delta Y^* = Y_{\pi^+} - Y_p - (Y_{
m cm} - Y_{
m lab})$

Follow-up measurements with upgraded CLAS12 (Run Group E)

These di-hadron measurements can be extended using recent measurements with

- Higher luminosity
- Higher beam energy
- Polarized electron beam
 - Can measure beam-spin asymmetries Ο
- Larger variety of targets

Summary

- Di-hadron correlations offer unique insights into how hadronization is affected by the presence of nuclear material
- A recent experiment with CLAS12 will extend these measurements with even higher precision, and introduces a polarization as a new probe.
- Current and future analyzes will seek to answer some of the questions raised in the new LRP
 - How are the various hadrons produced in a single scattering process correlated with one another and how does hadronization change in a dense partonic environment?
 - What are the timescales of color neutralization and hadron formation?

Backup

Di-Pion Event Selection

- Electron with DIS kinematics
 - \circ Q²>1 GeV²
 - W>2 GeV
 - 2.3<v<4.2 GeV
- Leading π +
 - z=E_h/v>0.5
 - Identified with
 - TOF only (P<2.7 GeV)
 - TOF+Cerenkov (P>2.7 GeV)
- Sub-leading π-
 - TOF cuts for identification
 - P>350 MeV
- Both hadrons:
 - pT>250 MeV

Pion-Proton Event selection

- Electron with DIS kinematics
 - \circ Q²>1 GeV²
 - W>2 GeV
 - 2.3<v<4.2 GeV
- Leading π +
 - z=E_h/v>0.5
 - Identified with
 - TOF only (P<2.7 GeV)
 - TOF+Cerenkov (P>2.7 GeV)
- Proton
 - TOF cuts
 - 0.2<P<2.8 GeV
- Both hadrons:
 - o pT>70 MeV

