Hadron spectroscopy within HadSpec

Arkaitz Rodas Bilbao

How do quark and gluons combine inside unstable hadrons?

We need a combination of lattice QCD and experiment to answer that question

Guide experimental searches (π_1, η_1)

Confirm existence (tetraquarks, pentaquarks, glueballs)

Understand their nature (observations are not enough!)

"hadron spectroscopy explores the possible bound combinations of quarks and gluons allowed by the interactions of QCD"

Extracting resonances from 2-body data 101

Assume we have scattering data for well-defined angular momentum Assume the resonance is narrow and isolated

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{\sqrt{s\Gamma}}{m_{\rm BW}^{2} - s - i\sqrt{s\Gamma}}$$

Extracting resonances from 2-body data 101

Assume we have scattering data for well-defined angular momentum Assume the resonance is narrow and isolated

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{\sqrt{s\Gamma}}{m_{\rm BW}^2 - s - i\sqrt{s\Gamma}}$$

Pole at $\sqrt{s_p} \sim (m_{BW} - i\Gamma/2)$

More general form for the amplitude

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{K(s)}{1 - i\rho(s)K(s)} = \frac{1}{\rho(s)} e^{i\delta_{\ell}^{I}(s)} \sin \delta_{\ell}^{I}(s)$$

Elastic case

Extracting resonances from 2-body data 101

Assume we have scattering data for well-defined angular momentum Assume the resonance is narrow and isolated

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{\sqrt{s\Gamma}}{m_{\rm BW}^{2} - s - i\sqrt{s\Gamma}}$$

Pole at $\sqrt{s_p} \sim (m_{BW} - i\Gamma/2)$

More general form for the amplitude

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{K(s)}{1 - i\rho(s)K(s)} = \frac{1}{\rho(s)} e^{i\delta_{\ell}^{I}(s)} \sin\delta_{\ell}^{I}(s)$$

Elastic case

In lattice QCD, our basic equation is the Lagrangian

Quark masses are a parameter for $us \rightarrow m_{\pi}$ is a "choice"

Our basic observables are correlation functions

 $\langle O_f(t)O_i^{\dagger}(0)\rangle = \frac{1}{Z_T} \int \mathcal{D}[\Phi] \mathrm{e}^{-S_E[\Phi]} O_f[\Phi] O_i^{\dagger}[\Phi]$

Extracting resonances from 2-body data 101

Assume we have scattering data for well-defined angular momentum Assume the resonance is narrow and isolated

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{\sqrt{s\Gamma}}{m_{\rm BW}^{2} - s - i\sqrt{s\Gamma}}$$

Pole at $\sqrt{s_p} \sim (m_{BW} - i\Gamma/2)$

More general form for the amplitude

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{K(s)}{1 - i\rho(s)K(s)} = \frac{1}{\rho(s)} e^{i\delta_{\ell}^{I}(s)} \sin \delta_{\ell}^{I}(s)$$

Elastic case

In lattice QCD, our basic equation is the Lagrangian

Quark masses are a parameter for $us \rightarrow m_{\pi}$ is a "choice"

Our basic observables are correlation functions

 $\langle O_f(t)O_i^{\dagger}(0)\rangle = \frac{1}{Z_T}\int \mathcal{D}[\Phi] \mathrm{e}^{-S_E[\Phi]}O_f[\Phi]O_i^{\dagger}[\Phi]$

We start by formulating our theory in a discretized

Imagine our quark living on the sites

We perform a time rotation $it \to t \quad iS \to S_E$

$$\int \mathcal{D}[\phi] e^{-iS[\phi]} = \prod_{x} \int d\phi_x e^{-S_E[\phi_x]} Protonom{Protonom}{Protonom} \int \frac{\partial \phi_x}{\partial x} e^{-S_E[\phi_x]} Protonom{Protonom}{Protonom} \int \frac{\partial \phi_x}{\partial x} e^{-S_E[\phi_x]} Protonom{Protonom}{Protonom} Protonom{Protonom}{Protonom} \int \frac{\partial \phi_x}{\partial x} e^{-S_E[\phi_x]} Protonom{Protonom}{Protonom} Protonom{Protonom}{Protonom} \int \frac{\partial \phi_x}{\partial x} e^{-S_E[\phi_x]} Protonom{Protonom}{Protonom} Protonom{Protonom}{Protonom} Protonom{Protonom}{Protonom} Protonom{Protonom}{Protonom} Protonom{Protonom}{Protonom} Protonom{Protonom}{Protonom{Protonom}{Protonom}{Protonom}{Protonom{Protonom}{Protonom{Protonom}{Protonom{Protonom}{Protonom{Protonom}{Protonom$$

Numerical, Montecarlo sampling of our gluon fields

$$\begin{array}{l} \langle O \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} O\left[U_n\right] \\ \swarrow \\ \langle O_f(t) O_i^{\dagger}(0) \rangle \end{array}$$
 N is the number of

Our observables come with a central value and error associated to the number of samples ("measurements")

box
$$\int \mathcal{D}[\phi] = \prod_x \int d\phi_x$$

bability-like function

samples

Quantum mechanical time evolution

$$\pi \left\langle O_f(t)O_i^{\dagger}(0) \right\rangle \sim \sum_{n} \frac{e^{-E_n t} \left\langle 0 \right| O_f(0)}{\text{Time is imaginary}}$$

We determine the strength of the reaction from the difference between non-interacting and interacting energies

Attraction reduces energies, repulsion increases it

Lüscher, Nucl. Phys. B 354 (1991)

Known kinematic functions

Every energy corresponds to one "data" point

Elastic analysis

Every energy corresponds to one "data" point

This amplitude can be easily fitted

$$t_{\ell}^{I}(s) = \frac{1}{\rho(s)} \frac{\sqrt{s\Gamma}}{m_{\rm BW}^{2} - s - i\sqrt{s\Gamma}}$$

Pole at $\sqrt{s_p} \sim (m_{BW} - i\Gamma/2)$

We can fit other parameterizations

The ρ is an ordinary $q\bar{q}$, narrow, isolated resonance

Form factors

Our partial-wave amplitude is defined by

 $\langle \pi \pi | T | \pi \pi \rangle_{I,\ell=1} \propto t_1^1(s)$

Photoproduction process given by

$$\langle \pi | J_{\gamma} | \pi \pi \rangle_{I,\ell=1} \propto f(Q^2,s) t_1^1(s)$$

Smooth function

When continuing to the pole location, we recover the transition form factor of the resonance

had

12

Form factors

Our partial-wave amplitude is defined by

 $\langle \pi K | T | \pi K \rangle_{I=1/2, \ell=1} \propto t_1^{1/2}(s)$

Photoproduction process given by

$$\langle K | J_{\gamma} | \pi K \rangle_{I=1/2, \ell=1} \propto f(Q^2, s) t_1^{1/2}(s)$$

Smooth function

When continuing to the pole location, we recover the transition form factor of the resonance

 $f(Q^2, s_p) \propto f_R(Q^2)$

Coupled channels

For heavier $m_{\pi r}$ the χ_{c0} and χ_{c2} can be studied as a 2-body coupled channel scattering process

$$\det\left[F^{-1}\left(E_n,L\right) + K(s_n)\right] = 0$$

 $N \times N$ matrix (N=number of decay channels) For given angular momenta

 \square

As usual with XYZ resonances, both theory and experimental results are not so clear

 χ_{c0} not seen in some expected final states by LHCb

HadSpec finds both resonances coupling to open-charm channels

HadSpec does not find S-wave states bound or near the $D\bar{D}$ threshold

$m_{\pi} \sim 391 \,\mathrm{MeV}$

Exotic mesons: The hybrid

15

Exotic mesons: The hybrid

Lattice QCD (and models) predicts a lightest $J^{PC} = 1^{-+}$, isolated hybrid 3000 Not well known from experiment !! 2500 A single pole was mistaken by 2 states Coupled-channel analyses were 2000 m/MeV 1200 required to resolve this issue Most analyses are based on simple mesonic decays 1000 500 π π_1 $\rho_a \rho_b \left| t_{ab} \right|^2$ η 0.5 0.4 0.3 HadSpec extracted it using 8 different 0.2 decay channels (at $m_{\pi} \sim 700$ MeV) 0.1

16

Exotic mesons: The hybrid

Exotic mesons: T_{cc}

Exotic resonance, first observed at LHCb

Considered as a doubly-charmed tetraquark

Narrow resonance in DD^*

We can study it as a true 2-body process for heavier pion masses

All amplitudes produce a virtual bound state pole

A second partner, T'_{cc} is also found near the D^*D^* threshold

Multi-body decays

When lowering $m_{\pi} \rightarrow$ more phase space \rightarrow massive particles start decaying to lighter ones

Going beyond two-body effects is crucial to understanding exotic candidates of matter

$\pi_1(1600)$		$\mathrm{thr./MeV}$	$\left c_{i}^{\mathrm{phys}} ight /\mathrm{MeV}$	$\Gamma_i/{ m MeV}$
	$\eta\pi$	688	$0 \rightarrow 43$	$0 \rightarrow 1$
	$ ho\pi$	910	$0 \rightarrow 203$	$0 \rightarrow 20$
	$\eta'\pi$	1098	$0 \rightarrow 173$	$0 \rightarrow 12$
	$b_1\pi$	1375	$799 \rightarrow 1559$	139 ightarrow 529
	$K^*\overline{K}$	1386	0 ightarrow 87	0 ightarrow 2
	$f_1(1285)\pi$	1425	$0 \rightarrow 363$	$0 \rightarrow 24$
	$ ho\omega\{^1\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
	$ ho\omega\{^{3}\!P_{1}\}$	1552	$\lesssim 32$	$\lesssim 0.09$
	$ ho\omega\{{}^5\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
	$f_1(1420)\pi$	1560	$0 \rightarrow 245$	$0 \rightarrow 2$
			$\Gamma = \sum_i \Gamma_i =$	$139 \rightarrow 590$

Three body decays

When decreasing $m_{\pi} \rightarrow$ multi-body thresholds open

Plethora of formalism works on how to extract three-body amplitudes from the spectrum (not discussed here)

HadSpec has also been leading numerical calculations

Much more cumbersome

Lowering m_{π} : **Pushing amplitude analyses**

When lowering $m_{\pi} \rightarrow$ more phase space \rightarrow decay widths become larger

Resonance extraction becomes more challenging

We need a better infinite volume formalism than "simple" amplitude fitting

Implement a full dispersive approach

$$\tilde{t}_{\ell}^{I}(s) = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{\ell\ell'}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s')$$

Sum over waves and isospins

Once these dispersive constrains are imposed, the systematic error is drastically reduced

 $m_{\pi} \sim 239 \,\mathrm{MeV}$

Lowering m_{π} : **Pushing amplitude analyses**

When lowering $m_{\pi} \rightarrow$ more phase space \rightarrow decay widths become larger

Resonance extraction becomes more challenging

We need a better infinite volume formalism than "simple" amplitude fitting

$$t_{\ell}^{I}(s) = \frac{e^{i\delta_{\ell}^{I}(s)} \sin \delta_{\ell}^{I}(s)}{\rho(s)} \qquad \square \quad Unitarity$$

Implement a full dispersive approach

$$\tilde{t}_{\ell}^{I}(s) = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{\ell\ell'}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s')$$

Sum over waves and isospins

Once these dispersive constrains are imposed, the systematic error is drastically reduced

 $m_{\pi} \sim 239 \,\mathrm{MeV}$

Studying reactions beyond scattering processes \rightarrow resonance form factors

First photo production, then current insertions on resonances

Significant progress made for different exotic searches Both in the light and charm sector Capitalizing on heavier m_{π} lattices

Working on 3-body decays from theoretical and phenomenological side to perform first 3-body resonance extraction Crucial to identify exotic states for lower m_{π}

Dispersive approaches required for light hadron spectroscopy

Spare slides

Simple quark model interpretation

Assume they are $q\bar{q}$ (meson) bound states

Many more states exist!!

Simple quark model interpretation

Assume they are $q\bar{q}$ (meson) bound states

Many more states exist!!

Lattice QCD

$$\left\langle \varphi_{\mathrm{f}} \left| e^{-i\hat{H}(t_{\mathrm{f}}-t_{\mathrm{i}})} \right| \varphi_{\mathrm{i}} \right\rangle = \int \mathcal{D}\varphi(x) e^{-iS[\varphi(x)]}$$

Discretization

Sum over all paths $\int \mathcal{D}\varphi(x) = \prod \int d\varphi_x$

> **Euclidean action** $t \rightarrow -it$ $-iS = -i \int d^3x dt \mathcal{L} \to -\int d^3x dt \mathcal{L}_{\rm E} = -S_{\rm E}$

 $\mathcal{L}_{\rm E} = \bar{\psi} \left(\gamma_{\mu} D_{\mu} + m \right) \psi + \frac{1}{\Lambda} F^a_{\mu\nu} F^a_{\mu\nu}$

 $\left\langle \varphi_{\mathrm{f}} \left| e^{-i\hat{H}(t_{\mathrm{f}}-t_{\mathrm{i}})} \right| \varphi_{\mathrm{i}} \right\rangle = \int \mathcal{D}\varphi(x) e^{-iS[\varphi(x)]} = \int \mathcal{D}\varphi(x) e^{-S_{\mathrm{E}}[\varphi(x)]}$

Probability like

Lattice QCD

Hadspec: The basics

Hybrid exotic candidates

Extracted, recently, both from experiment (JPAC/COMPASS) and Lattice QCD (HadSpec)

Exotic ($J^P = 0^+$) found at $m_{\pi} \sim 700$ MeV in $D\pi/DK$ scattering Once again, it appears as a virtual-bound state

Fir this pion mass, we set $m_u = m_d = m_s$ Many channels coalesce to a smaller subset

This state seems virtual bound also at lower pion masses

384.

9.83

0.34

Future projects

1 Determine the spectrum of ordinary and non-ordinary hadrons

Ready to compute exotic reactions at higher m_{π} Pushing lower m_{π} calculations for meson-meson scattering processes

2 Develop and implement multi-body decay formalisms to the extraction of resonances

Technology ready for 3π systems with intermediate resonances Getting closer to 3b baryonic systems!

3 Kick start our meson-baryon program

First explorations for Δ resonances are underway The Roper resonance will also be extracted, in the longer future

4 **Continue our EM analyses**

Working on photo production processes for coupled-channels Working on elastic form factors of scattering processes

