JLUO Annual Meeting, Jefferson Lab, June 10, 2024

Meson spectroscopy at CLAS and CLAS12

Raffaella De Vita (Jefferson Lab) for the CLAS Collaboration

QCD and Spectroscopy

- Hadrons are one of the most relevant manifestations of the works of QCD
- Hadrons have an internal structure being made of quarks: known quark configurations are baryons, made of tree quarks and mesons, made of quark-antiquark pairs
- Quark masses account only for a small fraction of the nucleon mass: ~ 1%
 - $m_q \sim 10 \text{ MeV}$
 - m_N ~ 1000 MeV

while the remaining fraction is to the force that binds the quarks: **QCD**

 Hadron spectroscopy is a "portal" to Quantum Chromo Dynamics

Hadrons and QCD

- Hadrons are color neutral systems made of quarks and gluons but...
 - What is the internal structure and what are the internal degrees of freedom of hadrons?
 - What is the role of gluons?
 - What is the origin of quark confinement?
 - Are 3-quarks and quark-antiquark the only possible configurations?
- Meson spectroscopy is a key tool to investigate these issues

Meson spectroscopy

Objective:

Mesons are the simplest quark bound state, i.e. the best benchmark to understand how quarks interact to form hadrons and what the role of gluons is

- Precise determination of the meson spectrum
- Search for unusual states as hybrids (qqg), tetraquarks (qqqq) and glueballs

Technique:

Use (quasi) real tagged photon beams to produce the meson resonances and isolate the single states by detecting the decay products

- Use of S=1 probe provides complementary information to S=0 (pion beams) probes
- Measurement of the decay products and PWA to isolate single resonances
- Full determination of initial state allows to study the production mechanism

High intensity photon beams and large acceptance detector are needed!!

CEBAF Large Acceptance Spectrometer

Meson Spectroscopy at CLAS and CLAS12

Hall B Photon Tagger

★ Maximum photon energy of 5.7 GeV
- W_{max} ~ 3.4 GeV

***** Beam intensity 10⁷ γ/s

- Photon beam produced from the primary electron beam via Bremsstrahlung
- Gold and diamond radiator for In/Coherent Bremsstrahlung
- Energy coverage: 0.2-0.95 E₀
- Efficiency ~ 80%
- Energy Resolution ~ 10⁻³
- Timing Resolution ~100 ps

Scalar mesons and the f₀(980)

Scalars are fundamental states because they represent the Higgs sector of strong interaction:

- same quantum numbers of the QCD vacuum
- responsible for chiral symmetry breaking

The $f_0(980)$ is one of the lowest mass scalar and isosinglet candidate of the first nonet:

➔ Unusual mass hierarchy of the multiplet (f₀(980) almost degenerate with a₀(980)) and decays led to propose these states as tetraquarks

The f₀(980) at CLAS

Study of $\pi^+\pi^-$ production on the proton and of scalar meson production

- Bremsstrahlung photon beam: 1.6-3.8 GeV
- 40 cm long liquid hydrogen target
- ~7·10⁹ triggers
- Integrated Luminosity ~ 80 pb⁻¹

- Proton and π^+ detected in CLAS
- Reaction $\gamma p \rightarrow p \pi^+ \pi^-$ isolated via missing mass
- Analysis focused on high energy (3.0-3.8 GeV) and low –t (0.4-1.0 GeV²) region

The f₀(980) at CLAS

$\gamma p \rightarrow p \pi^+ \pi^-$

- ***** M($\pi^+\pi^-$) spectrum below 1.5 GeV:
 - •P-wave: ρ meson
 - •D-wave: f₂(1270)
 - •S-wave: σ, f₀(980) and f₀(1370)
- Moments of the 2-pion angular distribution extracted via likelihood fit of data
- * Partial Wave fitted to experimental moments

* Known states well reproduced, e.g. ρ(770)

CLAS12

CLAS12 in Hall B

CLAS12 Event Display

Meson Spectroscopy at CLAS and CLAS12

Event reconstruction

Meson spectroscopy at CLAS12

Predictions of the light quark meson spectrum now available from lattice QCD:

- Spectrum includes meson state with large gluonic content (hybrids) with both regular and exotic quantum numbers
- Experimental signature: a multiplet of gluonic mesons with exotic J^{PC}, i.e. non quark-antiquark
- Searches in progress at several facilities, world-wide

CLAS12 uses quasi-real photoproduction to investigate the light quark meson spectrum and search for hybrid meson states

Meson Spectrum in LQCD

Dudek, Edwards, Guo and Thomas, PRD 88, 094505 (2013)

Quasi-real photoproduction

MesonEx:

- Detailed mapping of the meson spectrum up to masses of 2.5 GeV
- Search for rare or poorly known states (strangeness-rich, scalars, ...)
- Search states with unconventional quark-gluon configurations

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for the tagging of the quasi-real photon in the CLAS12 Forward Tagger
- High-intensity and high-polarization tagged "photon" beam; degree of polarization can be determined eventby-event from the electron kinematics

CLAS12 $\pi^+\pi^+\pi^-n$ preliminary data

- Preliminary analysis of 3 pion channel from the 10.6 GeV data
- Candidate for search of the exotic π₁(1600)
- Spectrum richness already accessible with a fraction of the expected data

MesonEx status

- Approximately 35% of expected data available for analysis after major improvements to event reconstruction
- Focus on charged decay products (better resolution)
- First extract two pseudoscalar (π⁺π⁻, K⁺K⁻)
- Fourier analysis of angular distributions, i.e. extract moments
 - more general expansion than just partial waves
 - check acceptance corrections
 - check distortions from backgrounds
 - model independent formalism
 - already applied to CLAS di-meson photoproduction data
- Extract partial waves from moments or directly fit partial waves
- Expand to vector-pseudoscalar final states

arXiv.org > hep-ph > arXiv:1906.04841

Help I Adv

Search

High Energy Physics - Phenomenology

Moments of angular distribution and beam asymmetries in $\eta\pi^0$ photoproduction at GlueX

V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A. W. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak (JPAC collaboration) (Submitted on 11 Jun 2019)

$$\langle Y_{\lambda\mu} \rangle (E_{\gamma}, t, M) = \frac{1}{\sqrt{4\pi}} \int d\Omega_{\pi} \frac{d\sigma}{dt dM d\Omega_{\pi}} Y_{\lambda\mu}(\Omega_{\pi})$$

Moments relate directly to partial wave amplitudes

$$\begin{split} H^0(11) &= H^1(11) + 2\sqrt{\frac{2}{5}} \operatorname{Re}(P_1^{(+)}D_2^{(+)*}) \ , \\ H^1(11) &= \frac{2}{15} \left[3\sqrt{5} \operatorname{Re}(P_0^{(+)}D_1^{(+)*}) - \sqrt{15} \operatorname{Re}(P_1^{(+)}D_0^{(+)*}) + 5\sqrt{3} \operatorname{Re}(S_0^{(+)}P_1^{(+)*}) \right] \ , \\ H^0(20) &= H^1(20) - \frac{2}{35} \left[7|P_1^{(+)}|^2 - 5|D_1^{(+)}|^2 + 10|D_2^{(+)}|^2 \right] \ , \\ H^1(20) &= \frac{4}{35} \left[7|P_0^{(+)}|^2 + 5|D_0^{(+)}|^2 + 7\sqrt{5} \operatorname{Re}(S_0^{(+)}D_0^{(+)*}) \right] \ , \\ H^0(21) &= H^1(21) + \frac{2}{7}\sqrt{6} \operatorname{Re}(D_1^{(+)}D_2^{(+)*}) \ , \\ H^1(21) &= \frac{2}{35} \left[7\sqrt{5} \operatorname{Re}(S_0^{(+)}D_1^{(+)*}) + 7\sqrt{3} \operatorname{Re}(P_0^{(+)}P_1^{(+)*}) + 5 \operatorname{Re}(D_0^{(+)}D_1^{(+)*}) \right] \ , \end{split}$$

Analysis carried out by a team involving several institutions and collaborators (Glasgow, INFN, Jlab, York, ...)

MesonEx: $\pi^+\pi^-$ p preliminary data

class

Meson Spectroscopy at CLAS and CLAS12

Summary

- Meson spectroscopy has been one of the pillars of the CLAS Collaboration physics program since the beginning of operations
- Rich results portfolio with CLAS at 6 GeV, using tagged photons
- Program extended to 12 GeV with CLAS12 using quasi-real photons
- Preliminary results available for benchmark channels using data collected so far
- Key reaction channels (πππ or KKπ) already accessible but will require full statistics for extracting partial waves:
 - Proposal jeopardy defense at upcoming PAC to confirm the remaining beam time (50%)

