The A(i)DAPT program Al for Data Analysis and Preservation

Tommaso Vittorini

on behalf of A(i)DAPT Working Group

Tommaso Vittorini

Overview

• Motivation and advantages of the deployed techniques

Generative Adversarial Network overview

• Our approach towards reproducing experimental data

• Outlook and future perspectives

• Summary

- Data collected by NP/HEP experiments are (always) affected by the detector's effects
- Before starting physics analysis the detector's effect unfolding is required
- Traditional observables may not be adequate to extract physics in multidimensional space (multi-particles in the final state)
- At High-Intensity frontiers, data sets are large and difficult to manipulate/preserve

Develop AI – supported procedures to:

- Accurately fit data in multiD space
- Unfold detector effects
- Compare synthetic (Al-generated) to experimental data
- Quantify the uncertainty (UQ)

Collaborative effort (regular meeting)

- ML experts (ODU, Jlab)
- Experimentalists (Jlab Hall-B)
- Theorists (JPAC, JAM)

Exlusive reactions: $2 \rightarrow 3$

$\gamma p ightarrow \pi^+\pi^- p$ (unpolarized)

- Initial state: Fully known
- Final state: 3x3 indipendent variables
- Indipendent variables: $(3x3) 4 = 5 (E_{\gamma} \text{ fixed})$
- Many possible choices, such as $M_{\pi\pi}^2$, $M_{p\pi}^2$, θ_{π} , α , ϕ

CLAS g11 2π photoproduction

- $E_{\gamma} = (3 3.8) \, GeV$
- Dataset analyses on $\gamma p \rightarrow p\pi^+(\pi^-)$ with small contamination from $\gamma p \rightarrow p\pi^+(\text{more than a single missing }\pi^-)$
- Complicated dynamics due to the overlap of $(p\pi)$ to form Δ baryon resnoances and $(\pi\pi)$ to form meson resonances

 $\frac{d\sigma (\gamma \ p \rightarrow p \ \pi^{+}\pi^{-})}{dM_{\pi\pi} \ dM_{p\pi} \ d\cos(\theta_{\pi}) \ d\alpha \ d\phi}$

AI could provide a new way to look at data and to extract observables and physics interpretation

Credit: Y.Alanazi Awadh, , P.Ambrozewicz, G. Costantini A.Hiller Blin, E. Isupov, T. Jeske, Y.Li, L.Marsicano W. Menlnitchouk, V.Mokeev, N.Sato, A.Szczepaniak, T.Viducic

• Detector effects make measured observables (detector-level) different from the 'true' observables (vertex level)

Acceptance: Any measurement can access only a limited portion of the phase space. What can we say about these unmeasured regions?

- Interpolation: deal with the holes in the phase space
- Extrapolation: extend our coverage from the borders of measured regions

Resolution: Any measurement has an experimental resolution that may modify cover up effects that we're looking for

- > Spikes may be concealed behind the detector resolution
- Measurements could be extended to unphysical regions
- Mitigation strategy:
 - Acceptance: 'Fiducial volumes' to exclude unmeasured regions and extend the covered measured of the phase space
 - Resolution: build and validate ML-models to unfold resolution effects

Generative Adversarial Networks (GANs)

- Generative model based on the competition between two Neural Networks: Generator vs Discriminator
 - **Generator** produces synthetic data which progressively reproduce realistic data and the **Discriminator** has to distinguish between synthetic and realistic data
 - **Generator** can be used to retain high dimensional correlations (detector proxies)
 - **Generator** can be used to provide highly realistic pseudo-data in an extremely fast way

Multi-d cross-section: exclusive 2π photoproduction

M. Battaglieri *et al.* (CLAS Collaboration) Phys. Rev. Lett. 102, 102001 M. Battaglieri *et al.* (CLAS Collaboration) Phys. Rev. D 80, 072005

CLAS g11 kinematics

- Dataset used by CLAS Collaboration for many publications
- Fiducial cuts (p, θ, ϕ) as used in published analyses
- Focus on $\gamma p \rightarrow p \pi^+(\pi^-)$
- Final exclusive 2π state identified by missing mass technique (variables are reconstructed by energy/momentum conservation)
- Multi-pion backgound comes from $\gamma p \rightarrow p \omega^0 \rightarrow p \pi^+ \pi^- \pi^0$
- At $E_{\gamma} = (3 4)$ GeV reaction dynamics are dominated by ρ^0 photproduction through $\gamma p \rightarrow p \rho^0$ and Δ^{++} resonance excitation through $\gamma p \rightarrow \Delta^{++} \pi^-$

6 - Tommaso Vittorini

• CLOSURE TEST:

Demonstrate that GANs reproduce 'true' multi-d correlations, unfolding CLAS detector effects, comparing vertex-level (GEN) events with GAN GEN SYNT events, trained at detector-level and unfolded with a (GAN-based) detector proxy

- 1. Generate events with a (realistic) Monte Carlo 2π photoproduction model (RE-MC GEN pseudodata)
- 2. Apply detector effects (acceptance and resolution) via GSIM-GEANT (RE-MC REC pseudodata)
- 3. Deploy a secondary GAN (DS-GAN) to learn detector effects using an indipendent MC event generator (PS-MC) + GSIM-GEANT (GEN and REC pseudodata)
- 4. Deploy the unfolding GAN (UNF-GAN) that includes the DS-GAN, and train it with RE-MC REC pseudodata
- 5. Compare UNF-GAN GEN SYNT data to RE-MC GEN pseudodata
- 6. Replace RE-MC REC pseudo data with CLAS data in the training to unfold the vertex-level experimental distributions

Credit: T. Alghamdi et al. Phys. Rev. D 108, 094030

- 1. Generate events with a (realistic) Monte Carlo 2π photoproduction model (RE-MC GEN pseudodata)
- RE-MC realistic Monte Carlo event generator to mimic real data. Includes measured cross-sections, angular distributions and decay of dominant mechanisms (ρ^0 , Δ^{++} , Δ^0 + a contact term)

- 2. Apply detector effects (acceptance and resolution) via GISM-GEANT (RE-MC REC pseudodata)
- GSIM: detector simulation package to simulate CLAS detector effects based on GEANT3

 Deploy a secondary GAN (DS-GAN) to learn detector effects using an indipendent MC event generator (PS-MC) + GSIM-GEANT (GEN and REC pseudodata)

11 - Tommaso Vittorini

 \cap^0

3

2

 $p_{
m GEN}~(
m GeV)$

-0.5

The A(i)DAPT program

0.000

 $\delta p/p$

0.00

 $\delta\theta/\theta$

-0.02

0.025

Gauss fit

0.02

DS-GAN learned the CLAS detector effects!

 $\Delta p \; ({
m GeV})$

 $p_{\rm GEN}~({
m GeV})$

13 - Tommaso Vittorini

The A(i)DAPT program

MC REC pseudodata vs. DS-GAN synthetic data

UNF-GAN trained with REC-MC pseudodata (experimental data proxy)
DS-GAN used to unfold CLAS detector effects (within acceptance)

RE-MC GEN pseudodata vs. UNF-GAN SYN data

5. Compare UNF-GAN GEN SYNT to RE-MC GEN pseudodata

Good agreement $(\pm 1\sigma)$ for vertex-level training variables!

 Systematic of the full procedure (two-GANs) estimated by bootstrap with 20+20 independently trained GANs

14 - Tommaso Vittorini

- 4. Deploy the unfolding GAN (UNF-GAN) that includes the DS-GAN and train it with RE-MC REC pseudodata
 - UNF-GAN trained with REC-MC pseudodata (experimental data proxy)
 - DS-GAN used to unfold CLAS detector effects (within acceptance)

RE-MC GEN pseudodata vs. UNF-GAN SYN data

- 4. Deploy the unfolding GAN (UNF-GAN) that includes the DS-GAN and train it with RE-MC REC pseudodata
 - UNF-GAN trained with REC-MC pseudodata (experimental data proxy)
 - DS-GAN used to unfold CLAS detector effects (within acceptance)

5. Compare UNF-GAN GEN SYNT to RE-MC GEN pseudodata

Good agreement ($\pm 1\sigma$) for lab variables and in 4D bins

Moving forward: Acceptance

- Simple 2-body process: $\gamma p \rightarrow \Delta^+(1232) \rightarrow \pi^0 p$
- Two independent variables (at fixed energy): $heta_{cm}$ and ϕ_{cm}
- Monte Carlo eventgenerator
- \bullet Simple model: Breit-Wigner with two parameters: m_{Δ} and Γ_{Δ}

$$\frac{d\sigma}{d\Omega} \propto \frac{p_f}{p_i s} \sum_{\lambda_\gamma \lambda_p \lambda'_p} \left| (-)^{\lambda_\gamma} H_{|\lambda_\gamma - \lambda_p|} \frac{d_{\lambda_\gamma - \lambda_p, -\lambda'_p}^{3/2}(\theta)}{m_\Delta^2 - s - i\Gamma_\Delta m_\Delta} \right|^2$$
$$\propto \frac{p_f}{p_i s} \frac{3 \left| H_{3/2} \right|^2 + 5 \left| H_{1/2} \right|^2 - 3\cos 2\theta \left(\left| H_{3/2} \right|^2 - \left| H_{1/2} \right|^2 \right)}{(m_\Delta^2 - s)^2 + \Gamma_\Delta^2 m_\Delta^2}$$

• Detector acceptance (CLAS) implemented via fiducial cuts (coils, minimum proton momentum and angle in the lab frame)

- topology 1: $\gamma p \rightarrow (p) \pi^0$ (proton missing)
- topology 1I: $\gamma \ p \rightarrow p \ (\pi^0) \ (\pi^0 \ missing)$
- topology III: $\gamma \ p \rightarrow p \ \pi^0$ (all detected)
- [topology 0: unmeasured]

Build a single Network able to generate in the full phase space according to the correct distributions

The A(i)DAPT program

17 - Tommaso Vittorini

Moving forward: CLAS12 application

- Working towards the application of the developed machinery to CLAS12 pseudodata for the $ep \rightarrow e'p'\pi^+\pi^-$
- If this procedure works well on CLAS and CLAS12 data the architecture robustness is guaranteed
- We can put together in a coherent way information from different kinematic regions

p - Detector π^+ - Detector e' - Detector 0.4 1.5 1.5 1.0 0 2 0.0 Ы 8 00 0.0 -0.5 -0 5 -1.0-1.0-1.5 -1.5 -2.0 -0.2 -2 0.0 рx рх p - GAN e' - GAN 1.5 1.0 5 S -0 -1.0-10-1.5-1.5 -0.4 -2 (-1 -0.4 -0.2 0.0 0.4 -2 -1 0.2 px px px

DS-GAN training on the CLAS12 detector

Credit: Derek Glazier, Tareq Alghamdi, Marco Spreafico

Summary

A(I)DAPT program aims to demonstrate a novel way to extract and interpret physics observables

- Multi-step program
- We performed a positive closure test on 2pion photoproduction
- We demonstrated that GANs are a viable tool to unfold detector effects (smearing) to generate a synthetic copy of data
- We demonstrated that the original correlations are preserved
- Preserve data in alternative compact and efficient form

We are working on:

- Quantifying the systematic error introduced by the detector acceptance
- Implementing this architecture into jlab software in order to make it easily available to everyone
- Further verify that this procedure is well defined confronting the results obtained analysing CLAS data with traditional analysis in order to extract a 4D cross-section
- Make this procedure an efficient way to analyse CLAS12 2π data

There is still a long way to go to be able to use AI to extract physics from data in an efficient way, but we are moving towards the right direction!

Thank you!

Tommaso Vittorini

