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Could QC beat lattice-gauge QCD calculations?

' Quantum Algorithms for Quantum
Field Theories
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Could QC beat lattice-gauge QCD calculations?
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Quantum simulation of fields with fields

e Consider complex scalar fields [¢(x),7w(x))] = id(x — x") and a ¢4 QFT Hamiltonian
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Quantum simulation of fields with fields

e Consider complex scalar fields [¢(x),7w(x))] = id(x — x") and a ¢4 QFT Hamiltonian

Harmonic oscillators = light fields @

squeezed light fields &

Coupled springs = interfering squeezed light fields &
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The quantum optics toolbox: leveraging MBQC

't has been known for more than two decades now that
e the universal gate set of quantum computing (i.e., any quantum gate)

® guantum error correction

can all be implemented using measurement-based quantum computing
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The quantum optics toolbox: leveraging MBQC

It has been known for more than two decades now that

e the universal gate set of quantum computing (i.e., any quantum gate)

® guantum error correction

can all be implemented using measurement-based quantum computing

VOLUME 86, NUMBER 22 PHYSICAL REVIEW LETTERS

28 MAy 2001

A One-Way Quantum Computer

Robert Raussendorf and Hans J. Briegel
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The quantum optics toolbox: leveraging MBQC

All we need to do is

* to generate large-scale entangled states of light

* to measure either the field amplitude or the photon number of single fields
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The quantum optics toolbox: leveraging MBQC

All we need to do is

* to generate large-scale entangled states of light

* to measure either the field amplitude or the photon number of single fields
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From the optical frequency comb (OFC)...

The eigenmodes of a cavity form a large ensemble of classically coherent modes
Carrier-envelope-phase locked mode-locked laser = optical frequency comb
(as many as 10¢ modes oscillating in phase)

linear gain

Laser
John L. Hall Theodor W. Hansch
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The eigenmodes of a cavity form a large ensemble of classically coherent modes
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|&d Selected for a Viewpoint in Physics week ending
PRL 101, 130501 (2008) PHYSICAL REVIEW LETTERS 26 SEPTEMBER 2008

One-Way Quantum Computing in the Optical Frequency Comb

Nicolas C. Me,nicucci,l'2 Steven T. Flammia,3 and Olivier Pfister*

15 pump modes into YZY, ZZZ, ZYY ‘ ‘ p = Wm T W/




week ending

PRL 107, 030505 (2011) PHYSICAL REVIEW LETTERS 15 JULY 2011

Parallel Generation of Quadripartite Cluster Entanglement in the Optical Frequency Comb

Matthew Pysher,' Yoshichika Miwa,” Reihaneh Shahrokhshahi,' Russell Bloomer,' and Olivier Pfister'*

-5 -14 13 -12 -1 -10 -9 -8 -7 6 -5 -4 -3 -2 -1 1 2 3 4 S 6 7 8 9 10 11 12 13 14

Entanglement gets scaled up in
an optical frequency comb

Using a single nonlinear optical element, researchers
have entangled dozens of the comb’s optical modes.

www.physicstoday.org September 2011 Physics Today 21




week ending

PRL 112, 120505 (2014) PHYSICAL REVIEW LETTERS 28 MARCH 2014

Experimental Realization of Multipartite Entanglement of 60 Modes of a
Quantum Optical Frequency Comb

Moran Chen,1 Nicolas C. Menicucci,z’* and Olivier Pfister’"’
'Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA
2School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
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Non-Gaussian quantum optics: PHOTONS
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Experimentally accessible non-Gaussian resource:
photon-number detection

Thomas Gerrits |dea‘ POVM set =
(NIST) (NIST)

Fock states have non-positive Wigner functions.

Superconducting transition-edge sensor:
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Fock states have non-positive Wigner functions.

Superconducting transition-edge sensor:

Thermal link

"0

SQUID readout

Physics Today 71, 8, 28 (2018)
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nature photonics

Article https://doi.org/10.1038/s41566-022-01105-9

Resolution of 100 photons and quantum
generation of unbiased randomnumbers

Received: 27 May 2022 Miller Eaton®'¢", Amr Hossameldin ® '/, Richard J. Birrittella??, | - oomoooreeoe |
Paul M. Alsing?, Christopher C. Gerry ® %, Hai Dong®, Chris Cuevas® & -

Accepted: 11 October 2022 . . . 1
Olivier Pfister

Published online: 19 December 2022
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Quantum simulation of quantum field theory

(Pout | T {7 } i)
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Quantum simulation of quantum field theory

® Now we can address our simulation goal which is to evaluate the scattering amplitude
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Quantum simulation of quantum field theory

Now we can address our simulation goal which is to evaluate the scattering amplitude
(Yout ‘T{e_ﬁtH}‘¢1n>

Build an arbitrary input state: photon-number state = free-field particle eigenstate

Apply the hard-to-calculate-classically quantum evolution due to the ¢* term

Project into an arbitrary (random) quantum state: measure photon numbers

Repeat process until statistically significant sampling yields probability distribution

<¢out|T{€_ﬁtH}‘¢m>
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Quantum optical simulation of quantum field theory
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Quantum optical simulation of quantum field theory
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