Quantum Optical Simulations of Scattering Observables

JLab Users Group Meeting - 6/12/2024

Olivier Pfister

U. of Virginia

Collaboration funded by a JLab LDRD award (2021 - 2023)

Robert Edwards JLab

Raúl Briceño Berkeley George Siopsis UTenn

Olivier Pfister UVA

Carlos González UVA

Collaboration funded by a JLab LDRD award (2021 - 2023)

Robert Edwards JLab

Toward coherent quantum computation of nuclear physics with a measurement-based photonic quantum processor

arXiv:2312.12613

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

JLab Users Group Meeting - 6/12/2024

Raúl A. Briceño*

Department of Physics, University of California, Berkeley, CA 94720, USA and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Robert G. Edwards[†]

Miller Eaton, Carlos González-Arciniegas, and Olivier Pfister[‡] Department of Physics, University of Virginia, 382 McCormick Rd, Charlottesville, Virginia 22904-4714, USA

George Siopsis[§] Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA

Collaboration funded by a JLab LDRD award (2021 - 2023)

Chris Cuevas JLab

Hai Dong JLab

Robert Edwards JLab

Toward coherent quantum computation of nuclear physics with a measurement-based photonic quantum processor

arXiv:2312.12613

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

JLab Users Group Meeting - 6/12/2024

Raúl A. Briceño*

Department of Physics, University of California, Berkeley, CA 94720, USA and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Robert G. Edwards[†]

Miller Eaton, Carlos González-Arciniegas, and Olivier Pfister[‡] Department of Physics, University of Virginia, 382 McCormick Rd, Charlottesville, Virginia 22904-4714, USA

George Siopsis[§] Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA

Collaboration funded by a JLab LDRD award (2021 - 2023)

Chris Cuevas JLab

nature photonics

Resolution of 100 photons and quantum generation of unbiased random numbers

Hai

Dong

JLab

Robert Edwards JLab

Toward coherent quantum computation of nuclear physics with a measurement-based photonic quantum processor

arXiv:2312.12613

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

JLab Users Group Meeting - 6/12/2024

Raúl A. Briceño*

Department of Physics, University of California, Berkeley, CA 94720, USA and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Robert G. Edwards[†]

Miller Eaton, Carlos González-Arciniegas, and Olivier Pfister[‡] Department of Physics, University of Virginia, 382 McCormick Rd, Charlottesville, Virginia 22904-4714, USA

George Siopsis[§] Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA

Could QC beat lattice-gauge QCD calculations?

BM

Could QC beat lattice-gauge QCD calculations?

TEM

Quantum Algorithms for Quantum Field Theories

Stephen P. Jordan,¹* Keith S. M. Lee,² John Preskill³

1 JUNE 2012 VOL 336 SCIENCE www.sciencemag.org

Could QC beat lattice-gauge QCD calculations?

Quantum Algorithms for Quantum Field Theories

Stephen P. Jordan,¹* Keith S. M. Lee,² John Preskill³

JUNE 2012 VOL 336 SCIENCE www.sciencemag.org

PHYSICAL REVIEW A 92, 063825 (2015)

Quantum simulation of quantum field theory using continuous variables

Kevin Marshall,¹ Raphael Pooser,^{2,3} George Siopsis,^{3,*} and Christian Weedbrook⁴

JLab Users Group Meeting

PRL 112, 120505 (2014)

Quantum Optical Frequency Comb

¹Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA

• Consider complex scalar fields $[\phi(x), \pi(x')] = i\delta(x - x')$ and a ϕ^4 QFT Hamiltonian

$$H = \sum_{x=0}^{L-1} \left[\pi^{\dagger}(x)\pi(x) + \nabla \phi^{\dagger}(x) \nabla \phi^{\dagger$$

 $\nabla \phi(x) + m_0^2 \phi^{\dagger}(x) \phi(x) + \frac{\lambda}{4} (\phi^{\dagger}(x) \phi(x))^2 \Big|$

• Consider complex scalar fields $[\phi(x), \pi(x')] = i\delta(x - x')$ and a ϕ^4 QFT Hamiltonian

• Consider complex scalar fields $[\phi(x), \pi(x')] = i\delta(x - x')$ and a ϕ^4 QFT Hamiltonian

• Consider complex scalar fields $[\phi(x), \pi(x')] = i\delta(x - x')$ and a ϕ^4 QFT Hamiltonian

• Consider complex scalar fields $[\phi(x), \pi(x')] = i\delta(x - x')$ and a ϕ^4 QFT Hamiltonian

Coupled springs = interfering squeezed light fields 😅

Coupled springs = interfering squeezed light fields

Coupled springs = interfering squeezed light fields

Coupled springs = interfering squeezed light fields

It has been known for more than two decades now that

- the universal gate set of quantum computing (i.e., any quantum gate)
- quantum error correction
- can all be implemented using measurement-based quantum computing

It has been known for more than two decades now that

- the universal gate set of quantum computing (i.e., any quantum gate)
- quantum error correction can all be implemented using measurement-based quantum computing

It has been known for more than two decades now that

- the universal gate set of quantum computing (i.e., any quantum gate)
- quantum error correction can all be implemented using measurement-based quantum computing

It has been known for more than two decades now that

- the universal gate set of quantum computing (i.e., any quantum gate)
- quantum error correction can all be implemented using measurement-based quantum computing

All we need to do is

- to generate <u>large-scale</u> entangled states of light
- to measure either the field amplitude or the photon number of single fields

All we need to do is

- to generate <u>large-scale</u> entangled states of light
- to measure either the field amplitude or the photon number of single fields

Bottom up

Top down

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

John L. Hall

Theodor W. Hänsch

quantum OFC

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

John L. Hall

Theodor W. Hänsch

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

Theodor W. Hänsch

Cluster-state entanglement in one fell swoop

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = **optical frequency comb** (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

- Cluster-state entanglement in one fell swoop
- A top-down, large-scale quantum register of ENTANGLED QUANTUM FIELDS ("QUMODES")

rather than qubits.

From the optical frequency con

The eigenmodes of a cavity form a large ensemble of classically coherent modes Carrier-envelope-phase locked mode-locked laser = optical frequency comb (as many as 10⁶ modes oscillating in phase)

... to the entangled OFC: a quantum computer?

OPEN ACCESS IOP Publishing

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 012001 (16pp)

Topical Review

Continuous-variable quantum computing in the quantum optical frequency comb

Olivier Pfister

Theodor W. Hänsch

- **Cluster-state** entanglement in one fell swoop
- A top-down, large-scale quantum register of ENTANGLED QUANTUM FIELDS ("QUMODES")

rather than qubits. information flow $\mathbf{x} \neq \mathbf{1} \mathbf{1} \mathbf{1}$ \uparrow \uparrow \uparrow

° ° ° ° o quantum gate

PRL 101, 130501 (2008)

One-Way Quantum Computing in the Optical Frequency Comb

Nicolas C. Menicucci,^{1,2} Steven T. Flammia,³ and Olivier Pfister⁴

PRL 107, 030505 (2011)

Parallel Generation of Quadripartite Cluster Entanglement in the Optical Frequency Comb

Matthew Pysher,¹ Yoshichika Miwa,² Reihaneh Shahrokhshahi,¹ Russell Bloomer,¹ and Olivier Pfister^{1,*}

PRL 112, 120505 (2014)

Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb

Moran Chen,¹ Nicolas C. Menicucci,^{2,*} and Olivier Pfister^{1,†} ¹Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA ²School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia

JLab Users Group Meeting - 6/12/2024

We measured flat-gain emission of OPO over 6000 modes

Squeezed microcombs with integrated SiN photonic circuits

SiN squeezing quantum microcomb:

- Foundry fabricated. \bullet
- > 1 dB raw squeezing (loss dominated) ullet
- > 50 quantum modes confirmed. \bullet

Time (0.1 s / div)

Jahanbozorgi et al., Optica **10**, 1100 (2023),

Non-Gaussian quantum optics: PHOTONS

Experimentally accessible non-Gaussian resource: photon-number detection

Sae Woo Nam (NIST)

Thomas Gerrits (NIST)

Ideal POVM set =

Fock states have non-positive Wigner functions.

Superconducting transition-edge sensor:

(Quantum Opus)

JLab Users Group Meeting - 6/12/2024

Aaron Miller

(NIST)

Thomas Gerrits

(NIST)

Experimentally accessible non-Gaussian resource: photon-number detection

Ideal POVM set = $\{ |n\rangle \langle n| \}_{n=0,...,n_{\max}}$ Fock states have non-positive Wigner functions.

Superconducting transition-edge sensor:

Physics Today **71**, 8, 28 (2018)

Aaron Miller (Quantum Opus)

Sae Woo Nam (NIST)

Thomas Gerrits (NIST)

Ideal POVM set = $\{ |n\rangle \langle n| \}_{n=0,...,n_{\max}}$ Fock states have non-positive Wigner functions.

Superconducting transition-edge sensor:

Physics Today **71**, 8, 28 (2018)

Experimentally accessible non-Gaussian resource: photon-number detection

(Quantum Opus)

Aaron Miller

(NIST)

(NIST)

Ideal POVM set = $\{ |n\rangle \langle n| \}_{n=0,...,n_{\max}}$ Fock states have non-positive Wigner functions.

Superconducting transition-edge sensor:

Experimentally accessible non-Gaussian resource: photon-number detection

Aaron Miller

JLab Users Group Meeting - 6/12/2024

(Quantum Opus)

(NIST)

(NIST)

Ideal POVM set = $\{ |n\rangle \langle n| \}_{n=0,...,n_{\max}}$ Fock states have non-positive Wigner functions.

Superconducting transition-edge sensor:

Experimentally accessible non-Gaussian resource: photon-number detection

Aaron Miller (Quantum Opus)

1200 Three–Photon 1000 TES Signal (arbitrary units) Two-Photon 800 600 One-Photon 400 200 -200.03 0.04 0.05 0.06 0.01 0.02 0.07 0 Time (s) 14

Superconducting TES system @ 100 mK

14

Laser pulses into one TES channel

Miller Eaton

JLab Users Group Meeting - 6/12/2024

nature photonics

Article

Resolution of 100 photons and quantum generation of unbiased random numbers

Received: 27 May 2022

Accepted: 11 October 2022

Published online: 19 December 2022

Miller Eaton $\mathbb{O}^{1,6}$, Amr Hossameldin $\mathbb{O}^{1,6}$, Richard J. Birrittella^{2,3}, Paul M. Alsing², Christopher C. Gerry \mathbf{O}^4 , Hai Dong⁵, Chris Cuevas⁵ & **Olivier Pfister¹**

 $\langle \psi_{\mathrm{out}} | \mathcal{T} \{ e^{-\frac{i}{\hbar}tH} \} | \psi_{\mathrm{in}} \rangle$

• Now we can address our simulation goal which is to evaluate the scattering amplitude

 $\langle \psi_{\mathrm{out}} | \mathcal{T} \{ e^{-\frac{i}{\hbar}tH} \} | \psi_{\mathrm{in}} \rangle$

• Now we can address our simulation goal which is to evaluate the scattering amplitude $\langle \psi_{\text{out}} | \mathcal{T} \{ e^{-\frac{i}{\hbar}tH} \} | \psi_{\text{in}} \rangle$

• Build an arbitrary input state: photon-number state = free-field particle eigenstate

• Now we can address our simulation goal which is to evaluate the scattering amplitude $\{e^{-\frac{\imath}{\hbar}tH}\}|\psi_{\mathrm{in}}\rangle$

$$\langle \psi_{ ext{out}} | \mathcal{T}
angle$$

- Build an arbitrary input state: photon-number state = free-field particle eigenstate
- Apply the hard-to-calculate-classically quantum evolution due to the ϕ^4 term

• Now we can address our simulation goal which is to evaluate the scattering amplitude $\left\{e^{-\frac{i}{\hbar}tH}\right\}\left|\psi_{\mathrm{in}}\right\rangle$

$$\langle \psi_{
m out} | \mathcal{T} \cdot$$

- Build an arbitrary input state: photon-number state = free-field particle eigenstate
- Apply the hard-to-calculate-classically quantum evolution due to the ϕ^4 term
- Project into an arbitrary (random) quantum state: measure photon numbers
- Repeat process until **statistically significant** sampling yields probability distribution $\left| \langle \psi_{\text{out}} | \mathcal{T} \{ e^{-\frac{i}{\hbar} tH} \} | \psi_{\text{in}} \rangle \right|^2$

Why not use quantum fields to simulate quantum fields?

Why not use quantum fields to simulate quantum fields? The table-top tech is mature (my lab)

Why not use quantum fields to simulate quantum fields? The table-top tech is mature (my lab) Machine learning helps! arXiv:2310.03130

Why not use quantum fields to simulate quantum fields? The table-top tech is mature (my lab) Machine learning helps! arXiv:2310.03130 The on-chip tech is coming along (UVA ECE)

Why not use quantum fields to simulate quantum fields? The table-top tech is mature (my lab) Machine learning helps! arXiv:2310.03130 The on-chip tech is coming along (UVA ECE)

Integration begets scalability

1956 Nobel Prize

2000 Nobel Prize

Why not use quantum fields to simulate quantum fields? The table-top tech is mature (my lab) Machine learning helps! arXiv:2310.03130 The on-chip tech is coming along (UVA ECE) goal-oriented

Integration begets scalability

1956 Nobel Prize

2000 Nobel Prize

curiosity-driven