Measurement of the weak neutral form-factor of the proton at high momentum transfer

Kent Paschke University of Virginia

E12-23-004 Spokespeople: R.Beminiwattha, D.Hamilton, C. Palatchi, KP, B.Wojtsekhowski

LaTech, Glascow, Indiana, UVa, JLab, CUA, INFN - Roma, Temple, Ohio, Syracuse, FIU, CNU, Fermilab, UWashington, Tel Aviv U, Hebrew U, W&M, AANL Yerevan, Northern Michigan, UConn, Orsay

Prog.Part.Nucl.Phys. 127 (2022) 103985

JLUO Meeting 2024

Nucleon Form Factors at High Q²

- One might expect a transition to perturbatively dominated mechanisms
- Other degrees of freedom might become evident, such as orbital angular momentum or diquark structure
- Part of the 3D mapping of nucleon structure as the first moment of GPDs at $\xi = 0$

 $\int_{-1}^{+1} dx \, H^q(x,0,Q^2) \, = \, F_1^q(Q^2)$

 $\int_{-1}^{+1} dx \, E^q(x,0,Q^2) \, = \, F_2^q(Q^2)$

These implications rely on extracting the independent quark contributions

Flavor Separation of Nucleon Form Factors

These implications rely on extracting the independent quark contributions

G. Cates et al. Phys. Rev Lett. 106 (2011)

JLUO Meeting 2024

Kent Paschke - University of Virginia

4.0

 $F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$ and $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$

For example: the apparent onset of Q⁴ scaling for d-quark form-factors has been suggested to be consistent with the emergence of perturbative behavior in scattering and with the minority quark tied up in a diquark structure

This is speculative, but there is a strong effort to extend this data to higher Q^2

Charge symmetry and the nucleon form factors

measuring $G_{E,M}^{p,n}$ to find $G_{E,M}^{u,d}$

 $G_{E}^{p} = rac{2}{3}G_{E}^{u,p} - rac{1}{3}G_{E}^{d,p} - rac{1}{3}G_{E}^{s}$ $G_E^n = \frac{2}{2}G_E^{u,n} - \frac{1}{2}G_E^{d,n} - \frac{1}{2}G_E^s$

But this can broken! One way is to have a non-zero strange form-factor, which breaks the "2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:

A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

$$\delta G_{E}^{u} \equiv G_{E}^{u,p} - G_{E}^{d,n}$$
So, more

$$\delta G_{E}^{d} \equiv G_{E}^{d,p} - G_{E}^{u,n}$$
crucial

JLUO Meeting 2024

Charge symmetry is assumed for the form factors, $G_E^{u,p} = G_E^{d,n}$, etc. and used to find the flavor separated form-factors,

> e generally: the assumption of charge symmetry is I to the flavor decomposition of the form factors

Weak and EM amplitudes interfere:

$$\sigma = \left| \mathcal{M}_{\gamma} + \mathcal{M}_{Z}
ight|^{2}$$

Expressing A_{PV} for e-p scattering, with proton and neutron EM form-factors plus strange form factors:

$$A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \cdot \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} - \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right]$$
$$+ \epsilon' (1 - 4\sin^2\theta_W) \frac{G_M^p G_A^{Zp}}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2}$$

JLUO Meeting 2024

Parity Violating Electron Scattering

Elastic e-p scattering with longitudinally polarized beam and unpolarized target:

This technique was used to hunt for indications of strange quark contributions in the nucleon, particularly in the static (i.e. $Q^2 \rightarrow 0$) properties: a strange charge radius or strange magnetic moment

Proton strange form factors via parity violating elastic electron scattering

Strange form factors are measured to be consistent with zero at low Q^2 , but do not rule out non-zero values at higher Q²,

especially for magnetic form factor which is more accessible at higher Q²

JLUO Meeting 2024

Strange form-factors on the lattice

Some lattice calculations predict central values which are small, 10x below the limit of low Q² studies.

But they do not apparently fall with Q². These values would be significant contributions at high Q²

J. Green et al., Phys. Rev. D 92, 031501 (2015)

JLUO Meeting 2024

Kent Paschke - University of Virginia

Strange form-factor predictions

Follows work from *Phys.Rev.C* 91 (2015) 3, 035205 (LFWF to connect DIS and elastic measurements in a simple model)

JLUO Meeting 2024

Conclusion: sFF small (but non-zero) at low Q², but quite reasonable within constraints from data to think that they may grow relatively large at large Q²

To set the scale of the data constraints: the width of the uncertainty band at $Q^2 = 2.5 \text{ GeV}^2$ is approximately the size of the dipole form-factor parameterization G_D

 $G_s/G_D \sim 1$ is not excluded

Such a large SFF could be huge in a proton PV measurement $\delta A_{PV} \sim \pm 22 \text{ ppm}, \sim \pm 15\% \text{ of } A_{PV}^{ns}$

Q² dependence of Q⁴F₁

$F_1^u = 2F_{1p} + F_{1n} - F_1^s$ $F_1^d = 2F_{1n} + F_{1p} - F_1^s$

Assuming $\delta G_{E,M}^s \sim G_D \sim 0.048 \longrightarrow \delta(Q^4 F_1^u) \sim \pm 0.17$

Such a large SFF could be huge in a proton PV measurement $\delta A_{PV} \sim \pm 22 \text{ ppm}, \sim \pm 15\% \text{ of } A_{PV}^{ns}$

- So far, these have relied on poorly tested assumptions of strange quark contributions.
- significant contributions (at level of 1x-2x the green band)

A measurement is needed

JLUO Meeting 2024

• Flavor separated form factors are a crucial piece of information for GPDs / nuclear femtography. • Experimentally not ruled out (at level of yellow band) and lattice calculations do not rule out

Identify elastic kinematics with electron-proton coincidence

- Angular e-p correlation, 6.6 GeV beam energy (electron at 15.5 degrees, proton at 42.4 degrees)
- High resolution calorimeter trigger for electron arm
- Calorimeter trigger for proton arm
- Scintillator array on proton arm, to improve position resolution

- APV = 150 ppm, 4% precision goal, so $3x10^{10}$ elastic scattering events
- $\mathcal{L} = 1.7 \text{ x} 10^{38} \text{ cm}^{-2}/\text{s}$, 10 cm LH₂ target and 65 µA beam current
- Full azimuthal coverage, ~42 msr

JLUO Meeting 2024

Calorimeters reusing components

NPS electromagnetic calorimeter

• 1200 PBWO₄ scintillators, PMTs + bases

JLUO Meeting 2024

SBS hadronic calorimeter

• 288 iron/scintillator detectors, PMTs + bases

Detector System

HCAL - hadron calorimeter

- Detector elements from the SBS HCAL
- 288 blocks, each 15.5 x 15.5 x 100 cm³
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

- Detector elements from the NPS calorimeter
- 1200 blocks, each 2 x 2 x 20 cm³
- PbWO₄ scintillator

Scintillator array

- 7200 plastic scintillators, each $3 \times 3 \times 10 \text{ cm}^3$
- Wavelength shifting fiber to MA-PMT
- Used for position resolution in front of HCAL

JLUO Meeting 2024

Kent Paschke - University of Virginia

Experimental concept

Preliminary design of scattering chamber

He bag will reduce backgrounds between target chamber and exit beampipe

JLUO Meeting 2024

Kent Paschke - University of Virginia

This fits in Hall C (but it's tight)

Trigger: calorimeters, with geometric coincidence

A relatively high ECAL cut (~66% of beam energy) and loose e-p coincidence cut provides high efficiency and manageable data rate

JLUO Meeting 2024

ECAL > 4.5 GeV: 150 kHz

ECAL + HCAL in coincidence: 35 kHz

Fraction of total by event type	Online
Elastic scattering Inelastic (pion electro-production) Quasi-elastic scattering (target windows) π^0 photo-production	$\begin{array}{c} 0.531 \\ 0.450 \\ 0.015 \\ 0.004 \end{array}$

Elastic event discrimination

JLUO Meeting 2024

Kent Paschke - University of Virginia

Offline: tighten geometric cut with pixel hodoscope and ECAL cluster center

Exclude inelastic background to ~0.2%

Fraction of total by event type Offline Elastic scattering 0.989Inelastic (pion electro-production) 0.002Quasi-elastic scattering (target windows) 0.008 π^0 photo-production 0.001

> "sideband" analyses will help verify QE and inelastic asymmetries

Projected result

JLUO Meeting 2024

 $A_{PV} = 150 \text{ ppm}$ (if no strange FF) $\delta A_{PV} = \pm 6.2 \text{ (stat)} \pm 3.3 \text{ (syst)} (\delta A/A = \pm 4\% \pm 2\%)$ $\delta (G_E^s + 3.1G_M^s) = \pm 0.013 \text{ (stat)} \pm 0.007 \text{ (syst)} = 0.015 \text{ (total)}$

> If $G_M^s = 0$, $\delta G_E^s \sim 0.015$, (about 34% of G_D) If $G_E^s = 0$, $\delta G_M^s \sim 0.005$, (about 11% of G_D)

The proposed measurement is especially sensitive to G_M^s

The proposed error bar reaches the range of lattice predictions, and the empirically unknown range is much larger.

Next Step - Test Performance of Detector Concept

electron angle 15.5° proton angle 42.4°

Prototype proton detector:

- pixel array of 32 small scintillators with MA-PMT readout with 6 SBS HCAL blocks
- NINO card front-end, FADC readout
- 50uA on 15cm Hydrogen target at 6.6 GeV, about 2kHz rate into detector
- test elastic identification and background rate

Electron to SHMS

One can position the SHMS to 15.5° to detect electrons, measured in coincidence with a prototype proton detector at 42.4°

LaTech has purchased scintiallators, to be glued with WLS fibers for prototype this summer

Error budget

quantity	value	contributed uncertainty
Beam polarization	$85\%\pm1\%$	1.2%
Beam energy	$6.6 + / - 0.003 { m ~GeV}$	0.1%
Scattering angle	$15.5^\circ\pm0.03^\circ$	0.4%
Beam intensity	${<}100$ nm, ${<}10$ ppm	0.2%
Backgrounds	$< 0.2 \mathrm{~ppm}$	0.2%
G_E^n/G_M^n	-0.2122 ± 0.017	0.9%
G_E^p/G_M^p	0.246 ± 0.0016	0.1%
σ_n/σ_p	0.402 ± 0.012	1.2%
$G_A^{Zp}/G_{ m Dipole}$	-0.15 ± 0.02	0.9%
Total systematic uncertainty:		2.2%

Radiative correction uncertainties are small; theoretical correction uncertainty lies in the proton "anapole" moment If the anapole uncertainty is not improved, this would contribute at additional 4.1 ppm (2.7%) uncertainty

JLUO Meeting 2024

or 3.3 ppm

Statistical precision for A_{PV}: 6.2 ppm (4.1%)

Kent Paschke - University of Virginia

- higher Q², motivated by interest in flavor decomposition of electromagnetic form factors
- form factor.
- smaller than the uncertainty range in the extrapolation from previous strange form-factor data
- •PAC approved, but needs funding and development. The path forward is clear.

JLUO Meeting 2024

• 10+ years after the last sFF searches were performed, a new experiment is now planned for much

• Projected accuracy at ~11% of the dipole value allows high sensitivity search for non-zero strange

•The proposed error bar is in the range possibly suggested by lattice predictions, and significantly

Backup slides

Configuration $\#$	Procedure	Beam current, μA	time, days
C1	Beam parameters	1-70	1
C2	Detector calibration	10	2/3
C3	Dummy target data	20	1/3
C4	Moller polarimetery	1-5	3
C5	$A_{\scriptscriptstyle PV}$ data taking	60	40
	Total requested time		45

JLUO Meeting 2024

Beam Time

Scintillator Array

New detector, must be built for this experiment • Extruded plastic scintillator block • Readout with wavelength-shifting fiber • Each fiber read by pixel on multi-anode PMT • 7200 blocks, each 3 x 3 x 10 cm³ • Pipeline TDC readout (VETROC)

Triggering

Group calorimeter elements into logical "subsystems" for energy threshold and coincidence triggering • each polar column of detectors, overlapping with neighbors

- sum amplitude with conservative coincidence timing window
- compare to conservative energy threshold

Electron subsystems

- 1200 PbWO₄ crystals
- 2x2x20 cm³
- 5x5 grouping for subsystem
- 240 overlapping subsystems

Advantage: simplicity over dynamic clusterization, and fully sufficient for acceptance, resolution, and background

JLUO Meeting 2024

•trigger when complementary (ECAL and HCAL) subsystems are both above threshold ~ only about 35 kHz

Proton subsystems

- 288 iron/scintillators
- 15.5x15.5x100 cm³
- 3x3 grouping for subsystem
- 96 overlapping subsystems

Fast Counting DAQ

250 MHz flash ADC (JLab FADC250) for HCAL and ECAL readout Provides the pulse information for a fast, "deadtime-less" trigger

Expect ~35kHz total, ~500 Mb/s data rate, distributed over 6 separate crates (calorimeters) and 3 crates for scintillators

VTP (VXS Trigger Processor) Running, updating sums over overlapping calorimeter clusters, to find ECAL+HCAL coincidence above threshold

One VXS crate will handle one sixth of ECAL + HCAL, also provide external trigger for ScintArray pipelineTDC readout

Corresponding scintillator elements recorded in TDC (pulse time, time over threshold) with each trigger

JLab Fast Electronics FADC250 / VTP

JLUO Meeting 2024

JLab FADC250 for HCAL and ECAL readout Provides the input for a fast, "deadtime-less" trigger

VTP (VXS Trigger Processor) Performs the trigger logic computation

Scintillator TDC readout

Two workable options, based on previously implements MAPMT pipeline readout

model based on CDET detector (GEP)

- NINO chip module, VETROC for scintillator readout.
- Need 38 boards, 3 crates.
- Pipeline event record triggered by calorimeter coincidence trigger.
- Use HCAL subsystem number to select scint elements for readout
- Record time, time-over-threshold for scint elements (preferred)
- 35 kHz trigger rate, 8 Bt/read, 225 elements = 65 MB/sec

model based on CLAS12 RICH

- MAROC3a FPGA readout module
- discriminated signal
- SSP readout board for scintillator readout.
- Need 38 front-end boards, 2 SSP, 1 crate.
- Event record triggered by calorimeter coincidence trigger.
- All elements recorded hit or not, 35kHz*7200 bits = 32 MB/sec

Other possible discriminator boards, if availability is limited (such as SAMPA...)

JLUO Meeting 2024

Kent Paschke - University of Virginia

FPGA Board

PV measurements are an established technique

JLUO Meeting 2024