

Neutron Spin Structure Studies with SoLID

Ye Tian (Syracuse University) For the SoLID collaboration

- SoLID Overview
- Physics Motivation on g₂, d₂
- Experiment
- Expected Results Summary

JLUO2024

06/12/2024

This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and DE-FG02- 84ER40146. Acknowledgement to the entire SoLID collaboration, especially Jian- Ping Chen, Haiyan Gao, Zein-Eddine Meziani, and Paul Souder

Solenoidal Large Intensity Device (SoLID) with JLab 12-GeV Enables QCD at the Intensity Frontier

Research at SoLID will have the unique capability to explore the QCD landscape while complementing the research of other key facilities

2

SoLID Overview

- Website <u>https://solid.jlab.org</u>
- PreCDR 2019 https://solid.jlab.org/DocDB/0002/000282/001/solid-precdr-2019Nov.pdf
- Whitepaper 2022 <u>https://arxiv.org/abs/2209.13357</u> J. Phys. G: Nucl. Part. Phys. 50 110501 (2023)

☑ Semi-Inclusive Deep Inelastic Scattering (SIDIS) Program:

- <u>E12-10-006(A)</u>: Single Spin Asymmetry on Transversely Polarized ³He (90 days)
- <u>E12-11-007(A)</u>: Single and Double Spin Asymmetry on Longitudinally Polarized ³He (35 days)
- <u>E12-11-108(A)</u>: Single Spin Asymmetry on Transversely Polarized Proton (120 days)
- Run groups: Dihadron (E12-10-006A), Ay (E12-11-108A/E12-10-006A), Kaon Production (E12-11-108B/E12-10-006D), Measurement of Inclusive g2n and d2n with SoLID on a Polarized ³He Target (E12-11-007A/E12-10-006E)

☑ Parity Violation Deep Inelastic Scattering (PVDIS) Program:

- <u>E12-10-007</u> (A): Parity Violating Asymmetry in DIS with LH_2 and LD_2 (169 days)
- <u>PR12-22-002</u> (C2 approved): Flavor Dependence of Nuclear PDF Modification Using PVDIS with ⁴⁸Ca

 \checkmark J/ ψ Program: <u>E12-12-006</u> (A) Near Threshold Electroproduction of J/ ψ at 11 GeV (60 days)

Two photon exchange study

• <u>E12-22-004 (A-)</u>: Beam Normal Single Spin Asymmetry in DIS with LH₂ (38 days)

Generalized Parton Distributions (GPDs) Programs

- <u>E12-12-006A</u>: Time-Like Compton Scattering (Run group).
- <u>E12-10-006B</u>: Deep Exclusive π^- production (DEMP) with polarized ³He target and SIDIS configuration
- Under development: Other polarized-proton/neutron DVCS and Doubly DVCS on proton, etc.

Inclusive Electron Scattering

 Q^2 :Four-momentum transfer

- x : Bjorken variable(= $Q^2/2M\nu$)
- v: Energy transfer
- M : Nucleon mass
- W: Final state hadronic mass

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{Mott} \begin{bmatrix} \frac{1}{\nu} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \\ +\gamma g_1(x,Q^2) + \delta g_2(x,Q^2) \end{bmatrix}$$

spin dependent Structure Function

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = \frac{1}{2} \sum_{i} e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

 \Box g₂ is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass effect of order O($m_q/\Lambda_{\rm QCD}$)

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g}_2(x,Q^2)$$

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = rac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

□ g_2 is zero in the naive parton model---Ignoring quark mass effect of order $O(m_q/\Lambda_{QCD})$

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + g_2(x,Q^2)$$

• leading twist related to g_1 by Wandzura-Wilczek relation

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

related to amplitude for scattering off asymptotically free quarks

d₂: twist-3 matrix element

$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \begin{bmatrix} \frac{m_{q}}{M} h_{T}(y,Q^{2}) + \zeta(y,Q^{2}) \end{bmatrix} \frac{\mathrm{d}y}{y}$$
quark transverse momentum contribution twist-3 part which arises from quark-gluon interactions

quark-gluon interaction and the quark mass effects

d₂: the x² moment of $\overline{g}_{2}(x,Q^{2})$, twist-3 matrix element $d_{2}(Q^{2}) = 3\int_{0}^{1} x^{2} [g_{2}(x,Q^{2}) - g_{2}^{WW}(x,Q^{2})] dx$ $= \int_{0}^{1} x^{2} [2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})] dx$

- \checkmark Dominated by high x data because of weighting
- \checkmark Calculable on the Lattice.
- \checkmark A clean way to access twist-3 contribution

JLUO2024

Existing Neutron g₂ Data

- First precise measurement of neutron g_2 from SLAC, averaged $Q^2 \approx 5 \text{ GeV}^2$
- Measurement form Jefferson Lab: E<6GeV
- The Hall C d_2^n E12-06-121, 0.2 < x < 0.95and $2.5 < Q^2 < 7$ GeV² with SHMS and upgraded HMS
- We propose to measure gⁿ₂ at x>0.1 and 1.5 < Q² < 10 GeV</p>

³ He	g_2^n, d_2^n, Γ_2^n	$0.5 \le W \le 2.5 \; GeV$	$0.1 \le Q^2 \le 0.9$	JLAB E94–010 [29]
³ He	g_2^n	x = 0.2	$0.57 \le Q^2 \le 1.34$	JLAB E97–103 [30]
³ He	$g_2^n,\!d_2^n$	x = 0.33, 0.47, 0.6	2.7, 3.5, 4.8	JLAB E99–117 [2]
³ He	g_2^n	x < 0.1	$0.035 \le Q^2 \le 0.24$	JLAB E97–110 [31]
³ He	g_2^n, d_2^n	$0.25 \le x \le 0.9$	$3.21,\!4.32$	JLAB E06–014 [14]
³ He	g_2^n, d_2^n	$0.55 \le x \le 0.9$	$0.7 \le Q^2 \le 4.0$	JLAB E01–012 [33]

Existing Neutron g₂ Data

Figure from Jian-ping Chen SPIN2023 talk

from SLAC, averaged $Q^2 \approx 5 \text{ GeV}^2$ 0.010 Q²: 2.4 GeV² to 3.3 GeV² - Q²: 5.0 GeV² to 6.6 GeV² --- Q²: 2.8 GeV² (x²g₂^{ww} DSSV-14) Measurement form Jefferson Lab: E<6GeV Q^2 : 5.5 GeV² (x²g₂^{ww} DSSV-14) E': 5.89 GeV (E06-014) 4.74 GeV (E06-014) Q^2 : 0.57 GeV² to 1.34 GeV² (E97-103) → Q²: [2.709, 3.516, 4.833] GeV² (E99-117) - Q²: 3.3 GeV² (E01-012 Resonance) The Hall C $d_2^n E_{12}$ -06-121, 0.2 < x < 0.950.005 and 3 GeV² < Q^2 < 5.5 GeV² with SHMS an upgraded HMS We propose to measure g_{2}^{n} at x>0.1 and 1.5 $< Q^2 < 10 \text{ GeV}$ -0.005 01 0.2 0.3 04 0.5 0.6 07 08 09 Х ³He $0.1 \le Q^2 \le 0.9$ $0.5 \le W \le 2.5 \; GeV$ g_2^n, d_2^n, Γ_2^n JLAB E94–010 [29] ³He $0.57 \le Q^2 \le 1.34$ g_2^n JLAB E97–103 [30] x = 0.2³He x = 0.33, 0.47, 0.62.7,3.5,4.8 JLAB E99–117 g_2^n, d_2^n |2|³He $0.035 \le Q^2 \le 0.24$ JLAB E97–110 [31] x < 0.1 g_2^n ³He JLAB E06–014 g_2^n, d_2^n $0.25 \le x \le 0.9$ 3.21,4.32 114 ³He $0.7 < Q^2 < 4.0$ g_2^n, d_2^n $0.55 \le x \le 0.9$ JLAB E01–012 [33]

JLUO2024

First precise measurement of neutron g_2

6/12/24

Existing Neutron d₂ Data

Figure from Phys. Rev. Lett., 113(2):022002, 2014

6/12/24

Ye Tian

JLUO2024

SoLID Detector Subsystems

SoLID (SIDIS He3)

SoLID SIDIS Configuration

- E12-10-006: Transversely polarized ³He target
- E12-11-007: Longitudinally polarized ³He target
- ³He target cell 40cm
- High in-beam polarization ~ 60%
- Two Beam energies: 11 GeV and 8.8 GeV
- Polarized luminosity with 15uA current: 1e³⁶ cm⁻²s⁻¹

Modern Technologies

- Gas Emission Multipliers (GEM's)---tracking
- EM Calorimeter (ECal) ---particle identification (PID)
- Cherenkov---pion rejection
- Pipeline DAQ
- Uses full capability of JLab electronics

> Challenges

- High data rate
- Low systematics
- High background
- High Radiation

Pre-R&D beam test items: LGC, GEM's, ECal, DAQ/Electronics

JLUO2024

SoLID Detector Beam Test

- ➢ Beam test of Cherenkov (pre-R&D in 2020) at Jlab Hall C
- ✓ Low-rate beam test of maPMTs: 3/2020
- ✓ High-rate beam test of maPMTs: 6-8/2020

- MaPMT works well in a high-rate environment of 300 kHz per cm2

- LAPPD exhibits a similar performance

✓ Low-rate beam test of LAPPD: 8-9/2020

- ➢ Beam test of Ecal at Fermilab Test Beam Facility (1/2021)
- energy resolution $\frac{\sigma_E}{E} = 4.6\% \bigoplus \frac{10.4\%}{\sqrt{E}}$

dX = 0.67 cm dY = 0.56 cm

Beam test of a full set of SoLID detector prototypes – GEM, LGC, LASPD, ECal, DAQ and associated electronics: (6/2022-3/2023)

- Benchmarking simulation of rate and background
- Study **ECal** and **LASPD** performance under high rate, high radiation, high background condition
- Study ECal and LASPD PID

Extraction of g_2

$$\Delta \sigma_{\parallel,\perp} = 2\sigma_0 A_{\parallel,\perp}$$

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu E}{(E-\nu)(2E-\nu)} \left[\Delta \sigma_{\parallel} + \tan \frac{\theta}{2} \Delta \sigma_{\perp} \right],$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu^{2}}{2(E-\nu)(2E-\nu)} \left[-\Delta \sigma_{\parallel} + \frac{E+(E-\nu)\cos\theta}{(E-\nu)\sin\theta} \Delta \sigma_{\perp} \right]$$

• The spin-dependent structure function g_2 heavily relies on the perpendicular cross section difference $\Delta \sigma_{\perp}$ due to the large kinematic factor within the proposed kinematic coverage.

	JLUO2024	Ye Tian	6/12/24
--	----------	---------	---------

Projections: x^2g_2 @ 8.8 GeV

55% target polarization, 85% beam polarization, and 0.17 nitrogen dilution

- Dedicated single electron trigger rate: 103 kHz/10 = 10.3 kHz
- Reusable random coincidence trigger rate: 69 kHz
- F₂ from New Muon Collaboration (NMC) parameterization
- $R = g_1^n / F_1^n$ from SLAC

6/12/24

- Errors:
- error bars ---- statistic errors
- shadow regions----systematic error

14

Projections: x^2g_2 @ 11 GeV

55% target polarization, 85% beam polarization, and 0.17 nitrogen dilution

d₂: Twist-3 Matrix Element

A Precision Measurement of Inclusive g2, d2 with SoLID on a Polarized 3He Target at 8.8 and 11 GeV. <u>https://www.jlab.org/exp_prog/proposals/20/E12-11-007A_E12-10-006E_Proposal.pdf</u> Whitney R. Armstrong, Sylvester J. Joosten, Chao Peng¹, Ye Tian^{1,2}, Weizhi Xiong, Zhiwen Zhao ¹ Spokesperson, ² Contact person

$ \cap 2024$	Ye Tian	6/12/24	
51002024	ro nam	0/12/24	

.6

Summary

- ➤ We propose a parasitic measurement with SoLID-SIDIS ³He experiments E12-10-006 and E12-11-007 to extract neutron g₂ at x>0.1 and 1.5<Q²<10 GeV², and d₂ at Q²<6.5 GeV²
- > The proposed dataset provides an opportunity to better understand the twist-3 matrix element $d_2^n(Q^2)$ and hence the associated quark-gluon correlations inside the neutron.
- Q² dependence of dⁿ₂ will provide a direct test of Lattice QCD calculations.

Summary on SoLID Program

SoLID is at the intensity frontier with JLab 12 GeV upgrade

- Rich and highly rated physics programs: PVDIS, SIDIS, near-threshold J/ ψ
- Many other experiments in development
- Great potentials for JLab 20+ GeV
- Address important questions in Nuclear Physics
- Complementary and synergistic to the EIC science programs

Active pre-R&D with the support from DOE and JLab

- Demonstrated the feasibility of key detector subsystems in a high-rate environment
- To reduce risk/cost for SoLID
- The Cherenkov and the calorimeter prototype modules underwent beam tests at Hall C
- Analysis for pre-R&D detector beam test is wrapping up

SoLID Project Status

- Science Review Feedback: positive feedback, recommend to move to next step
- LRP: SoLID In Recommendation #4, prominently featured in the report
- On the list of NP projects for the NSAC Facilities Charge
- Ready to be launched

SoLID Collaboration

- 270+ collaborators, 70+ institutions from 13 countries
- Active development and validation of the pre-conceptual design
- Strong support from theorists

JLUO2024

Back up

Ω² [GeV²]

Kinematic Coverage

Configuration Approved Beam time (hours) E12-10-006 (Transverse) @ 11 GeV 1152 E12-10-006 (Transverse) @ 8.8 GeV 504 E12-11-007 (Longitudinal) @ 11 GeV 538 E12-11-007 (Longitudinal) @ 8.8 GeV 228 8.8GeV beam 11GeV beam Q² [GeV²] 100 ∆X=0.05 , 10 W=1.23 GeV 10 W=1.23 GeV $\Delta Q^2 = 0.2 (GeV/c)^2$ W=1.48 GeV W=1.48 GeV 80 80 W=1.66 GeV W=1.66 GeV - W=2.0 GeV — W=2.0 GeV 60 60 40 40 20 20 2 0.2 0.2 0.1 0.3 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.70.8 0.9

- More than 15 kHz free trigger space with 100 kHz DAQ limit
- Dedicated single electron trigger rate: 103 kHz/10 = 10.3 kHz
- Reusable random coincidence trigger rate: 69 kHz

Systematic Error Estimation

Source	Systematic Uncertainty		
Cross Sections			
Detector acceptance	5.0%		
Detector efficiencies	3.0%		
Target density	2.0%		
Beam charge	1.0%		
Background subtraction	3.0%		
Asymmetries			
Dilution effects	< 1.0%		
Beam polarization	< 2.0%		
Target polarization	3.0%		
Charge asymmetry	$< 10^{-4}$		
Pion asymmetry	$< 5 imes 10^{-4}$		
Unfolding Procedure			
Nuclear corrections	$\sim 5.0\%$		
Radiative corrections	$\sim 3.0\%$		
Physics Results			
Cross sections	< 10.0%		
g_2 syst.	$\sim 10^{-3} 10^{-4}$		
$d_2 { m stat.}$	$\sim 3 imes 10^{-4}$		
d_2 syst. (11 GeV)	$\sim 5 imes 10^{-4}$		
d_2 syst. (8.8 GeV)	$\sim 8 \times 10^{-4}$		

Expected Event Rates

]		
Rate (KHZ)	EC+LGC+SPD			
Ecal 7 modules	3He+up+ down widow	SIDIS-3He E12-10-006		
FA e⁻	59+1.15+1.8	48 days 11 GeV		
FA hadron no e-	28.6+ <mark>3.9+5.6</mark>	DAO limit		
LA e ⁻	4.1+3.6+2.6	100kHz		
LA hadron no e-	7.7+6.5+ <mark>3.8</mark>	Coincident trigger		
FA MIP (hadron)	8013+ <mark>2591+3887</mark>	720 - 30% fluctuation		
trigger		>15kHz		
SIDIS coincidence	31.2			
Hadron coincidence	14.7+2.52+2.61=19/83	Free prescaled		
Total rate	<85 kHz	single electron		
FA+LA single electron trigger rate: 103kHz 10=10.3KHz Projection				
Reusable random coincidence trigger rate:				
$5 41 \cdot 11 = 151 \cdot 11 = -601 \cdot 11 = -300 \cdot 100 $				
34KHZ+I 3 KHZ= 69 KHZ, which is equivalent to 103 KHZ/ 2 – 24				

Extract g₂ from Cross Section Differences 6/12/24

Extract g₂ from Cross Section Differences

Interpretations of $d_2(Q^2)$ in the Literature

- The first one connects it with color electromagnetic fields induced in a transversely polarized nucleon probed by a virtual photon. (X.Ji 95, E. Stein et al. 95)
- The second one shows that the matrix element connected to d₂, which represents an average color Lorentz force acting on the struck quark due to the remnant di-quark system at the instant, and it is struck by the virtual photon (Matthias Burkardt. Phys. Rev. D, 88:114502, Dec 2013)

Transverse Polarized Target Status

Solid NH₃ & ND₃ dynamically polarized at 1 K & 5 T New superconducting 5 T magnet **on order**

- □ 67% larger aperture in transverse orientation (± 25°)
- Horizontal or vertical field direction
- □ cryogen-free: cooled by one or more cryocoolers
- Existing infrastructure from previous g2p/GEp experiments
 - ☐ 1K refrigerator
 - vacuum chamber
 - □ microwaves
- New JLab NMR system for polarization
 - measurement
- □ New 12,000 m³/h pumping system

Expected operation in three experimental halls
Hall C (NPS/CPS)
Hall B (Run Group H)
Hall A (SoLID)

Slide from Rolf Ent SoLID science review talk

Jefferson Lab

Test the Burkhardt-Cottingham (BC) Sum Rule

Figure from 2019 Rep. Prog. Phys. 82 076201

BC = Measured+low_x+Elastic Measured: Measured x-range low-x: refers to unmeasured low x part of the integral. Assume $g_2 = g_2^{WW}$ Elastic: From elastics form Factors

$$\Gamma_2 = \int_0^1 g_2(x) dx = 0$$

- Validity conditions:
- ✓ g_2 is well-behaved, $\Gamma 2$ is finite
- ✓ g_2 is not singular at $x_{Bj} = 0$
- It is verified from world data at 0<Q² <5 GeV²
 - Elastic and the inelastic contributions to the twist moment of g_2 cancel for low and moderate Q^2