DOE contracts: DE-SC0007981 DE-AC05-06OR23177

Studies of Hadron Structure by the CJ Collaboration

Matteo Cerutti

JLUO Meeting

June 10, 2024

²CTEQ-JLab collaboration

Main focus:Investigate the internal structure of nucleonsin their valence region

Main focus:Investigate the internal structure of nucleonsin their valence region

collinear factorization

$$d\sigma_{\text{hadron}} = \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{\text{parton}}^{f_1 f_2 \to ij} \otimes \phi_{f_2}$$

Main focus:Investigate the internal structure of nucleonsin their valence region

Main focus:Investigate the internal structure of nucleonsin their valence region

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchuk, J. F. Owens
- C. E. Keppel, S. Li, P. Monhagan, S. Park

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchuk, J. F. Owens
- C. E. Keppel, S. Li, P. Monhagan, S. Park

Recent works:

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchuk, J. F. Owens
- C. E. Keppel, S. Li, P. Monhagan, S. Park

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchuk, J. F. Owens
- C. E. Keppel, S. Li, P. Monhagan, S. Park

Recent works:

- O Extraction of PDFs at large x
 - CJ22 Accardi, Jing, Owens et al., PRD 107 (2023)
- O Extraction of neutron $F_2(x, Q^2)$ **F2(n)** Li, Accardi, MC, Fernando et al., PRD 109 (2024)

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchuk, J. F. Owens
- C. E. Keppel, S. Li, P. Monhagan, S. Park

• Systematic uncertainties from HT and off-shell corrections

HTvsOS In preparation (see DIS2024 talk)

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchuk, J. F. Owens
- C. E. Keppel, S. Li, P. Monhagan, S. Park

Li, Accardi, MC, Fernando et al., PRD 109 (2024)

Data-driven generation of neutron data set

5

Extraction of neutron F_2 structure function

DIS on deuteron target

CJ global data set:

0 1000+ data points
0 high-*x* and low-Q²
0 W² > 3 GeV², Q² > 1.69 GeV²

DIS on deuteron target

CJ global data set:

0 1000+ data points
0 high-*x* and low-Q²
0 W² > 3 GeV², Q² > 1.69 GeV²

Full treatment of nuclear corrections

Binding effects, Fermi motion, off-shell corrections, Higher Twist (HT), Target Mass Corrections (TMC)

DIS on deuteron target

CJ global data set:

• 1000+ data points • high-*x* and low- Q^2 • $W^2 > 3 \text{ GeV}^2$, $Q^2 > 1.69 \text{ GeV}^2$

Full treatment of nuclear corrections

Binding effects, Fermi motion, off-shell corrections, Higher Twist (HT), Target Mass Corrections (TMC)

$$(x_D, Q^2) = \int_{y_{Dmin}}^{y_{Dmax}} dy_D dp_T^2 f_{N/D}(y_D, p_T^2; \gamma) F_{2,N}\left(\frac{x_D}{y_D}, Q^2, p^2\right)$$

Structure function of a bound, off-shell nucleon

5

 $F_{2,D}$

.

6

$$\widehat{F}_{2}^{n(0)}(x,Q^{2}) = \frac{2\widehat{F}_{2}^{d(0)}(x,Q^{2})_{\exp}}{R_{d/N}^{CJ}(x,Q^{2})} - \widehat{F}_{2}^{p(0)}(x,Q^{2})_{\exp}$$

Basic idea

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2\,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \,\widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

p, d data matching

data cross normalization

results based on CJ15 analysis

extracted experimental bins centered for applications

Basic idea

$$\widehat{F}_{2}^{n(0)}(x,Q^{2}) = \frac{2\,\widehat{F}_{2}^{d(0)}(x,Q^{2})_{\exp}}{R_{d/N}^{CJ}(x,Q^{2})} - \,\widehat{F}_{2}^{p(0)}(x,Q^{2})_{\exp}$$

p, d data matching

data cross normalization

results based on CJ15 analysis

extracted experimental bins centered for applications

Neutron F2 data sets and grids available!!!

https://github.com/JeffersonLab/CJ-database/

Application: non-singlet moments

$$M_2^{p-n}(Q^2) = \int_0^1 dx \frac{\xi^3}{x^3} \left[\frac{3+9r+8r^2}{20} \right] F_2^{p-n}(x,Q^2)$$

- x<0.01: Regge theory
- **O** 0.01<x<0.6: Exp. data
- **o x>0.6**: CJ15 model

Application: non-singlet moments

$$M_2^{p-n}(Q^2) = \int_0^1 dx \frac{\xi^3}{x^3} \left[\frac{3+9r+8r^2}{20} \right] F_2^{p-n}(x,Q^2)$$

$$\frac{3}{C_2}M_2^{p-n} = \langle x \rangle_{u^+ - d^+} + \text{HT}$$

- x<0.01: Regge theory
- **O** 0.01<x<0.6: Exp. data
- **o x>0.6**: CJ15 model

$$\langle x \rangle_{u^+ - d^+} = \int_0^1 dx x [u(x) + \bar{u}(x) - d(x) - \bar{d}(x)]$$

7

^aApplication: isoscalar corrections

$$f_A^{iso}(x,Q^2) \simeq \left(\frac{A}{2}\right) \frac{1 + F_2^n / F_2^p}{Z + NF_2^n / F_2^p}$$

$$f_A^{iso}(x,Q^2) \simeq \left(\frac{A}{2}\right) \frac{1 + F_2^n / F_2^p}{Z + NF_2^n / F_2^p}$$

8

EMC effect

Neutrino scattering

$$f_A^{iso}(x,Q^2) \simeq \left(\frac{A}{2}\right) \frac{1 + F_2^n / F_2^p}{Z + NF_2^n / F_2^p}$$

EMC effect Neutrino scattering

Open database on GitHub

https://github.com/JeffersonLab/CJ-database/

CJ Unpolarized DIS Database Homepage @

Reference: arXiv:2309.16851.

See also

- CTEQ-JLab collaboration website.
- note for reduced cross section and F2 calculation.

World DIS data tables @

World **proton** and **deuteron** data of unploarized DIS cross sections, F2 structure functions, and the longitudinal to transverse cross section ratio R are collected or extracted from various experiments. Data were collected for the CJ global fit and related analysis. Now open for general use. See details under the <u>data</u> directory.

Neutron F2 extraction @

Based on the collected F2 data, we performed a data-driven extraction of **neutron F2** and **neutron-to-proton F2n/F2p ratio** within the CJ15 framework (see eq. 7-9 in reference for details). Data from all experiemnts are cross-normalized and combined into a single Excel file, both in the original kineamtics, as well as rebinned in Q^2. Check the <u>f2n</u> directory.

Structure function grids @

Within CJ framework, we calculated various structure functions (F2, F3, FL, etc) at given x, Q^2 grids. Results are provided under folder <u>SFN_grids</u> in the <u>LHAPDF</u> format. An example plotting script is available at <u>src/plot_sfn.py</u>

Experiment	σr	F2	R
SLAC-Whitlow	p: <u>10014</u>	p: <u>10010</u>	p: <u>10064</u>
	d: <u>10015</u>	d: <u>10011</u>	d: 10065
	d/p: 10034	d/p (*): 10034	
SLAC-Whitlow(rebinned)		rebinned p: 10012	
		rebinned d: 10013	
SLAC-E140			d: 10066
SLAC-E140x	p: <u>10037</u>	p: <u>10035</u>	p: <u>10067</u>
	d: <u>10038</u>	d: <u>10036</u>	d: <u>10068</u>
NMC	p: <u>10022</u>	p: <u>10020</u>	
	d: <u>10040</u>	d: <u>10039</u>	
	d/p:10021	d/p (*): <u>10021</u>	
BCDMS	p: <u>10018</u>	p: <u>10016</u>	p: <u>10069</u>
	d: 10019	d: <u>10017</u>	d: <u>10070</u>
JLab E06-009	d: <u>10042</u>	d: <u>10041</u>	d: <u>10071</u>
(includes E04-001, E02-109)			
JLab E94-110	p: <u>10044</u>	p: <u>10043</u>	p: <u>10074</u>
JLab E03-103	p:10047	p:10045	
	d:10048	d:10046	
JLab E99-118	p: <u>10052</u>	p: <u>10049</u>	p: (A)
	d: <u>10053</u>	d: <u>10050</u>	p-d: (A)
	d/p: <u>10054</u>	d/p: <u>10051</u>	
JLab JLCEE96	p: <u>10055</u>	p: <u>10072</u>	
	d: <u>10056</u>	d: <u>10073</u>	
JLab E00-116	p: 10003	p: 10001	
	d: 10004	p: 10002	
CLAS6	p: <u>10059</u>	p: <u>10057</u>	
	d: <u>10060</u>	d: <u>10058</u>	
BONUS		n: <u>10061</u>	
		n/d: 10033	
HERA I+II	p: <u>10026 - 10032</u>		
HERMES	p: 10007	p: 10005	
	d: 10008	d: 10006	
	d/p: 10009		
E665		p: <u>10062</u>	
		d: <u>10063</u>	

Open database on GitHub

https://github.com/JeffersonLab/CJ-database/

CJ Unpolarized DIS Database Homepage @

Reference: arXiv:2309.16851.

See also

- CTEQ-JLab collaboration website.
- note for reduced cross section and F2 calculation.

World DIS data tables @

World proton and deuteron data of unploarized DIS cross sections, F2 structure functions, and the longitudinal to transverse cross section ratio R are collected or extracted from various experiments. Data were collected for the CJ global fit and related analysis. Now open for general use. See details under the data directory.

Neutron F2 extraction 2

Based on the collected F2 data, we performed a data-driven extraction of neutron F2 and neutron-to-proton F2n/F2p ratio within the CJ15 framework (see eq. 7-9 in reference for details). Data from all experiemnts are cross-normalized and combined into a single Excel file, both in the original kineamtics, as well as rebinned in Q^2. Check the f2n directory.

Structure function grids 2

Within CJ framework, we calculated various structure functions (F2, F3, FL, etc) at given x, Q^2 grids. Results are provided under folder SFN_grids in the LHAPDF format. An example plotting script is available at src/plot_sfn.py

LHAPDF grids

 F_2, F_L, F_3 $\gamma, \gamma Z, Z$ w/, w/o HT

Experiment	σr	F2	R
SLAC-Whitlow	p: <u>10014</u>	p: <u>10010</u>	p: <u>10064</u>
	d: <u>10015</u>	d: <u>10011</u>	d: 10065
	d/p: 10034	d/p (*): 10034	
SLAC-Whitlow(rebinned)		rebinned p: 10012	
		rebinned d: 10013	
SLAC-E140			d: 10066
SLAC-E140x	p: <u>10037</u>	p: <u>10035</u>	p: 10067
	d: 10038	d: <u>10036</u>	d: 10068
NMC	p: <u>10022</u>	p: <u>10020</u>	
	d: 10040	d: 10039	
	d/p:10021	d/p (*):10021	
BCDMS	p: <u>10018</u>	p: <u>10016</u>	p: <u>10069</u>
	d: 10019	d: 10017	d: 10070
JLab E06-009	d: 10042	d: 10041	d: 10071
(includes E04-001, E02-109)			
JLab E94-110	p: 10044	p: 10043	p: 10074
JLab E03-103	p:10047	p:10045	
	d:10048	d:10046	
JLab E99-118	p:10052	p:10049	p: (A)
	d:10053	d:10050	p-d: (A)
	d/p:10054	d/p:10051	
JLab JLCEE96	p: 10055	p: 10072	
	d: 10056	d: 10073	
JLab E00-116	p: 10003	p: 10001	
	d: 10004	p: 10002	
CLAS6	p: 10059	p: 10057	
	d: 10060	d: 10058	
BONUS		n: 10061	
		n/d: 10033	
HERA I+II	p: 10026 - 10032		
HERMES	p: 10007	p: 10005	
	d: 10008	d: 10006	
	d/p: 10009		
E665		p: 10062	
		d: 10063	

HTvsOffshell

in preparation

Bias in the approach identified

...and solved!

¹Deuterium: off-shell corrections

Bound, off-shell nucleon inside the deuteron

$$p^2 < m_N^2$$

Structure functions are deformed at large x

Bound, off-shell nucleon inside the deuteron

$$p^2 < m_N^2$$

Structure functions are deformed at large x

Off-shell expansion (in nucleon virtuality p^2 **)**

Bound, off-shell nucleon inside the deuteron

$$p^2 < m_N^2$$

Structure functions are deformed at large x

Off-shell expansion (in nucleon virtuality p^2 **)** parton level $q_N(x, Q^2, p^2) = q_N^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$

Kulagin, Piller, Weise, PRC 50 (1994) Kulagin, Melnitchouk, et al., PRC 52 (1995) Kulagin and Petti, NPA 765 (2006)

Bound, off-shell nucleon inside the deuteron

$$p^2 < m_N^2$$

Structure functions are deformed at large x

 $\begin{aligned} \text{Off-shell expansion (in nucleon virtuality } p^2) \\ q_N(x,Q^2,p^2) &= q_N^{\text{free}}(x,Q^2) \Big[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \Big] \\ F_{2N}(x,Q^2,p^2) &= F_{2N}^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta F(x) \right]^{\text{Kulagin, Piller, Weise, PRC 50 (1994)}}_{\text{Kulagin, Melnitchouk, et al., PRC 52 (1995)}}_{\text{Kulagin and Petti, NPA 765 (2006)}} \end{aligned}$

Bound, off-shell nucleon inside the deuteron

$$p^2 < m_N^2$$

Structure functions are deformed at large x

Off-shell expansion (in nucleon virtuality
$$p^2$$
)
 $q_N(x, Q^2, p^2) = q_N^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]^{\text{kulagin, Piller, Weise, PRC 50 (1994)}}_{\text{kulagin, Melnitchouk, et al., PRC 52 (1995)}}_{\text{kulagin and Petti, NPA 765 (2006)}}$

Free nucleon pdfs/SFs

$$p^2 = m_N^2$$

Bound, off-shell nucleon inside the deuteron

$$p^2 < m_N^2$$

Structure functions are deformed at large x

Off-shell expansion (in nucleon virtuality
$$p^2$$
)
 $q_N(x, Q^2, p^2) = q_N^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]^{\text{Free}} \left[1 + \frac{p^2 - M^2}{M^2} \delta F(x) \right]^{\text{Kulagin, Piller, Weise, PRC 50 (1994)}}_{\text{Kulagin, Meintchouk, et al., PRC 52 (1995)}}_{\text{Kulagin and Petti, NPA 765 (2006)}}$
Free nucleon pdfs/SFs Off-shell function
 $p^2 = m_N^2$ (To be fitted)

¹²**Polynomial off-shell function**

$$\delta f^N = C(x-x_0)(x-x_1)(1+x_0-x)$$

+ valence sum rule

$$\int_0^1 dx \, \delta f^N(x) \, \left[q(x) - \bar{q}(x) \right] \, = \, 0$$

KP-like model

Kulagin and Petti, NPA 765 (2006)

$$\delta f^N = C(x - x_0)(x - x_1)(1 + x_0 - x)$$
 KP-like model

+ valence sum rule

$$\int_0^1 dx \, \delta f^N(x) \, \left[q(x) - \bar{q}(x) \right] \, = \, 0$$

Kulagin and Petti, NPA 765 (2006)

<u>Release the assumption of the valence sum rule</u>
$$\delta f^N = C(x - x_0)(x - x_1)(1 + x_0 - x)$$
 KP-like model

$$\int_0^1 dx \, \delta f^N(x) \, \left[q(x) - \bar{q}(x) \right] \, = \, 0$$

Kulagin and Petti, NPA 765 (2006)

<u>Release the assumption of the valence sum rule</u>

 $C, x_0 \text{ and } x_1$ $x_1 \simeq x_0$ fitted \Rightarrow

$$\delta f^N = C(x - x_0)(x - x_1)(1 + x_0 - x)$$
 KP-like model

$$\int_0^1 dx \, \delta f^N(x) \, \left[q(x) - \bar{q}(x) \right] \, = \, 0$$

Kulagin and Petti, NPA 765 (2006)

 C, x_0 and x_1 $x_1 \simeq x_0$

 fitted
 \Rightarrow

 Polynomial model
 $\delta f(x) = \sum_n a_{off}^{(n)} x^n$

 Alekhin, Kulagin, Petti, PRD 96 (2017)
 $\delta f(x) = \sum_n a_{off}^{(n)} x^n$

$$\delta f^N = C(x - x_0)(x - x_1)(1 + x_0 - x)$$
 KP-like model

$$\int_0^1 dx \, \delta f^N(x) \, \left[q(x) - \bar{q}(x) \right] \, = \, 0$$

Kulagin and Petti, NPA 765 (2006)

<u>Release the assumption of the valence sum rule</u>

$$\delta f^N = C(x - x_0)(x - x_1)(1 + x_0 - x)$$
 KP-like model

$$\int_0^1 dx \, \delta f^N(x) \, \left[q(x) - \bar{q}(x) \right] \, = \, 0$$

<u>Release the assumption of the valence sum rule</u>

Kulagin and Petti, NPA 765 (2006)

¹³Higher-Twist function

Higher Twist correction

¹³Higher-Twist function

Higher Twist correction

Multiplicative

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

Multiplicative

Additive

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$

Multiplicative

Additive

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

$$C(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 + a_{ht}^{(2)} x)$$

$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$

$$H(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1-x)^{a_{ht}^{(2)}} (1+a_{ht}^{(3)}x)$$

Multiplicative

Additive

$$F_{2}(x,Q^{2}) = F_{2}^{LT}(x,Q^{2}) \left(1 + \frac{C(x)}{Q^{2}}\right) \qquad F_{2} = F_{2}^{LT}(x,Q^{2}) + \frac{H(x)}{Q^{2}}$$
$$C(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 + a_{ht}^{(2)} x) \qquad H(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 - x)^{a_{ht}^{(2)}} (1 + a_{ht}^{(3)} x)$$

they are related

$$\begin{split} F_2^{LT}(x,Q^2) \bigg(1 + \frac{C(x)}{Q^2} \bigg) &= F_2^{LT}(x,Q^2) + F_2^{LT}(x,Q^2) \frac{C(x)}{Q^2} \\ &= F_2^{LT}(x,Q^2) + \frac{\tilde{H}(x,Q^2)}{Q^2} \end{split}$$

Multiplicative

Additive

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$
$$C(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} \left(1 + a_{ht}^{(2)} x\right)$$

$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$
$$H(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1-x)^{a_{ht}^{(2)}} (1+a_{ht}^{(3)}x)^{a_{ht}^{(2)}} (1+a_{ht}^{(3)}x)^{a_{ht}^{(3)}} (1+a_{ht}^{(3)}x)^{a_{ht}^{(3)}}$$

CJ fits

they are related

$$F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2} \right) = F_2^{LT}(x,Q^2) + F_2^{LT}(x,Q^2) \frac{C(x)}{Q^2}$$
$$= F_2^{LT}(x,Q^2) + \frac{\tilde{H}(x,Q^2)}{Q^2}$$

¹⁴ Impact of HT on n/p ratio

¹⁴ Impact of HT on n/p ratio

$$\frac{F_{2,n}}{F_{2,p}} = \frac{n}{p} \xrightarrow{x \to 1} \frac{4d+u}{4u+d} \simeq \frac{1}{4}$$

$$\frac{F_{2,n}}{F_{2,p}} = \frac{n}{p} \xrightarrow{x \to 1} \frac{4d+u}{4u+d} \simeq \frac{1}{4}$$

$$\underbrace{\text{Mult HT}}_{C_p(x) = C_n(x) = C(x)} \frac{(4d+u)(1+C/Q^2)}{(4u+d)(1+C/Q^2)} \simeq \frac{1}{4}$$

$$\frac{F_{2,n}}{F_{2,p}} = \frac{n}{p} \xrightarrow{x \to 1} \frac{4d+u}{4u+d} \simeq \frac{1}{4}$$

$$\frac{\text{Mult HT}}{C_p(x) = C_n(x) = C(x)} \qquad \frac{(4d+u)(1+C/Q^2)}{(4u+d)(1+C/Q^2)} \simeq \frac{1}{4}$$

$$\frac{\text{Add HT}}{H_p(x) = H_n(x) = H(x)} \qquad \frac{4d+u+H/Q^2}{4u+d+H/Q^2} \simeq \frac{u+H/Q^2}{4u+H/Q^2}$$

$$\frac{F_{2,n}}{F_{2,p}} = \frac{n}{p} \xrightarrow{x \to 1} \frac{4d+u}{4u+d} \simeq \frac{1}{4}$$

$$\frac{\text{Mult HT}}{\stackrel{[C_p(x) = C_n(x) = C(x)]}{(E_p(x) = H_n(x) = H(x)]} \frac{(4d+u)(1+C/Q^2)}{(4u+d)(1+C/Q^2)} \simeq \frac{1}{4}$$

$$\frac{\text{Add HT}}{\frac{H_p(x) = H_n(x) = H(x)}{(4u+d+H/Q^2)} \simeq \frac{u+H/Q^2}{4u+H/Q^2}$$

$$\expansion in \frac{H}{uQ^2} \simeq \frac{1}{4} + 3\frac{H}{16uQ^2} + p.s$$

14

Are experimental observables independent of the choice of the HT?

$$\frac{F_{2,n}}{F_{2,p}} = \frac{n}{p} \xrightarrow{x \to 1} \frac{4d + u}{4u + d} \simeq \frac{1}{4}$$

$$\frac{\text{Mult HT}}{\begin{bmatrix} C_p(x) = C_n(x) = C(x) \end{bmatrix}} \frac{(4d + u)(1 + C/Q^2)}{(4u + d)(1 + C/Q^2)} \simeq \frac{1}{4}$$

$$\frac{\text{Add HT}}{\underbrace{H_p(x) = H_n(x) = H(x)}} \frac{4d + u + H/Q^2}{4u + d + H/Q^2} \simeq \frac{u + H/Q^2}{4u + H/Q^2}$$

$$\expansion in \frac{H}{uQ^2} \simeq \frac{1}{4} + \frac{3\frac{H}{16uQ^2}}{16uQ^2} + p.s$$

Bias in n/p function

¹⁵ Impact of HT on n/p ratio

$$\frac{n}{p} \xrightarrow{x \to 1} \frac{1}{4} \quad \text{LT} \quad \text{Mult HT} \quad C_p(x) = C_n(x) = C(x)$$

¹⁵ Impact of HT on n/p ratio

$$\frac{n}{p} \xrightarrow{x \to 1} \frac{1}{4} \quad \text{LT} \quad \text{Mult HT} \quad C_p(x) = C_n(x) = C(x)$$

$$\frac{\text{Add HT}}{H_p(x) \neq H_n(x)} \qquad \frac{u + H_n/Q^2}{4u + H_p/Q^2}$$

$$\simeq \frac{1}{4} + \frac{4H_n - H_p}{16uQ^2} + p.s$$

is smaller

$$\frac{n}{p} \xrightarrow{x \to 1} \frac{1}{4} \qquad \text{LT} \qquad \text{Mult HT} \qquad C_p(x) = C_n(x) = C(x)$$

$$\frac{\text{Add HT}}{H_p(x) \neq H_n(x)} \qquad \frac{u + H_n/Q^2}{4u + H_p/Q^2} \qquad \qquad \frac{1}{4} + 3\frac{H}{16uQ^2}$$

$$\approx \frac{1}{4} + \frac{4H_n - H_p}{16uQ^2} + p.s \qquad \qquad \frac{1}{H_p(x)} = 2H_n(x) \qquad \qquad \frac{1}{4} + \frac{H}{16uQ^2}$$

$$\frac{1}{4u + \tilde{H}_p/Q^2} \qquad \qquad \text{structure function}$$
is smaller
$$\frac{u + \tilde{H}_n/Q^2}{4u + \tilde{H}_p/Q^2} \qquad \qquad \text{same as Add}$$

$$\frac{n}{p} \xrightarrow{x \to 1} \frac{1}{4} \quad \text{LT} \quad \text{Mult HT} \quad C_p(x) = C_n(x) = C(x)$$

$$\frac{\text{Add HT}}{H_p(x) \neq H_n(x)} \qquad \frac{u + H_n/Q^2}{4u + H_p/Q^2} \qquad \qquad \frac{1}{4} + 3\frac{H}{16uQ^2}$$

$$\simeq \frac{1}{4} + \frac{4H_n - H_p}{16uQ^2} + p.s \xrightarrow{H_p(x) = 2H_n(x)} \qquad \frac{1}{4} + \frac{H}{16uQ^2}$$

$$\frac{u + \tilde{H}_n/Q^2}{4u + \tilde{H}_p/Q^2} \qquad \text{same as Add}$$

$$\frac{u + \tilde{H}_n/Q^2}{4u + \tilde{H}_p/Q^2} \qquad \text{same as Add}$$

Bias not present!

¹⁶ Results in the CJ fitting framework

Case 1: isospin symmetry

¹⁶ Results in the CJ fitting framework

Case 1: isospin symmetry

Add HT

Unnaturally large n/p BUT smaller d/u than Mult

Bias identified

Case 1: isospin symmetry

Add HT

Unnaturally large n/p BUT smaller d/u than Mult

Bias identified

Off-shell compensates n/p bias

Case 2: isospin breaking

Case 2: isospin breaking

Compatible n/p

$$H_n(x) \simeq \frac{1}{2} H_p(x)$$

Case 2: isospin breaking

Compatible n/p

 $H_n(x)\simeq \frac{1}{2}H_p(x)$

Bias removed

No need of compensation by off-shell Theory calculation confirmed!

¹⁸ Results in the CJ fitting framework

After removing the bias $\delta f(x) \simeq 0$

Is the nucleon inside the deuterium almost on-shell?

¹⁸ Results in the CJ fitting framework

After removing the bias $\delta f(x) \simeq 0$

Is the nucleon inside the deuterium almost on-shell?

Need A=3 data to assess flavour dependence of off-shell function

MARATHON data Adams, et al., PRL 128 (2022)

¹⁹ Other extractions of the off-shell correction

¹⁹ Other extractions of the off-shell correction

AKP Alekhin, Kulagin, Petti, PRD 107 (2023)

¹⁹ Other extractions of the off-shell correction

AKP Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

AKP Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

<u>DISCLAIMER</u>: off-shell function parametrized at the structure function level (δF) and many other differences in the implementation
Akp Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

<u>DISCLAIMER</u>: off-shell function parametrized at the structure function level (δF) and many other differences in the implementation

Fit to A=3 data: $\delta F_p(x) \simeq \delta F_n(x)$ (baseline)

Akp Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

<u>DISCLAIMER</u>: off-shell function parametrized at the structure function level (δF) and many other differences in the implementation

Fit to A=3 data: $\delta F_p(x) \simeq \delta F_n(x)$ (baseline)

JAM

JAM Collaboration, PRL 127 (2021)

See Melnitchuk's talk

Akp Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

<u>DISCLAIMER</u>: off-shell function parametrized at the structure function level (δF) and many other differences in the implementation

Fit to A=3 data: $\delta F_p(x) \simeq \delta F_n(x)$ (baseline)

JAM Collaboration, PRL 127 (2021)

See Melnitchuk's talk

Multiplicative HT as baseline

AKP Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

<u>DISCLAIMER</u>: off-shell function parametrized at the structure function level (δF) and many other differences in the implementation

Fit to A=3 data: $\delta F_p(x) \simeq \delta F_n(x)$ (baseline)

JAM Collaboration, PRL 127 (2021)

See Melnitchuk's talk

Multiplicative HT as baseline

<u>DISCLAIMER</u>: off-shell function parametrized at the pdf level (δf) but many differences in the implementation

AKP Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

<u>DISCLAIMER</u>: off-shell function parametrized at the structure function level (δF) and many other differences in the implementation

Fit to A=3 data: $\delta F_p(x) \simeq \delta F_n(x)$ (baseline)

JAM Collaboration, PRL 127 (2021)

See Melnitchuk's talk

Multiplicative HT as baseline

<u>DISCLAIMER</u>: off-shell function parametrized at the pdf level (δf) but many differences in the implementation

Fit to A=3 data: $\delta f_u(x) \neq \delta f_d(x)$

Need more information

We <u>cannot directly compare</u> off-shell function at the pdfs level (δf) with the one at the structure function level (δF)

We <u>cannot directly compare</u> off-shell function at the pdfs level (δf) with the one at the structure function level (δF)

$$\delta F_{2D} = \frac{F_{2D} - F_{2D}^{(\text{on})}}{F_{2D}^{(\text{on})}}$$

We <u>cannot directly compare</u> off-shell function at the pdfs level (δf) with the one at the structure function level (δF)

$$\delta F_{2D} = \frac{F_{2D} - F_{2D}^{(\text{on})}}{F_{2D}^{(\text{on})}}$$

Experimental data differential on the off-shell proton virtuality p^2 would allow us to pin down the off-shell correction in a more clean way

Outlook - the CJ studies

CJ22

Outlook - the CJ studies

CJ22

Outlook - the CJ studies

²³ Off-shell table

²⁴ Higher-Twist table

²⁶ AKP results

JAM Fit including
$$A=3$$
 data $\delta f_u \delta f_d$

JAM Collaboration, PRL 127 (2021)

Mult HT (p=n) as default choice

$$\delta f(x)|_{\text{CJ-like}} = \frac{u\delta f_u + d\delta f_d}{u+d}$$

Some implementation differences

	KP	AKP	CJ15	AKP-like
shadowing	yes	yes (which one?)	MST x<0.1	(same)
smearing	Paris	AV18	AV18 x>0.1	(same)
pi-cloud	yes	yes		
ТМС	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
HT	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n & p!=n
HT(x)	??	5 pt. spline	parametrized	parametrized
off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3rd
pi thresh.	yes	yes		

rections (increasing-

٦

28