

Partial Wave Analysis on Neutral b₁ Meson at GlueX Searching for a needle in a haystack

Karthik Suresh, JLab Thesis Prize Talk 11th June 2024

WILLIAM & MARY

CHARTERED 1693

Table of Contents

- 1. Physics Motivation and Theory
- 2. GlueX experiment & Physics Analysis
- 3. Work on Detector Design Optimization

2 -of-36

Hadronic Spectrum Periodic table of Mesons arranged by $J^{PC}(I^G)$

Quantum ChromoDynamics

- Include "gluonic" interactions to build up states
- Predicts

Total Spin (J) from |L - S| to |L + S|

• Parity
$$(P) = (-1)^{L+1}$$

Charge Conjugation (C) = $(-1)^{L+S}$

- "Hybrid" mesons
- "Exotic" States NOT

State $^{2s+1}l_J$	Name	S	L	Total Spin J^{PC}	I :
${}^{1}S_{0}$	Pseudo Scalar	0	0	0-+	η
${}^{3}S_{1}$	Vector	1	0	1	ω
${}^{1}P_{1}$	Axial Vector	0	1	1+-	h_1
${}^{3}P_{0}$	Scalar	1	1	0++	f_0
${}^{3}P_{1}$	Axial Vector	1	1	1++	f_1
${}^{3}P_{2}$	Tensor	1	1	2^{++}	f_2

Karthík Suresh JLUO 2024

allowed in Quark Model $J^{PC} = [0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}]$

Mesons

Tetra quarks

3 -of-36

Light Meson Spectrum in LQCD

The Exotic $\pi_1(1600)$ and its decay to $b_1\pi$

Karthík Suresh JLUO 2024

Jozef J. Dudek, et al. HadronSpectrum Collaboration Phys. Rev. D 88, 094505

4 -of-36

Prediction of lightest Exotic decay

The Exotic $\pi_1(1600)$ and its decay to $b_1\pi$

Karthík Suresh JLUO 2024

5 -of-36

The Standard Model of Physics

scant experimental evidence for $b_1\pi$

PRL **94,** 032002 (2005)

PHYSICAL REVIEW LETTERS

week ending 28 JANUARY 2005

Exotic Meson Decay to $\omega \pi^0 \pi^-$

M. Lu,^{1,*} G. S. Adams,¹ T. Adams,^{2,†} Z. Bar-Yam,³ J. M. Bishop,² V. A. Bodyagin,^{4,‡} D. S. Brown,^{5,§} N. M. Cason,² S. U. Chung,⁶ J. P. Cummings,¹ K. Danyo,⁶ A. I. Demianov,⁴ S. P. Denisov,⁷ V. Dorofeev,⁷ J. P. Dowd,³ P. Eugenio,⁸ X. L. Fan,⁵ A. M. Gribushin,⁴ R. W. Hackenburg,⁶ M. Hayek,^{3,||} J. Hu,^{1,¶} E. I. Ivanov,⁹ D. Joffe,⁵ I. Kachaev,⁷ W. Kern,³ E. King,³ O. L. Kodolova,⁴ V. L. Korotkikh,⁴ M. A. Kostin,⁴ J. Kuhn,^{1,**} V. V. Lipaev,⁷ J. M. LoSecco,² J. J. Manak,² M. Nozar,^{1,††} C. Olchanski,^{6,¶} A. I. Ostrovidov,⁸ T. K. Pedlar,^{5,‡‡} A. V. Popov,⁷ D. I. Ryabchikov,⁷ L. I. Sarycheva,⁴ K. K. Seth,⁵ N. Shenhav,^{3,||} X. Shen,^{5,10,§§} W. D. Shephard,² N. B. Sinev,⁴ D. L. Stienike,² J. S. Suh,^{6,||||} S. A. Taegar,² A. Tomaradze,⁵ I. N. Vardanyan,⁴ D. P. Weygand,¹⁰ D. B. White,¹ H. J. Willutzki,^{6,‡} M. Witkowski,¹ and A. A. Yershov⁴

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 563 (2003) 140-149

www.elsevier.com/locate/npe

Confirmation of $a_0(1450)$ and $\pi_1(1600)$ in $\bar{p}p \rightarrow \omega \pi^+ \pi^- \pi^0$ at rest

C.A. Baker^a, C.J. Batty^a, K. Braune^e, D.V. Bugg^d, N. Djaoshvili^c, W. Dünnweber^e, M.A. Faessler^e, F. Meyer-Wildhagen^e, L. Montanet^b, I. Uman^{e,1}, S. Wallis-Plachner^e, B.S. Zou^{d,2}

Karthík Suresh JLUO 2024

Check out Talk from William Imoehl

- Previous efforts on decays to pseudo scalars like $\pi_1(1600) \to \eta^{(')}\pi$
 - Simpler reconstruction narrow resonances
 - Any odd *L* states evidence of exotic
- $b_1\pi$ has larger end state multiplicity
- Very limited statistics until now

 $m_{\pi}=391\,\mathrm{MeV}$

Increased ambiguities of J^{PC} states

$b_1\pi$ challenging but high branching fraction — advantageous

6 -of-36

ectrum Coll

$b_1(1235)$	
Mass	
Width	
D/S Amplitude Ratio $(b_1(1235) \rightarrow \omega \pi)$	
D/S Amplitude Phase Difference	
Dominant Decay Mode	
Other Decay Modes	$\pi^{=}$

 b_{1}^{0}

Karthík Suresh JLUO 2024

[†]Phys.Rev.D 100 (2019) 5, 054506

Timeline of $\omega\pi$ studies *: with focus on b_1

Karthík Suresh JLUO 2024

*Selected experiments/studies that has the most impact for this dissertation

The Experiment

• Peak Polarization ~ 35 % @ 8.8 GeV

Karthík Suresh JLUO 2024

- Photo-production experiment @ Jlab
- Goal : Map light meson spectrum
- Nearly 4π detection using hermetic setup
- Phase-I Data ($\sim 120 \text{pb}^{-1}$)

Karthík Suresh JLUO 2024

10 -of-36

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

1.7

Partial Wave Analysis Intensity Model: analyzing intensity beyond "Mass Spectrum"

- Using "only" mass spectrum incomplete
- Study and analyze intensity in more "dimensions"
- "Dimensions" Decay angles of constituent particles. Develop model from scattering theory
- PWA A tool extracting contribution of J^{PC} by studying intensity in multiple decay angles

• How to extract contributions for J^{PC} from the spectrum?

Partial Wave Analysis Intensity Model: Angular distribution in helicity frame

Karthík Suresh JLUO 2024

12 -of-36

Partial Wave Analysis Intensity Model: Angular distribution in helicity frame

Karthík Suresh JLUO 2024

13 -of-36

Partial Wave Analysis Intensity Model: Measuring $b_1(1^+)$ in $\omega \pi^0$ spectrum

Karthík Suresh JLUO 2024

In "thin" $M(\omega \pi^0)$ and |t| bin

$I(\Omega, \Omega_H, \Phi) = \frac{\kappa}{\Lambda} (1 - P_{\gamma}) |\tilde{A}_+(\Omega, \Omega_H, \Phi) + \tilde{A}_-(\Omega, \Omega_H, \Phi)|^2$ $+ \frac{\kappa}{4} (1 + P_{\gamma}) |\tilde{A}_{+}(\Omega, \Omega_{H}, \Phi) - \tilde{A}_{-}(\Omega, \Omega_{H}, \Phi)|^{2}$ $Z_m^i(\Phi, \Omega, \Omega_H)$ $e^{\mp i\Phi} D^{J_i*}_{m,\lambda_\omega}(\Omega) F^i_{\lambda_\omega} D^{1*}_{m,0}(\Omega_H) G_{\text{Dality}}\mathfrak{F}(p_0)$ $\lambda_\omega = -1,0,1$

14 -of-36

Partial Wave Analysis Intensity Model: Encoding of DS Ratio for 1^{+ -} state

Karthík Suresh JLUO 2024

$$\begin{split} M(\omega \pi^{0}) \text{ and } |t| \text{ bin } dsratio dphase \\ \left\{ (1-P_{\gamma}) \left[\left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Im \mathfrak{m}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Im \mathfrak{m}(Z^{(D)}) + \right. \right. \right. \right. \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(+)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right. \right. \\ \left. + (1+P_{\gamma}) \left[\left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(+)} \left(\Im \mathfrak{m}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Im \mathfrak{m}(Z^{(D)}) + \left. \right. \right. \right] \right] \right] \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right] \right] \right] \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right] \right] \right\} \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right] \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \right] \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right| \\ \left. + \left| \sum_{m=-1,0,1} [1^{+}(S)]_{m}^{(-)} \left(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \right) \right$$

For the state 1^{+-} which is b_1 extract ratio between D-S wave amplitude and phase

15 -of-36

Partial Wave Analysis Intensity Model: Measuring $b_1(1^{+-})$ in $\omega \pi^0$ spectrum

Karthík Suresh JLUO 2024

$$M(\omega\pi^{0}) \text{ and } |t| \text{ bin}$$

$$H_{H} = 2\kappa \sum_{k}$$

$$P_{\gamma} \left[\left| \sum_{i,m} [J_{i}]_{m,k}^{(-)} \Im\mathfrak{m}(Z) \right|^{2} + \left| \sum_{i,m} [J_{i}]_{m,k}^{(+)} \mathfrak{Re}(Z) \right|^{2} \right]$$

$$P_{\gamma} \left[\left| \sum_{i,m} [J_{i}]_{m,k}^{(+)} \Im\mathfrak{m}(Z) \right|^{2} + \left| \sum_{i,m} [J_{i}]_{m,k}^{(-)} \mathfrak{Re}(Z) \right|^{2} \right] \right\}$$

For observed intensity, fit model with various J^{PC} states across various reflectivities

16 -of-36

Partial Wave Analysis Lets get to Fitting: AmpTools

AmpTools

- Unbinned Maximum Likelihood fitting
- Input decay angles + model params, Eg. $[1^{+}-]^{(\pm)}, [1^{-}-]^{\pm}$
- $-2\ln \mathfrak{L}(\theta) = -2(\sum \ln I(x;\theta) \mu) + c_1$
 - θ Model Parameters
 - x 5D Decay angles

Results presented as fit fractions for each J^{PC}

Extract D/S Ratio as well

Parameters	Input	Туре	Fit Results
D/S ratio	0.27	float	0.2697 ± 0.0062
$[1^+]^{(+)}$	0	Fit Fraction	0.0100 ± 0.0005
$[1^+]^{(-)}$	1	Fit Fraction	0.9871 ± 0.0065
$[1^{-}]^{(+)}$	0	Fit Fraction	0.0020 ± 0.001
$[1^{-}]^{(-)}$	0	Fit Fraction	0.0009 ± 0.0003

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

17 -of-36

Partial Wave Analysis : Results Extracted b_1 properties

through Natural exchange

Karthík Suresh JLUO 2024

Cut Namo	t bins GeV ²			
	0.15 < t < 0.30	0.30 < t < 0.50	0.50 < t < 1	
Fit Wave combos	0.0325	0.0165	0.0173	
Mass bin	0.0048	0.0025	0.0104	
Beam Energy	0.0012	0.0015	0.0019	
Dalitz Parameter	0.0007	0.0007	0.0007	
Benchmark DS Ratio	0.2530	0.2650	0.2310	
atistical Uncertainty Δ_{stat}	$\begin{array}{c} 0.0011 \\ 0.0012 \end{array}$	$0.0008 \\ 0.0008$	$0.0013 \\ 0.0014$	
stematic Uncertainty Δ_{sys}	0.0329	0.0168	0.0203	

18 -of-36

 \mathbf{St}

Sy

Partial Wave Analysis : Results Extracted b_1 properties - A closer look in |t|

This overwhelming stats allows us to look closer and finer !!!!

Strong monotonous decrease at high | *t* |

Karthík Suresh JLUO 2024

Effect "Independent" of possibly "other" effects? – Baryonic effect $M(p\pi^0)$ — Work in progress

19 -of-36

Partial Wave Analysis : Results Extracted b_1 properties - A data driven observation

Karthík Suresh JLUO 2024

 $J = 1 \implies m = [-1,0,1]$ $\sum_{\lambda_{\omega}=-1,0,1} D_{m,\lambda_{\omega}}^{J_i*}(\Omega) F_{\lambda_{\omega}}^i D_{0,\lambda_{\omega}}^{1*}(\Omega_H)$

Data driven observations made on dependence of *m* on *t*

1.0 |tl [GeV²]

Note : No explicit dependence of |t|encoded in the model

Partial Wave Analysis : Summary

- $\omega \pi^0$ spectrum (1.135 < $M(\omega \pi^0)$ < 1.155 GeV) dominated by 1^{+ –} state; over 80% Fit Fraction
 - Natural Exchange is preferred
 - DS Ratio consistent with PDG & theoretical prediction
 - Unprecedented statistical precision; systematics dominate
 - A strong correlation found in DS Ratio as a function of | *t* |
 - Extracted contribution of *m* states and their dependence on *t*
- Recipe for computing cross-section; over entire $\omega \pi^0$ mass range
 - Additional systematics to be done

Detector Design optimization

Karthík Suresh JLUO 2024

22 -of-36

Design space spanned by 'x'

 $\min / \max \mathbf{f_m}(\mathbf{x}), m = 1, \ldots, M$ s.t. $g_j(\mathbf{x}) \le 0, j = 1, ..., J$ $h_{k}(x) = 0, k = 1, ..., K$ $x_{i}^{L} \leq x_{i} \leq x_{i}^{U}, i = 1, \dots, N$

Karthík Suresh JLUO 2024

23 -of-36

Design space spanned by 'x'

 $\min / \max \mathbf{f_m}(\mathbf{x}), m = 1, \ldots, M$ s.t. $g_j(\mathbf{x}) \le 0, j = 1, ..., J$ $h_{k}(x) = 0, k = 1, ..., K$ $x_{i}^{L} \leq x_{i} \leq x_{i}^{U}, i = 1, \dots, N$

Karthík Suresh JLUO 2024

Minimize/Maximize a set of objectives

24 -of-36

Design space spanned by 'x'

 $\min / \max \mathbf{f_m}(\mathbf{x}), m = 1, \dots, M$

s.t. $g_j(\mathbf{x}) \le 0, j = 1, ..., J$

 $h_{k}(x) = 0, k = 1, \dots, K$

$$x_i^L \le x_i \le x_i^U, i = 1, \dots, N$$

Karthík Suresh JLUO 2024

25 -of-36

Design space spanned by 'x'

 $\min / \max \mathbf{f_m}(\mathbf{x}), m = 1, \dots, M$ s.t. $\mathbf{g_j}(\mathbf{x}) \le 0, j = 1, \dots, J$ $\mathbf{h_k}(\mathbf{x}) = 0, k = 1, \dots, K$

$$x_i^L \le x_i \le x_i^U, i = 1, \dots, N$$

Karthík Suresh JLUO 2024

26 -of-36

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

gns of active dular metamaterials⁴⁶³ ed traction_{-separat}ion laws¹² ed traction_{-separat}on laws¹²

Multi Objective Optimization : Visual Intro

 f_2

 f_2^A

 \int_{2}^{B}

- Multiple "objectives"
 - Momentum resolution
 - *θ* resolution
 - KF efficiency
 - projected **\theta** resolution **(a)** PID
- Goal : "Optimize" these Objectives
- Map: "Design" \leftrightarrow "Objective"?
- Non-Feasbile region to be avoided

27 -of-36

Multi Objective Optimization : Visual Intro

 f_2

 f_2^A

 f_2^B

- What is "Optimal"?
- How to rank solutions?
- How to track convergence?
- Methods of MOO
 - Evolutionary
 - Bayesian inference
 - Preferential Learning, etc.

28 -of-36

AI assisted Detector design

Electron Ion Collider

At Brookhaven National Laboratory

Physics Goal : Structure and dynamics of matter at high luminosity and energy using polarized beams [arXiv:1212.1701]

Karthík Suresh JLUO 2024

Detector design is inherently Multi Objective

Simulations computationally expensive

AI advantage : Handle a multi-dimensional parameter space in a multi-dimensional objective space

29 -of-36

Desired kinematic range

Karthík Suresh JLUO 2024

30 -of-36

Karthík Suresh JLUO 2024

AI assisted EIC Detector optimization pipeline

31 -of-36

AI assisted Detector design

A Tracking system use case

Karthík Suresh JLUO 2024

32 -of-36

AI assisted Detector design : Result

Came up with design solution of the tracker that improved tracking performance by over 20%

j.nima.2022.167748

Karthík Suresh JLUO 2024

Interactive visualization of results

33 -of-36

The AIDE Project

A scalable and distributed Al-assisted Detector Design for the EIC

A collaborative project (DE-F0A-0002875) by: Brookhaven National Lab, CUA, Duke, Jefferson Lab, William & Mary

Karthík Suresh JLUO 2024

BNL: T. Wenaus, M. Lin CUA: T. Horn Duke: A. Vossen JLab: M. Diefenthaler W&M: C. Fanelli Lead PI — C. Fanelli

WILLIAM & MARY

CHARTERED 1693

Develop a software framework for distributed optimizat

Glimpse of other detector design optimization at EIC The AIDE Project

MOO of Novel

Imaging Cherenkov detectors constitute the backbone of PID for the EIC

Bayesian optimization of the dual-RICH

Cristiano Fanelli @ IAEA Technical Meeting

Aerogel Material

V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta

- MOO can be used to prototype new aerogel materials
- Aerogels with low refractive indices are very fragile tiles break during production and handling, and their installation in detectors.
- To improve the mechanical strength of aerogels, Scintilex developed a reinforcement strategy. The general concept consists of introducing fibers into the aerogel that increase mechanical strength, but do not affect the optical properties of the aerogel
- Paper in preparation

Simple Ring Imaging CHerenkov Geant4 based simulation Aerogel + Optical Fibers

 define geometry and produce mesh vert the gmsh mesh to elmer compatible mesh modeling (solve linear and nonlinear equation) ner Solver and provide a python interface to autor ElmerGrid - conv ElmerSolver - d Paraview - v

Far Forward B0 Detectors

Production and Distributed Analysis (PanDA) System

AI Assisted Detector Design: Summary

- AI can assist the design and R&D of complex experimental systems by providing more efficient design (considering multiple objectives) utilizing effectively the computing resources needed to achieve that.
- Optimization done in phases. Eg. include one detector system at a time arxiv:2205.09185
- May not have to reinvent the wheel, leverage on existing SOTA tools,
- of principles)

Karthík Suresh JLUO 2024

Co-develop tools to better adapt and serve our community (EIC Software: Statement

No. DE-SC0024625

Acknowledgements

GlueX Thanks

36 -of-36

Backups

Karthík Suresh JLUO 2024

37 -of-36

Fermions - half integer spin makes up everything.....

> **Bosons - integer spin force carriers**

Hadrons : particles made of quarks

The "Molecule" held together by Strong Force

Karthík Suresh JLUO 2024

38 -of-36

Theory of Strong interactions : Quark Model

- Gell-Mann & Zweig for light flavors quarks in 1964^[†]
- States are constructed using "quantum numbers" of the constituent quarks
 - Spin (S)
 - Electric Charge (Q)
 - Isospin (I)

• • • • •

Recipe to build periodic table of hadrons

Phys, Letter 8 (1964) 214-215

39 -of-36

Theory of Strong interactions : Quark Model

Quark Quantum numbers

	\mathbf{u}	d	С	S	t
Q - electric charge [e]	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$
I - isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
I_z - isospin z component	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	0
B - Baryon number	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
S- Strangeness	0	0	0	-1	0
C - Charm	0	0	+1	0	0
B - Bottomness	0	0	0	0	0
T - Topness	0	0	0	0	0

Table 1.1: Quantum numbers of quarks. Antiquarks have the opposite signs for each of the corresponding quantum number. only u and d have non zero iso-spin of $\frac{1}{2}$.

Karthík Suresh JLUO 2024

40 -of-36

. . . .

 $(L_{\rm odd})_J$

 b_{J}

Quantum ChromoDynamics

- Formalized a decade later than Quark Model
- Introduces "color charge" to quarks and gluons
- Includes "gluonic" interactions to build up states
- Predicts
 - "Hybrid " mesons
 - "Exotic" States **NOT** allowed in Quark Model $J^{PC} = [0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}]$
- Important outcomes
 - Color confinement "Free" quarks cannot be observed
 - Non negligible α_s at low energy scale "Lattice QCD"

41 -of-36

Photoproduction of $\omega \pi^0$ at GlueX

Karthík Suresh JLUO 2024

Selection Cuts

Weighted events

Statistical Accounting of beam γ

Accidental Side band subtraction

Accounting for "non- ω " events

 $2D-\omega$ side band subtraction

42 -of-36

Photoproduction of $\omega \pi^0$ **at GlueX** $\omega \pi^0$ mass* after background subtraction

Karthík Suresh JLUO 2024

High purity events of $\omega \pi^0$ selected.

*Only Fall2018 PARA0

43 -of-36

Partial Wave Analysis Intensity Model: Measuring $b_1(1^+)$ in $\omega \pi^0$ spectrum

Karthík Suresh JLUO 2024

In "thin" $M(\omega \pi^0)$ and |t| bin

$I(\Omega, \Omega_H, \Phi) = \frac{\kappa}{4} (1 - P_{\gamma}) |\tilde{A}_+(\Omega, \Omega_H, \Phi) + \tilde{A}_-(\Omega, \Omega_H, \Phi)|^2$ $+ \frac{\kappa}{4} (1 + P_{\gamma}) |\tilde{A}_{+}(\Omega, \Omega_{H}, \Phi) - \tilde{A}_{-}(\Omega, \Omega_{H}, \Phi)|^{2}$ $Z_m^i(\Phi, \Omega, \Omega_H)$ $e^{\mp i\Phi} D_{m,\lambda\omega}^{J_i*}(\Omega) F_{\lambda\omega}^i D_{m,0}^{1*}(\Omega_H) G_{\text{Dalitz}} \mathfrak{F}(p_0)$ $^{\pm,m}$ $\lambda_\omega \!=\! -1,\!0,\!1$

44 -of-36

Partial Wave Analysis Intensity Model: Measuring $b_1(1^+)$ in $\omega \pi^0$ spectrum

Karthík Suresh JLUO 2024

Partial Wave Analysis Intensity Model: Measuring $b_1(1^+)$ in $\omega \pi^0$ spectrum

Karthík Suresh JLUO 2024

46 -of-36

Partial Wave Analysis Intensity Model: Measuring $b_1(1^{+-})$ in $\omega \pi^0$ spectrum

Karthík Suresh JLUO 2024

$\omega \pi^0$ decay dynamics

- $T^i_{\pm,m}$ decay amplitude. Depends $\omega \pi^0$ relative spin, naturality of
- Ω Decay angled in the $\omega \pi^0$ decay plane
- $F_{\lambda_{\omega}}^{i}$ ω helicity amplitude

For
$$b_1$$
; $F_{\lambda_{\omega}}^i = \left\langle 1\lambda_{\omega} | 00, 1\lambda_{\omega} \right\rangle C_0 + \left\langle 1\lambda_{\omega} | 20, 1\lambda_{\omega} \right\rangle C_2$
Defined DS Ratio $= \frac{C_2}{C_0}$

• $\mathfrak{F}(p_0)$ - Biatt-Weisskopf angular momentum barrier factor. Suppress high *l* waves in low $\omega \pi^0$ mass

$$Z_m(\Phi, \Omega, \Omega_H)$$

$$\sum_{i} T^{i}_{\pm,m} \sum_{\lambda_{\omega} = -1,0,1} e^{\mp i \Phi} D^{J_{i}*}_{m,\lambda_{\omega}}(\Omega) F^{i}_{\lambda_{\omega}} D^{1*}_{m,0}(\Omega_{H}) G_{\text{Dalitz}}$$

Partial Wave Analysis Lets get to Fitting: AmpTools

Karthík Suresh JLUO 2024

- Results extracted for each parameter in the intensity model
- Contribution of J^{PC} state extracted by computing fit fractions from complex amplitudes

Parameters	Input	Туре	Fit Resu
D/S ratio	0.27	float	0.2697 ±
$[1^+]^{(+)}$	0	Fit Fraction	0.0100 \pm
$[1^+]^{(-)}$	1	Fit Fraction	0.9871 \pm
$[1^{-}]^{(+)}$	0	Fit Fraction	0.0020 \pm
$[1^{-}]^{(-)}$	0	Fit Fraction	$0.0009 \pm$
•GlueX Dat •[1 ^{:](+)} (S+D •[1 ^{-](+)} (P)	a <mark>Fit Result</mark>) [1 ⁺] ⁽⁻⁾ (S+D) [1 ⁺] ⁽⁻⁾ (P)	6000 6000	Cardidates / 0.13
5000 5000 5000 5000 5000 1000 1000	Candidates / 0.13		5000 4000 3000 1000

48 -of-36

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

Ilts = 0.0062 ± 0.0005 ± 0.0065 ± 0.001 £ 0.0003

Partial Wave Analysis Extracting DSRatio uncertainties

Demometer Nemo	Value	Domonka
Parameter Mame	value	пешагкя
N Randomized Fits	25	Ensures diversity
n nandomized rits	20	in solution space
$M(\omega \pi^0) [{ m GeV}]$	1.155 - 1.315 GeV	Systematics done
$ t \; [{ m GeV}^2]$	[(0.15 - 0.30),	
	(0.30, 0.50),	DS Ratio
	(0.50, 1.00)]	Strong correlation
	$ m GeV^2$	
	Combinations of	The most
rit waves	$J^P = 0^-, 1^+, 1^-, 2^-$	dominant systematic
Poom From [CoV]	$\circ \circ \circ \circ \circ V$	Maximum
Deam Energy [Gev]	0.2 - 0.0 GeV	Polarization Fraction
	$\alpha = 0.1212;$	From IDAC
Dalitz Parameters (α, β, γ)	$\beta = 0.0257;$	10052 020 08576 6
	$\gamma=0.0$	10032-020-08370-0
Polarization Fraction (P_{γ})	$\sim 35\%$	Systematics done
Event Selection	Discussed	Expected
	previous slides	minimal systematics
dnhago	Fixed to 0.0	Studied floating
upitase	rixed to 0.0	dphase

Karthík Suresh JLUO 2024

49 -of-36

Partial Wave Analysis : Results Extracted b_1 properties

 $[1^+]^{(+)}$ dominant $\rightarrow b_1$ decays through Natural exchange

Karthík Suresh JLUO 2024

50 -of-36

Desired kinematic range

Electron Ion Collider

- To be built at BNL (<u>Brookhaven National Laboratory</u>). Use existing infrastructure of RHIC.
- Physics Goal : Structure and dynamics of matter at high luminosity and energy using polarized beams. Wide range of nuclei [arXiv:1212.1701]
- The Machine will be capable to perform
 - High luminosity measurements $(10^{33} \text{ cm}^{-2} \text{ s}^{-1} 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
 - Flexible center-of-mass energy range. $\sqrt{s} = \sqrt{4E_eE_p}$
 - \circ Deliver highly polarized electron (0.8) and proton/ light ion (0.7)
 - Almost a 4π detector to measure particles scattering in all directions and at wide range of energies

Karthík Suresh JLUO 2024

52 -of-36

Example: The ECCE Detector - the Tracking System

Karthík Suresh JLUO 2024

ECCE design was chosen as reference. Lots of updates/progress from Tracking WG (ePIC) since then.

53 -of-36

Example: The ECCE Detector - the Tracking System

Major change — BECAL — UofR significant contributor — Expertise from BCAL @ GlueX

Karthík Suresh JLUO 2024

54 -of-36

Example: The ECCE Detector - the Tracking System

The tracking system reconstructs charged particle tracks. It combines different technologies.

For the entire study hik 20-60 Oku a 20 tracks are simul steelo as n and patho his Analysis on Neutral b, Meson at Gluex

Tracker System

arxiv:2205.09185, arxiv:2203.04530

Detector simulation

- Parameterization

• Integrate GEANT4

Parametrization

Parametrization is an essential part of an automated optimization:

- explores different designs
- avoids overlaps of volumes
- encodes constraints

$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

material budgets

Karthík Suresh JLUO 2024

Reference design

Implementation of support structures with realistic

Variable pars; Fixed pars

57 -of-36

Constraints

- **Design Parameters** $(O(N) \approx 10)$
 - Based on an extensive parameterization. \bigcirc

- **Constraints** being used (n const \geq 3)
 - HARD The minimum distance between 2 disks should 10 cm (giving room for services)
 - SOFT The Rmax-Rmin for the disks have to be multipl 3.00 cms and 1.8 cms (Tiling of pixels)
- **Overlaps checks**
 - GEANT4 unstable when overlaps are detected in volumes. \bigcirc
 - Overlaps are checked for every design explored and penalized. \bigcirc

Karthík Suresh JLUO 2024

FST/EST Disks

Barrel Si Layer

	sub-detector	constraint	description
	EST/FST disks	$min\left\{\sum_{i}^{disks} \left \frac{R_{out}^{i} - R_{in}^{i}}{d} - \left\lfloor \frac{R_{out}^{i} - R_{in}^{i}}{d} \right\rfloor \right \right\}$	soft constraint: sum in sensor coverage sensor dimensions: (30.0) mm
be >=	EST/FST disks	$z_{n+1} - z_n >= 10.0 \text{ cm}$	strong constraint: distance between 2 c disks
e of	sagitta layers	$min\left\{\left \frac{2\pi r_{sagitta}}{w} - \left\lfloor\frac{2\pi r_{sagitta}}{w}\right\rfloor\right \right\}$	soft constraint : re sensor coverage for e sensor strip width: w
	μRWELL	$r_{n+1} - r_n >= 5.0 \text{ cm}$	strong constraint: distance between μR layers

Extensive details at arXiv:2205.09185

58 -of-36

The Design params for this case

			Barrel Si Layer	
ECCE design (non-p	projective)			
Design Parameter	Range			
μ RWELL 1 (Inner) (r) Radius	[17.0, 51.0 cm]			
μ RWELL 2 (Inner) (r) Radius	[18.0, 51.0 cm]	sub-detector	constraint	description
EST 4 <i>z</i> position	[-110.0, -50.0 cm]	Sub detector	constraint	
EST 3 z position	[-110.0, -40.0 cm]	EST/FST disks		soft constraint: sum of res
EST 2 z position	[-80.0, -30.0 cm]		(disks pi pi pi pi b)	in sensor coverage for di
EST 1 z position	[-50.0, -20.0 cm]		$\min \left\{ \sum_{i=1}^{n} \frac{R_{out}^{i} - R_{in}^{i}}{\sum_{i=1}^{n} \frac{R_{out}^{i} - R_{in}^{i}}$	sensor dimensions: $d = 1$
FST 1 z position	[20.0, 50.0 cm]		$d = \begin{bmatrix} mn \\ - \end{bmatrix}$	(30.0) mm
FST 2 <i>z</i> position	[30.0, 80.0 cm]			(5010) 1111
FST 3 <i>z</i> position	[40.0, 110.0 cm]			strong constraint: minin
FST 4 <i>z</i> position	[50.0, 125.0 cm]	EST/FST disks	$z_{n+1} - z_n >= 10.0 \text{ cm}$	distance between 2 consec
FST 5 <i>z</i> position	[60.0, 125.0 cm]			disks
ECCE ongoing R&D	(projective)			
Design Parameter	Range			
Angle (Support Cone)	[25.0°, 30.0°]	sagitta lavors	$(2\pi r_{sagitta} 2\pi r_{sagitta})$	sensor coverage for every
μ RWELL 1 (Inner) Radius	[25.0, 45.0 cm]	sagitta layers	$min\{\left \frac{min}{w}-\left \frac{min}{w}\right \}$	sensor coverage for every
ETTL z position	[-171.0, -161.0 cm]			sensor surp width: $w = 17$.
EST 2 z position	[45, 100 cm]			
EST 1 z position	[35, 50 cm]			strong constraint: minin
FST 1 z position	[35, 50 cm]	μ RWELL	$r_{n+1} - r_n >= 5.0 \text{ cm}$	distance between μ Rwell b
FST 2 z position	[45, 100 cm]	-		layers
FST 5 z position	[100, 150 cm]			
FTTL z postion	[156, 183 cm]			

Karthík Suresh JLUO 2024

Extensive details at arXiv:2205.09185

How a distributed Optimization pipeline will look like?

Monitoring — **MLOps**

Parallelization

Condition for parallelization

Single node

- Less queue time overhead
- Simulation, relatively cheap. (FastSim, Single particle tracking only)
- Queue time > Sim time
- Use Joblib to parallelize across a massive single node
- JLab's ifarm1900s machine (128 cores)

Multiple nodes

- Distribute across nodes in a given site.
- Moderate queue time overhead.
- Moderately heavy simulations(Calorimetry, PID etc)
- Queue time \approx Sim time
- Use dask, MPI for DASK scheduling. K

Multiple sites

- Queue time << Sim time
- Full Sim, Physics-driven objectives.
- Across different OSG sites

Need for better visualizations Beyond 3D Pareto visualizations

The AIDE Project

 (i) Will contribute to advance the undaries of MOBO complexity to accommodate a large number of ectives and will explore usage of physics-inspired approaches better Piot

 (ii) Development of suite of data science tools for interactive navigation of Pareto front (multi-dim design with multiple objectives)

Examining solutions on the Pareto front of ePIC at different values of the budget can have great cost benefits

A fractional improvement in the objectives translates to a more efficient use of beam time which will make up a majority of the cost of the EIC over its lifetime

https://ai4eicdetopt.pythonanywhere.com/

(iii) Will leverage cutting-edge workload management systems capable of operating at massive data and handle complex workflows

Implementing Objectives

- Objective functions Average of Weighted Averages (n $obj \ge 2$)
 - Momentum resolution dp/p \bigcirc
 - Theta resolution $d\theta/\theta$ \bigcirc
 - Projected $d\theta/\theta$ at PID location. \bigcirc
 - Kalman Filtering inefficiency (improving the \bigcirc tracking reconstruction ability of the algorithm)
- Validation of the solutions
 - Validate by comparing optimal vs baseline $d\varphi$ \bigcirc resolution, vertex resolution and reconstruction efficiency

62 -of-36

Implementing Objectives

in fine-grained phasespace

Propagate uncertainties in fits throughout

Karthík Suresh JLUO 2024

63 -of-36

Checks performed

Like, Engineering **Constraints.** Can't be broken

GEANT4 unstable with **Overlap** Volume

> **HPC-Cluster** issue.

Compute performance metric in 'p' and ' η ' bins. **Evaluate Fit** quality

Multi Objective Evolutionary Algorithms

- Inspired by Biological Systems.
- Semi heuristic in nature.
- Quite successful in solving MOO problems.
- Embedding constraints relatively easier

Karthík Suresh JLUC

Swarm Algorithms

Ant Colony optimization Bees algorithm Particle swarm optimization Cuckoo search

Genetic Algorithms

Default Genetic Algorithm NSGA

Cellular Automata

NSGA-II

U-NSGA-III

MVΔ

Differential Evolution

Multi-objective Optimization in Python

pymco

_____-of-36

s on Neutral b_1 Meson at GlueX

Elitist Non-Dominated Sorting Genetic (NSGA)

Karthík Suresh JLUO 2024

The population R_t is classified in non-dominated fronts.

Not all fronts can be accommodated in the N slots of available in the new population P_{t+1} . We use **crowding distance** to keep those points in the last front that contribute to the highest diversity.

66 -of-36

AI assisted Detector design MOEA Pipeline

Karthík Suresh JLUO 2024

2 Level

Parallelization

Multi Objective Bayesian Optimization

Bayesian Optimization

- Compute max/min (f) with minimum evaluations
- Build up *f* to query Estimation of distribution

Karthík Suresh JLUO 2024

- *f* continuous
- *_f* may be noisy

68 -of-36

Objectives

Multi Objective Bayesian Optimization A brief explanation (extends to Multiple Dimensions)

The Surrogate model

Posterior predictions

Usually based on GP

Agnihotri & Batra, "Exploring Bay

Karthík Suresh JLUO 2024

The Acquisition Function $-F(\text{posteriors}) = \alpha(x)$

Predicts "Improvement" when $x \rightarrow x + \epsilon$

(μ) Jth (<i>f</i>)	1. Choose a surrogate model
oints nt	2. Use Ground truth to update the surrogate model
function	3. Using Acq. Function to predict next point f query
	4. Go to 1. Until Convergence
esian	Optimization", Distill, 2020.
69 -of-3	6 Partíal Wave Analysís on Neutral b_1 Meson at GlueX

Multi Objective Bayesian Optimization

• Ax - BoTorch

- Apt when evaluations of objectives are costly. Typical for the problem in \bigcirc hand.
- Builds surrogate models that maps objective space to design parameter \bigcirc space.
- Uses novel qNEHVI acq. function with reduced computational complexity \bigcirc arxiv:2105.08195.

• Implementation

- 1 Level Parallelization (\approx 120cores) \bigcirc
- \circ N objectives = 2
- BATCH SIZE 3 (q)
- N BATCH 50
- qNEHVI + SAASBO*

<u>*SAASBO ~ $O(N^3)$ </u>

good for high design dimensions but

Karthík Suresh JLUO 2024 70 -of-36

Interactive Visualization of the result

Proof of concept

MOEA or MOBO ? MOEA

- Has been widely used for solving MOO problems \bigcirc
- \uparrow population /off spring \uparrow diversity \downarrow \bigcirc
- Relatively easier to implement \bigcirc
- Complexity relatively easy to compute \bigcirc
- Ideal Cost of computing "cheap" \bigcirc
- Successful with large Design and Objective parameters
- No Map : "Design" → "Objectives"

MOBO

- Has been around for a while, gaining popularity \bigcirc
- Sequential Strategy global minimization \bigcirc
- Relatively harder to implement \bigcirc
- Complexity relatively easy to compute \bigcirc
- Ideal simulations can be heavily parallelized 0
- Currently, Not recommended beyond 4-5 \bigcirc **Objective parameters**
- Can Map : "Design" "Objectives" Fast \bigcirc simulator can be built

ECCE Results : Phases of Optimization

Tracker Optimisation timeline.

- <u>1: Barrel + technological choices. Chose technologies</u>
- <u>2: Barrel+Disks. W/O support structures.</u> <u>Identified holes in Disks, Cylinder rearranged</u> <u>— no double layers</u>
- 3. Barrel+Disks. With fixed support structures. Disks rearranged •
- <u>4. Barrel+Disks and support structure.</u> <u>Projective Geometry</u>
- <u>5. Full tracking system optimization.</u> <u>Removing Tracking after Hadron PID</u>

 $\frac{Optimisation phases}{Partial Wave}$ Analysis on Neutral b_1 Meson at GlueX

ECCE Results : Analyzing results

Karthík Suresh JLUO 2024

73 -of-36

Post-hoc validation on physics observables

The π^+K^- invariant mass obtained from the SIDIS events with updated baseline and optimizedprojective geometry. A region of eta that is sensitive due to considerable materials for supportstructure was also taken in to account for this optimization.Karthík Suresh JLUO 202474 -of-36Partíal Wave Analysis on Neutral b_1 Meson at GlueX

Fitting Procedure

- For resolutions
 - Plot distributions of resolution in bins of eta and p
 - Fit with a double gaussian function
 - Set $A_{1 \text{ or } 2}$ (Amplitude) to 0 if the fit value of A is less than 1% of the $A_{2 \text{ or } 1}$
 - Set $\sigma_{1 \text{ or } 2}$ to 0 if it is greater than the x axis extent of the histogram
 - Calculate the weighted sigma of the fit function and its associated errors.
- For Global KF Inefficiency
 - Calculate the total number of tracks with trackID<0 for the entire simulation
 - Global_KF_Inefficiency = No_of_tracks(trackID<0)/Total_Events

$$D_1 e^{(x-\mu)^2 / \sigma_1^2)} + D_2 e^{(x-\mu)^2 / \sigma_1^2}$$
$$\sigma = \frac{\sigma_1 A_1 + \sigma_2 A_2}{A_1 + A_2}$$

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

75 -of-36

Optimal Detector Design Solutions

ON esoluti omentum

KF Inefficiency Improvement

<u>/alidation Reconstruction Efficien</u>

Reconstruction Efficiency (e)1.41.41.71.71.71.71.11.11.11.11.11.11.11.11.11.11.11.2

- Optimal/baseline -1
- Baseline Ineff

Summary of KF Inefficiency of (Optimal/Baseline -1) Design

, <u> </u>			<u> </u>					100
-14.4% 2.3%	-15.4% 2.1%	-16.7% 2.0%	-19.3% 2.2%	-16.1% 2.0%	-10.0% 2.0%	-23.5% 2.2%	-10.4% 2.0%	- 75 - 50
-40.0%	-37.2%	-38.5%	-36.8 %	-40.4%	-38.7%	-39.1%	-33.7%	- 25
4.4%	4.7%	5.3%	5.6%	6.3%	7.1%	7.3%	7.9%	25
4.6 %	39.1%	- 9.2 %	- 10.9 %	2.3%	5.1%	- 7.6 %	19.8%	50
0.3%	0.2%	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%	75
14-16	16-18	18-20	20 - 22	22 - 24	24 - 26	26 - 28	28 - 30	10

mra esoluti R 9 OD lidati **し**

Evolution of Detector Performance (ECCE)

KE Efficiency

Karthík Suresh JLUO 2024

Polar Angular Reso

81 -of-36

Second tier

Karthík Suresn JL[.]UU 2024

07-10-3p

Highlights of this optimisation

- Finer eta bins and momentum bins
- Includes almost all of the tracker subsystems for optimisation
- Includes optimisation of the support structures too
- Baseline detector setup corresponds to a projective design which itself is a result of previous phases of optimisation
- More optimisations with Bayesian based approaches are also carried out currently.

MOO details

- Validating convergence.
 - Look in the design space for improvements in the last few calls
 - Look into objective space. And perform cluster analysis on them
 - Make a custom metric to analyse convergence.
- Hypervolume
 - The volume of the First front w.r.t a reference point
- **Bayesian Optimization**
 - Used When the evaluation of each point is resource intensive.

Hyper volume definition

Likelihood

How probable is the evidence given that our hypothesis is true?

Posterior

How probable is our hypothesis

given the observed evidence?

(Not directly computable)

Prior

How probable was our hypothesis before observing the evidence?

 $P(H \mid e) =$

How probable is the new evidence under all possible hypotheses? $P(e) = \sum P(e \mid H_i) P(H_i)$

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

84 -of-36

Backups level 2

Karthík Suresh JLUO 2024

85 -of-36

The Standard Model of Physics

Describes the three forces in nature

- Strong Nuclear Force
- Weak Nuclear Force
- Electromagnetic Force

Successful theory by far in Physics

Karthík Suresh JLUO 2024

86 -of-36

Photoproduction of $\omega \pi^0$ at GlueX Weighing events in detail

Karthík Suresh JLUO 2024

 $\gamma p \to (\omega \pi^0) p \to (\pi^+ \pi^- \pi_1^0) \pi_2^0 p$

87 -of-36

The Standard Model of Physics

Summary of flux tube model

- Proposed by Nathan Isgur and Jack Paton by 1985[†]
- Analogy
 - Two quarks connected by a elastic rubber band
 - When pulled apart, it gets stretched
 - The stretched region is called as flux tube
 - More stretched more potential energy
- Ily, the more farther the quarks the harder the flux tube pulls them back
- When broken new pair of $q\bar{q}$ gets formed and hence, no "free" quarks can be observed

[†]Phys. Rev. D **31**, 2910 – Published 1 Ju

89 -of-36

Summary of Lattice QCD

- Develops from Path Integral formulation
 - Compute all possible "paths" btw 'A' & 'B'
 - Idea of MC Integration
- The Lattice is grid of space time
- Quarks are building blocks at each lattice point
- Gluons mediate between the lattice points
- Lattice spacing 'a' gets smaller, computation becomes exponentially costlier

NNPSS-2022 MIT

90 -of-36

The Standard Model of Physics

Theory of Strong interactions : QCD

Key outcomes

- Color Confinement
 - No "free" quarks can be observed
 - All hadrons are color neutral.
- Asymptotic Freedom (Interaction Strength)
 - Non-Perturbative Large distance (Low Energy)
 - Lattice QCD successful due to modern computing
 - Perturbative Small distance (High Energy)

$$(\alpha_s)$$

Interaction Strength as a function of Energy Scale

Particle Data Group Review of Parti Volume 2022, Issue 8, August 2022,

91 -of-36

Recent Lattice QCD work on $\omega\pi$

- Studies the decay of b_1 to $\omega\pi$
- With $m_{\pi} = 391$ MeV and $a_{c} = 0.12 fm$
- Computed b_1 mass is 1380MeV
- DSRatio computed at the above mass

$$\left|\frac{c_{\pi\omega\{^{3}D_{1}\}}^{\text{phys}}}{c_{\pi\omega\{^{3}S_{1}\}}^{\text{phys}}}\right| =$$

Karthík Suresh JLUO 2024

b_1 resonance in coupled $\pi\omega$, $\pi\phi$ scattering from lattice QCD

Antoni J. Woss,^{1,*} Christopher E. Thomas,^{1,†} Jozef J. Dudek,^{2,3,‡} Robert G. Edwards,^{2,‡} and David J. Wilson^{4,||}

(Hadron Spectrum Collaboration)

¹DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom ²Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA ³Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA ⁴School of Mathematics, Trinity College, Dublin 2, Ireland

PHYSICAL REVIEW D 100, 054506 (2019)

= 0.27(20)

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

92 -of-36

The lightest meson tension

- Experiments reported measuring Exotic $\pi_1(1400)$ through $\eta\pi$
 - E852 Collaboration
 - Crystal Barrel Collaboration
- Experiments also reported measuring Exotic $\pi_1(1600)$ through $\eta'\pi$
 - E852 Collaboration
 - **VES** Collaboration
 - COMPASS

Karthík Suresh JLUO 2024

Determination of the pole position of the lightest hybrid meson candidate

A. Rodas,^{1,*} A. Pilloni,^{2,3,†} M. Albaladejo,^{2,4} C. Fernández-Ramírez,⁵ A. Jackura,^{6,7} V. Mathieu,² M. Mikhasenko,⁸ J. Nys,⁹ V. Pauk,¹⁰ B. Ketzer,⁸ and A. P. Szczepaniak^{2,6,7} (Joint Physics Analysis Center)

$M(\pi_1) = 1564 \pm 24 \pm 86 \ \Gamma(\pi_1) = 492 \pm 54 \pm 102$

93 -of-36

Partial Wave Analysis Lets get to Fitting: How to best choose a waveset?

Waxasat Nama	Romarka	Wave sets		NDARS		
	I I I I I I I I I I I I I I I I I I I	$[J^P]^{\epsilon}$	m		INFARS	
<u>lp</u>	-	$[1^+]^{\pm}$	-1, 0, 1	S, D	14	
Om 1 p	_	$[0^+]^{\pm}$	0	<i>P</i>	- 18	
		$[1^+]^{\pm}$	-1, 0, 1	S, D		
1p1m	_	$[1^+]^{\pm}$	-1, 0, 1	S, D	26	
		$[1^{-}]^{\pm}$	-1, 0, 1	P		
		$[0^+]^\pm$	0	P		Model Metric:
Omlplm	-	$\left[\begin{bmatrix} \mathbf{I}^{\top} \end{bmatrix}^{\perp} \\ \begin{bmatrix} 1 \\ - \end{bmatrix}^{\perp} \end{bmatrix}$	-1, 0, 1	S, D	30	
		[[1-]+	-1, 0, 1	P		• <u>Likelihood Ratio Test (LRT) - impact of adding additional parameter</u>
Om1p1miso	_	Same as above		31	$LRT = \frac{NLL_{alternate} - NLL_{benchmark}}{NLL_{benchmark}}$	
-		[0+1-	+ Isotropic BKg			$\frac{DRT}{NPAR_{alternate} - NPAR_{benchmark}}$
	_	$\begin{bmatrix} [0'] \\ [1+]+ \end{bmatrix}$		P	_	• Akaike Information Criterion (AIC) - favours a more complex model
0mNeg1p1mPosIso		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	-1, 0, 1	D	17	$2 \times NLL + 2 \times NDAD$
			Isotropic Bkg		-	$\underline{AIC} = \frac{2 \times NLL + 2 \times NPAR}{N}$
		[<u>1</u> +]+	$\frac{15010\text{ pic }\text{DKg}}{-1.0.1}$	SD		
1p1mPos	-	$[1^{1}]^{+}$	$\begin{array}{c c} & -1,0,1 \\ \hline & -1,0,1 \end{array}$	P	15	<u>Bayesian Information Criterion (BIC) - penalizes a complex model</u>
	Seperate dsratios	Same as OmNeg1pPos1mPosiso		19	$\underline{BIC} = \frac{2 \times NLL + 2 \times \ln(N) \times NPAR}{2 \times NLL + 2 \times \ln(N) \times NPAR}$	
OmnegipPosimPosisoSepDS	for $3 m$				N	
	Seperate dsratios	te dsratios Same as			17	
Iprosimrossepus	for $3 m$		1p1mPos			
		$[1^+]^{\pm}$	-1, 0, 1	S, D		
1p1m2mPos		$[1^{-}]^{\pm}$ $-1, 0, 1$ H		P	46	
		$[2^{-}]^{+}$	-2, -1, 0, 1, 2	D, F		
		$[1^+]^{\pm}$	-1, 0, 1	S, D	-	
		$[1^{-}]^{\pm}$	-1, 0, 1	$P_{$		Validata mathadalagu uging gunthatia data (Sig
1p1m2mPos2pPosiso		$[2^{-}]^{+}$	-1, 0, 1	P, F	45	vanuale methodology using symmetric data (Sig
		$[2^+]^+$ $-1, 0, 1$ D				
			Isotropic Bkg			

Karthík Suresh JLUO 2024

94 -of-36

Comparing previous experiments

E852 Results

Parameter	Value	Remarks	
t range	$0.1 - 1.5 { m ~GeV^2}$	Single t bin	
$M(\omega \pi^{-})$ range	1.155 - 1.215 C V	Systematics 60 to 160	
$m(\omega \pi)$ range	1.155 – 1.515 Gev	in 20 MeV bins	
Wayosots included		$2^{+-} \sim 1.6 \mathrm{GeV}$	
(dominant)	$J^{PC} = 1^{+-}, 1^{}, 2^{+-}, 3^{}$	$3^{} \sim 1.7 \text{ GeV}$	
(dominant)		seen but no detailed study.	
D/S ratio	$0.269 \pm (0.009)_{\text{stat}} \pm (0.01)_{\text{sys}}$		
$\phi(D-S)$	$0.184 \pm (0.042)_{\rm stat} \pm (0.07)_{\rm sys}$	As predicted in [33]	

- π beam so S = 0; Need to have spin flip for exotic production
- 4 dimensions, No Φ_{prod} in Intensity
- Cannot distinguish parity exchange Natural or UnNatural.

GlueX

Cut Name	Selection	Systematic Re		
$M(\omega\pi^0)$ [GeV]	$1.155 - 1.315 { m ~GeV}$	Systematics per		
$ t [C_{\alpha} V^2]$	$[(0.15 - 0.30) (0.30 - 0.50) (0.50 - 1.00)] C_0 V^2$	Systematically s		
	[(0.13 - 0.30), (0.30 - 0.30), (0.30 - 1.00)] GeV	fit variation acros		
Fit Waves	Combinations of $0^-, 1^+, 1^-, 2^-$	Systematics per		
Beam Energy [GeV]	8.2 - 8.8 GeV	Systematics per		
Dalitz Parameters (α, β, γ)	$\alpha = 0.1212; \beta = 0.02570; \gamma = 0.0$	Systematics performed		
Polarization Fraction (P_{γ})	$\sim 35\%$	Systematics per		
Event Selection	Default as given in Chapter 5	No systematics pe		
dabada	Fixed to 0.0	Studied a floa		
upitase	rixed to 0.0	dphase		

- γ beam so S = 1, behaves like Vector meson; direct Exotic production
- 5 dimensions, Φ_{prod} in Intensity had to be encoded
- Can distinguish between Natural and Unnatural Exchange
 - Larger number of fit parameters to be included

Natural Partiy $P = (-1)^J$, UnNatural Parity $P = (-1)^{J+1}$

The b_1 Meson Why study b_1 meson

Name	J^{PC}	Total Width	n MeV	Ą
π_1	1^{-+}	81-168	117	$b_1\pi$, $\pi\rho$,
η_{1}	1^{-+}	59-158	107	$\pi a_1, \pi a_2, \eta f_1$
η_{1}'	1^{-+}	95 - 216	172	ŀ
b_0	0+-	247 - 429	665	$\pi \eta$
h_0	0^{+-}	59 - 262	94	
h'_0	0+-	259 - 490	426	
b_2	2+-	5-11	248	πa_1
h_2	2^{+-}	4 - 12	166	
h_2'	2+-	5-18	79	k

Karthík Suresh JLUO 2024

$$J^{PC} 1^{+-} I^{G} 0$$

$$J^{PC} 1^{+-} I^{G} 0$$

$$J^{PC} 1^{+-} I^{G} 0$$

$$J^{PC} 1^{+-} I^{G} 0$$

$$J^{PC} 0^{-} I^{G} 1$$

$$J^{PC} 0^{-} I^{G} 1$$

$$Mlowed Decay Modes$$

$$\pi f_{1}, \pi \eta, \pi \eta', \eta a_{1}, \pi \eta (1295)$$

$$, \eta f_{2}, \pi \pi (1300), \eta \eta', KK_{1}^{A}, KK_{1}^{B}$$

$$KK_{1}^{A}, KK^{*}, \eta \eta'$$

$$\pi (1300), \pi h_{1}, \rho f_{1}, \eta b_{1}$$

$$\pi b_{1}, \eta h_{1}, KK (1460)$$

$$KK (1460), KK_{1}^{A}, \eta h_{1}$$

$$, \pi a_{2}, \pi h_{1}, \eta \rho, \eta b_{1}, \rho f_{1}$$

$$\pi \rho, \pi b_{1}, \eta \omega, \omega b_{1}$$

$$KK_{1}^{B}, KK_{1}^{A}, KK_{2}^{*}, \eta h_{1}$$

+

Why include Barrier Factor

Karthík Suresh JLUO 2024

97 -of-36

Data Selection Cuts

Event Selection List

- Kin. Fit Confidence level $> 10^{-2}$.
- ► Missing Mass Squared < $0.05 \ GeV^2/c^4$
- \blacktriangleright PID ΔT Cuts (FCAL, BCAL, ST and TOF)
- Four momentum Kinematic fit for neutral particles

 \triangleright P_{recoil} > 350 MeV

Karthík Suresh JLUO 2024

More on Chapter 5 Thesis.

98 -of-36

Lambda cut

Lambda

Karthík Suresh JLUO 2024

λ definition

- ln the COM of $\omega(\pi^+\pi^-\pi^0)$, the quantity λ is calculated.
- The quantity represents the true ω events in the sample. $\lambda = \frac{4|\vec{p_{\pi^+}} \times \vec{p_{\pi^-}}|}{(M(\omega) - M(\pi^0))^2}$

Signal MC

- Generated Signal MC with 2 resonances
 - $1^+ b_1$ wave $(M = 1.235 \text{GeV}, \Gamma = 0.14 \text{GeV})$
 - 1⁻ ρ wave ($M = 1.465 \text{GeV}, \Gamma = 0.4 \text{GeV}$)
- Compare to what was generated to validate
- After Fitting, check for fit fractions and relative phases between different waves
- More on Chapter 6 in Thesis

Karthík Suresh JLUO 2024

Compute Intensity using params

Estimate the likelihood

$$\sum_{i}^{N} \ln I(x;\theta) - \int I(x;\theta)\eta(x)dx$$

Use MINUIT to choose next step

Use MC Integration technique

Embed efficiency $\eta(x)$

Estimate min Distance

If Stopping criteria Return

101 -of-36

PWA-Why not mass dependence

Greater Model dependence — So additional systematics Already will make an assumption about the domination of b_1 in the region Solution — Piecewise hybrid solution But stick with independent as much as possible. Mass has smaller systematics compared to Fit waves

$$\begin{split} & I(\Phi, \Omega, M_H) = 2\kappa \\ & \left\{ \left(1 - P_{\gamma}\right) \left[\left| \sum_{i,m} [J_i]_m^{(-)} F_i^{(-)}(M, \vec{x}) \Im \mathfrak{m}(Z) \right|^2 + \sum_{i,m} [J_i]_m^{(+)} F_i^{(+)}(M, \vec{x}) \Re \mathfrak{e}(Z) \right|^2 \right] \\ & + (1 + P_{\gamma}) \left[\left| \sum_{i,m} [J_i]_m^{(+)} F_i^{(+)}(M, \vec{x}) \Im \mathfrak{m}(Z) \right|^2 + \sum_{i,m} [J_i]_m^{(-)} F_i^{(-)}(M, \vec{x}) \Re \mathfrak{e}(Z) \right|^2 \right] \right] \end{split}$$

Karthík Suresh JLUO 2024

102 -of-36

Fit Projections in decay angles

In a given Mass $M(\omega \pi^0)$ and t bin.

Karthík Suresh JLUO 2024

103 -of-36

Fit Projections in decay angles

For each fit in each bin $1.195 < M(\omega \pi^0) < 1.275 \text{ GeV}$ $0.15 < |t| < 0.30 \text{ GeV}^2$

 GlueX Data
 Fit Result

 $[1^+]^{(+)}$ (S+D)
 $[1^+]^{(-)}$ (S+D)

 $[1^-]^{(+)}$ (P)
 $[1^-]^{(-)}$ (P)

Karthík Suresh JLUO 2024

104 -of-36

Systematics analysis

Chapter 7 in thesis

Karthík Suresh JLUO 2024

105 -of-36

$$\begin{split} \mathbf{Systematics analysis} - \mathbf{char} \\ \mathcal{I}(\Phi, \Omega, \Omega_H) &= 2\kappa \bigg\{ (1 - P_{\gamma}) \bigg[\bigg| \sum_{m=-1,0,1} [1^+(S)]_m^{(-)} \bigg(\Im \mathfrak{m}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Im \mathfrak{m}(Z^{(D)}) \bigg) \bigg|^2 \\ &+ \bigg| \sum_{m=-1,0,1} [1^+(S)]_m^{(+)} \bigg(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \bigg) \bigg|^2 \bigg] \\ &+ (1 + P_{\gamma}) \bigg[\bigg| \sum_{m=-1,0,1} [1^+(S)]_m^{(+)} \bigg(\Im \mathfrak{m}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Im \mathfrak{m}(Z^{(D)}) \bigg) \bigg|^2 \\ &+ \bigg| \sum_{m=-1,0,1} [1^+(S)]_m^{(-)} \bigg(\Re \mathfrak{e}(Z^{(S)}) + D/S \ e^{i\phi_{D-S}} \Re \mathfrak{e}(Z^{(D)}) \bigg) \bigg|^2 \bigg] \bigg\} \end{split}$$

nging phase

106 -of-36

Partial Wave Analysis : Results Extending beyond b_1 mass : Recipe to compute Yield — cross-section

- Repeat with Data selection
- Fits made 80 MeV bins in $M(\omega \pi^0)$
- Combination of waves up to J = 3
- Model Selection criterion applied
- Data prefers a larger waveset higher mass region

107 -of-36

Partial Wave Analysis : Results Extending beyond b_1 mass : Recipe to compute Yield — cross-section

• Have fig reference to continuous fits.

Karthík Suresh JLUO 2024

108 -of-36
Partial Wave Analysis : Results Extending beyond b_1 mass : Recipe to compute Yield — cross-section

• Beyond thesis. Have the extended version.

Karthík Suresh JLUO 2024

109 -of-36

Partial Wave Analysis : Results Extending beyond b_1 mass : Recipe to compute Yield — cross-section

Karthík Suresh JLUO 2024

110 -of-36

Partial Wave Analysis : Ongoing and Future work

Karthík Suresh JLUO 2024

111 -of-36

Karthík Suresh JLUO 2024

112 -of-36

Karthík Suresh JLUO 2024

113 -of-36

Partial Wave Analysis : Ongoing and Future work Roadmap for publication

- Analyze the effect of $M(p\pi^0)$ contribution
 - Analyzed various $M(p\pi^0)$ cut
 - Vanhove analysis based cut? Statistics \downarrow
- Systematics on Data Selection cuts
 - KinFit CL cut
 - Accidental subtraction
 - $2D-\omega$ side band subtraction
- More rigours model selection
 - Lasso based regularization in cost term
 - Feature importance metric DataScience
- Independent fits in wide $M(\omega \pi^0)$ range
 - **Extract Yield**
 - More systematics Extract cross-section
 - Extract cross section

114 -of-36

Parametrization

Parametrization is an essential part of an automated optimization:

- explores different designs
- avoids overlaps of volumes
- encodes constraints

Reference design

Implementation of support structures with

Ongoing R&D projective

Variable pars; Fixed pars

115 -of-36

Constraints

- **Design Parameters** $(O(N) \approx 10)$
 - Based on an extensive parameterization.

- **Constraints** being used (n const \geq 3)
 - HARD The minimum distance between 2 disks should 10 cm (giving room for services)
 - SOFT The Rmax-Rmin for the disks have to be multipl 3.00 cms and 1.8 cms (Tiling of pixels)
- **Overlaps checks**
 - GEANT4 unstable when overlaps are detected in volumes.
 - Overlaps are checked for every design explored and penalized.

FST/EST Disks

Barrel Si Layer

	sub-detector	constraint	description
	EST/FST disks	$min\left\{\sum_{i}^{disks} \left \frac{R_{out}^{i} - R_{in}^{i}}{d} - \left\lfloor \frac{R_{out}^{i} - R_{in}^{i}}{d} \right\rfloor \right\}$	soft constraint: sum in sensor coverage sensor dimensions: (30.0) mm
be >=	EST/FST disks	$z_{n+1} - z_n >= 10.0 \text{ cm}$	strong constraint: distance between 2 c disks
le of	sagitta layers	$min\left\{\left\ \frac{2\pi r_{sagitta}}{w} - \left\lfloor\frac{2\pi r_{sagitta}}{w}\right\rfloor\right\}\right\}$	soft constraint : re sensor coverage for e sensor strip width: w
	μRWELL	$r_{n+1} - r_n >= 5.0 \text{ cm}$	strong constraint: distance between μR layers

Extensive details at arXiv:2205.09185

116 -of-36

Implementing Objectives

- **Objective functions** Average of Weighted Averages (n $obj \geq 2$)
 - Momentum resolution dp/p \bigcirc
 - Theta resolution $d\theta/\theta$ \bigcirc
 - Projected $d\theta/\theta$ at PID location. \bigcirc
 - Kalman Filtering inefficiency (improving the \bigcirc tracking reconstruction ability of the algorithm)
- Validation of the solutions
 - Validate by comparing optimal vs baseline $d\varphi$ \bigcirc resolution, vertex resolution and reconstruction efficiency

Karthík Suresh JLUO 2024

117 -of-36

Implementing Objectives

in fine-grained phasespace

AI assisted Detector design

AxaBoTorchreto optimization

- Apt when evaluations of objectives are costly. Typical for the problem in hand.
- Builds surrogate models that maps objective space to
 - design parameter space.
- <u>Momentum resolution</u>
- Uses novel qNEHVI acq. function with reduced computational complexity <u>arxiv:2105.08195</u>.

Objective Space

0

- Implementation
 - \circ 1 Level Parallelization (\approx 120 cores)
 - \circ N_objectives = 2
 - BATCH_SIZE 3 (q)
 - N_BATCH 50
 - $\circ \frac{\eta \approx 0}{q}$ NEHVI + SAASBO

arxiv:2205.09185, arxiv:2203.04530

Karthík Suresh JLUO 2024

119 -of-36

Analyzing results

Karthík Suresh JLUO 2024

120 -of-36

Partial Wave Analysis Lets get to Fitting: How to best choose a waveset?

1p1mPos

Best Model for GlueX Phase-I Data : $J^P = ([1^+]^+, [1^-]^+) - Benchmark dsratio$

Karthík Suresh JLUO 2024

Partíal Wave Analysís on Neutral b_1 Meson at GlueX

[1+1-]+iso

[1⁺1⁻]⁺iso

SepDS

SepDS

121 -of-36

 $[2^+2^-]^{\pm}$ iso

The Standard Model of Physics

This talk focuses on Light Hadron Spectroscopy

Karthík Suresh JLUO 2024

122 -of-36

Post-hoc validation on physics observables

The π^+K^- invariant mass obtained from the SIDIS events with updated baseline and optimizedprojective geometry. A region of eta that is sensitive due to considerable materials for supportstructure was also taken in to account for this optimization.Karthík Suresh JLUO 2024Tatial Wave Analysis on Neutral b_1 Meson at GlueX