Search for Axion-like Particles through Nuclear Primakoff Production in Hall D

Jackson Pybus

Laboratory for Nuclear Science

- pseudoscalar particle
- Addition could explain:
 - Strong CP problem
 - Hierarchy Problem
 - Connection between SM and dark matter

Proposed extension to Standard Model: new fundamental

- Pseudoscalar boson: S = 0, P = -1
- Pseudo Nambu-Goldstone boson: $\Lambda \gg m_a$
 - Recent interest in GeV-scale ALP candidates

 $\mathscr{L}_{e\!f\!f} = -\,\frac{4\pi\alpha_s c_g}{\Lambda} a G^{\mu\nu} \tilde{G}_{\mu\nu} + \frac{c_\gamma}{4\pi\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}$

- Pseudoscalar boson: S = 0, P = -1
- Pseudo Nambu-Goldstone boson: $\Lambda \gg m_a$
 - Recent interest in GeV-scale ALP candidates

 $\mathscr{L}_{eff} = -\frac{4\pi\alpha_s c_g}{\Lambda} a G^{\mu\nu} \tilde{G}_{\mu\nu} + \left[\frac{c_{\gamma}}{4\pi\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}\right]$

How do we measure pseudoscalars?

• Light mesons π^0 , η , similarly couple to 2γ

How do we measure pseudoscalars?

- Light mesons π^0 , η , similarly couple to 2γ
- Photon coupling measured by photoproduction cross section

Nuclear Primakoff mechanism

- Light mesons π^0 , η , similarly couple to 2γ
- Photon coupling measured by photoproduction cross section
- Nucleus provides strong Coulomb field to interact with
- Z² enhancement over proton target

Nuclear Primakoff mechanism

- Light mesons π^0 , η , similarly couple to 2γ
- Photon coupling measured by photoproduction cross section
- Nucleus provides strong Coulomb field to interact with
- Z² enhancement over proton target
- Possible mechanism for producing ALPs?

Aloni et al. PRL (2019)

Hall D SRC-CT Experiment

- Dedicated high-energy photonuclear measurement
- ~40-day measurement of targets ²H, ⁴He,
 ¹²C
- 10.8-GeV electron beam tagged coherent bremsstrahlung
- Final-state particles detected in largeacceptance GlueX spectrometer
- Searching for photon pairs from ¹²C

9

Photoproduction of photon pairs

Target

Photon beam from tagger hall

Photoproduction of photon pairs

Photon beam from tagger hall

11

Photoproduction of photon pairs

Photon beam from tagger hall

Simple event signature → Reduction of background is key!

Two "neutral" showers in Forward Calorimeter Forward Calorimeter

12

Modeling an ALP signal

• Cross section model given by Aloni:

$$\frac{d\sigma_{\gamma A \to aA}}{dt} = \alpha Z^2 F_A^2(t) \Gamma_{a \to \gamma \gamma} \mathcal{H}(m_A, m_a, s, t)$$

ALP photoproduction events generated at given mass and coupling

Aloni et al. PRL (2019)

Modeling an ALP signal

• Cross section model given by Aloni:

$$\frac{d\sigma_{\gamma A \to aA}}{dt} = \alpha Z^2 F_A^2(t) \Gamma_{a \to \gamma \gamma} \mathcal{H}(m_A, m_a, s, t)$$

- ALP photoproduction events generated at given mass and coupling
- GEANT model of GlueX detector response to signal
- "Random-trigger" events from data give impact of coincidence events on event selection

14

Simulation gives ALP mass resolution

Simulation validated against measured η meson

Comparison with simulation to optimize selection Example: How many extra showers can we allow?

ALP Simulation: Few additional on-time showers compared with accidental rate

Selection criteria: Veto events with extra FCAL showers within 4 ns

2-photon Data: Large excess of extra showers within short time of the event

16

- Good photon selection:
 - $|t_{shower} t_{RF}| < 3 \text{ ns}$
 - $E_{\text{shower}} > 100 \text{ MeV}$
 - $R_{\rm shower} < 105.5 \, {\rm cm}$

17

- Good photon selection:
 - $|t_{shower} t_{RF}| < 3 \text{ ns}$
 - $E_{\text{shower}} > 100 \text{ MeV}$
 - $R_{\rm shower} < 105.5 \, {\rm cm}$
- Background vetos:
 - No FTOF hit within 6.5 ns, 6 cm of a shower

- Good photon selection:
 - $|t_{shower} t_{RF}| < 3 \text{ ns}$
 - $E_{\text{shower}} > 100 \text{ MeV}$
 - $R_{\rm shower} < 105.5 \, {\rm cm}$
- Background vetos:
 - No FTOF hit within 6.5 ns, 6 cm of a shower
 - No extra FCAL shower within 4 ns
 - No extra BCAL shower within 6 ns

19

- Good photon selection:
 - $|t_{shower} t_{RF}| < 3 \text{ ns}$
 - $E_{\text{shower}} > 100 \text{ MeV}$
 - $R_{\rm shower} < 105.5 \, {\rm cm}$
- Background vetos:
 - No FTOF hit within 6.5 ns, 6 cm of a shower
 - No extra FCAL shower within 4 ns
 - No extra BCAL shower within 6 ns
- Physics cuts:

•
$$0.95 < \frac{E_X}{E_{beam}} < 1.05$$

- Good photon selection:
 - $|t_{shower} t_{RF}| < 3 \text{ ns}$
 - $E_{\text{shower}} > 100 \text{ MeV}$
 - $R_{\rm shower} < 105.5 \, {\rm cm}$
- Background vetos:
 - No FTOF hit within 6.5 ns, 6 cm of a shower
 - No extra FCAL shower within 4 ns
 - No extra BCAL shower within 6 ns
- Physics cuts:

•
$$0.95 < \frac{E_X}{E_{\text{beam}}} < 1.05$$

• $\theta_X < 0.5^\circ$

 Performing "bump hunt" over diphoton invariant mass, search for new resonance

- Performing "bump hunt" over diphoton invariant mass, search for new resonance
- Decay of $\eta \rightarrow \gamma \gamma$ clearly seen

- Performing "bump hunt" over diphoton invariant mass, search for new resonance
- Decay of $\eta \rightarrow \gamma \gamma$ clearly seen
- Effective search region $200 < m_a < 450$ MeV/ c^2

- Performing "bump hunt" over diphoton invariant mass, search for new resonance
- Decay of $\eta \rightarrow \gamma \gamma$ clearly seen
- Effective search region $200 < m_a < 450$ MeV/ c^2
- Known η resonance serves as normalization/reference channel

Off-target backgrounds dominate search region

Off-target backgrounds dominate search region

Comparing targets gives measure of beamline backgrounds

Subtract small-Z from large-Z to account for beamline effects

 $\sigma_{Primakoff} \sim Z^2$

Comparing targets gives measure of beamline backgrounds

Subtract small-Z from large-Z to account for beamline effects

 $\sigma_{Primakoff} \sim Z^2$

First test: "Test of Discovery"

First test: "Test of Discovery"

How well do the data reject the null hypothesis $\mu_a = 0$?

First test: "Test of Discovery"

How well do the data reject the null hypothesis $\mu_a = 0$?

No statistically significant excess observed

Second test: "Test of Exclusion"

Second test: "Test of Exclusion"

Normalize ALP yield to measured Primakoff η

Angular distribution used to determine Primakoff contribution to η production

Normalize ALP yield to measured Primakoff η

Angular distribution used to determine Primakoff contribution to η production (More detailed study of Primakoff production ongoing in PrimEx and SRC-CT data)

Yield corrected for mass-dependent efficiency and cross-section effects

Limits on ALP yield convert to limit on coupling

How do we compare with world limits?

- Limits are reasonable but surpassed by world data
 - Short experiment, split between several light nuclei

How do we compare with world limits?

- Limits are reasonable but surpassed by world data
 - Short experiment, split between several light nuclei
- What about a dedicated run with large Z?

Limiting factor is beamline background; Removing material reduces backgrounds

Removal of FDC material + insertion of a helium balloon reduces beamline material by $40 \times$

How do we compare with world limits?

- Limits are reasonable but surpassed by world data
 - Short experiment, split between several light nuclei
- What about a dedicated run with large Z?
- Modified experimental setup could significantly improve precision

ALP Searches at the EIC

R. Balkin et al, JHEP (2024)

EIC reaches large effective photon energies

ALP Searches at the EIC

R. Balkin et al, JHEP (2024)

ALP Searches at the EIC "Prompt" ALP production at interaction point LEP 10^{-3} CMS ATLAS (Pb-Pb) 10 $1/\Lambda$ [GeV⁻ $10 \, {\rm fb}^{-1}$ Pb 10^{-5} $100 \, {\rm fb}^{-1}$ 10^{-6} Central $E_{\rm Pb} = 20 \,\mathrm{TeV}$ $E_e = 18 \,\mathrm{GeV}$ 10^{-7} L 10^{-1} 10^{0} 10^{1} $m_a \, [\text{GeV}]$

R. Balkin et al, JHEP (2024)

ALP Searches at the EIC "Prompt" ALP production Long-lived ALP, at interaction point displaced vertex LEP 10 CMS ATLAS (Pb-Pb) 10 $1/\Lambda$ [GeV⁻ $10 \, {\rm fb}^{-1}$ Pb 10^{-5} $100 \, {\rm fb}^{-1}$ 10^{-6} Central $E_{\rm Pb} = 20 \,\mathrm{TeV}$ $E_e = 18 \,\mathrm{GeV}$ $10^{-7} L$ 10^{-1} 10^{0} 10^{1} $m_a \, [\text{GeV}]$

R. Balkin et al, JHEP (2024)

Conclusions

- New measurement studying
 Primakoff photoproduction, recently accepted to Phys. Lett. B
- Study demonstrates feasibility of search method, identifies
 experimental challenges
- Dedicated experiment on heavy nuclei could provide world-leading limits on QCD-scale ALPs

arXiv: 2308.06339

Backup

 $\mathcal{L}_{e\!f\!f}$ =

Cut Optimization

Extra BCAL Showers

ALP Simulation

2-photon Data

ALP Simulation

TOF Hits

2-photon Data

Diphoton Elasticity

ALP Simulation

2-photon Data

