Nucleon spin sum rules and spin polarizabilities at low Q^2

A. Deur

Thomas Jefferson National Accelerator Facility

- Why is the spin of the nucleon interesting?
- QCD at small and large distances: emerging properties and effective theories.
- Importance of effective descriptions.
- Nucleon spin polarizabilities: how much does the nucleon spin jiggle?
- Experimental results.
- Comparison with leading effective theory of QCD at large distance.
- Conclusion.

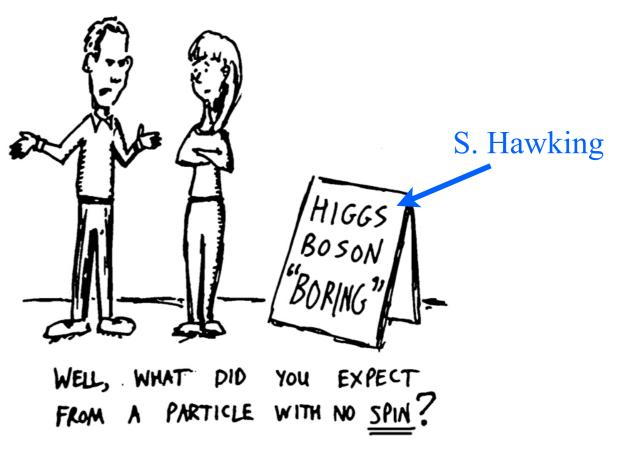
Context

Specific topic

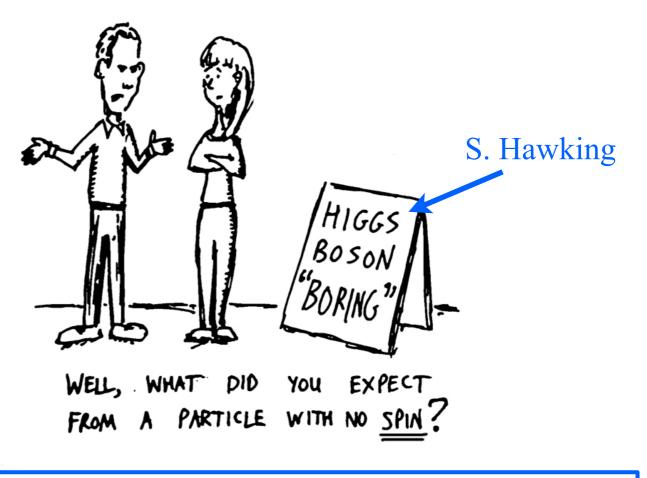
• Why is the spin of the nucleon interesting?

- QCD at small and large distances: emerging properties and effective theories.
- Importance of effective descriptions.
- Nucleon spin polarizabilities: how much does the nucleon spin jiggle?
- Experimental results.
- Comparison with leading effective theory of QCD at large distance.
- Conclusion.

- Why is the spin of the nucleon interesting?
- QCD at small and large distances: emergin
- Importance of effective descriptions.
- Nucleon spin polarizabilities: how much do
- Experimental results.
- Comparison with leading effective theory of QCD at large distance.
- Conclusion.



- Why is the spin of the nucleon interesting?
- QCD at small and large distances: emergin
- Importance of effective descriptions.
- Nucleon spin polarizabilities: how much do
- Experimental results.

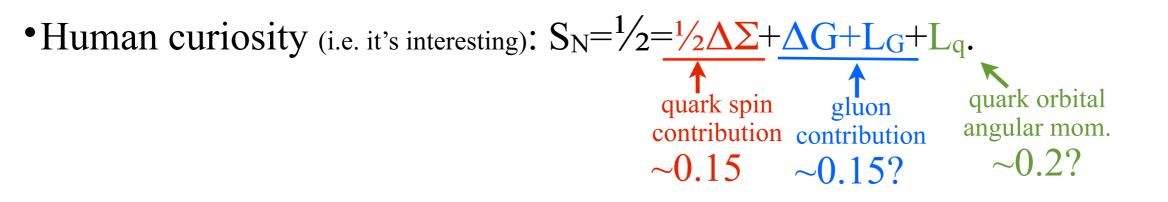


•fundamental components: spin $\frac{1}{2}$ \Rightarrow matter doesn't collapse.

•spin even bosons: attractive forces. e.g. nuclear force (pion), gravitation. ⇒stable nuclei, burning stars, structured universe...

•spin odd bosons: repulsive between like charges, attractive between opposite charges.
 ⇒ neutral atoms.

 \Rightarrow Spin is key to the marvelous diversity of the universe



•Nucleon: most of mass of known matter in the universe. Spin: Fundamental observable. Fundamental understanding of matter.

 \Rightarrow understand its elementary bricks

- Spin degrees of freedom: additional handles to test theories.
 - Constituent quark model, Parity symmetry of physical laws, Ellis-Jaffe sum rule, ...
 - Spin permits more complete study of QCD;
 - mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

•Human curiosity (i.e. it's interesting): $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_G + L_q$. quark spin gluon contribution contribution ~ 0.15 $\sim 0.15?$ $\sim 0.2?$

1970s-1980s: success of constituent quark model. Suggests $S_N = \frac{1}{2}\Delta\Sigma$

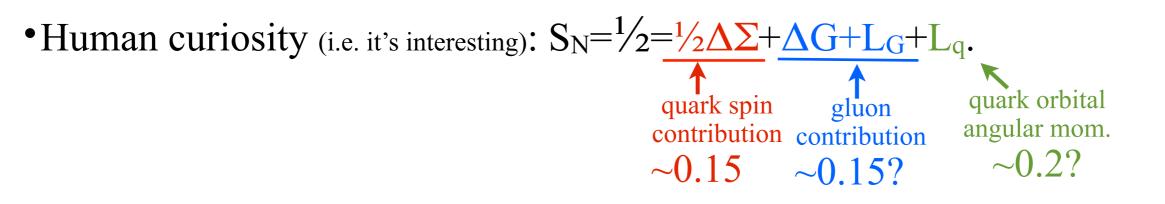
CERN's EMC experiment (1987): $\Delta\Sigma \sim 0$

 \Rightarrow Nucleon spin composition is not trivial. Thus it reveals interesting information on the nucleon structure and the mechanisms of the strong force

• Spin permits more complete study of QCD;

mechanism of confinement;

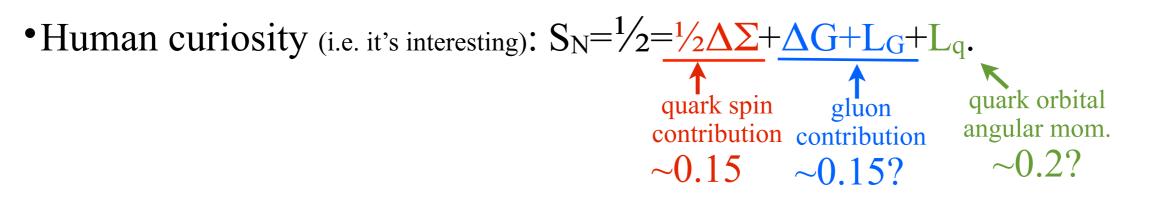
•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);



 Nucleon: most of mass of known matter in the universe. Spin: Fundamental observable. Fundamental understanding of matter.
 ⇒ understand its elementary bricks

- Spin degrees of freedom: additional handles to test theories.
 - Constituent quark model, Parity symmetry of physical laws, Ellis-Jaffe sum rule, ...
 - Spin permits more complete study of QCD;
 - mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);



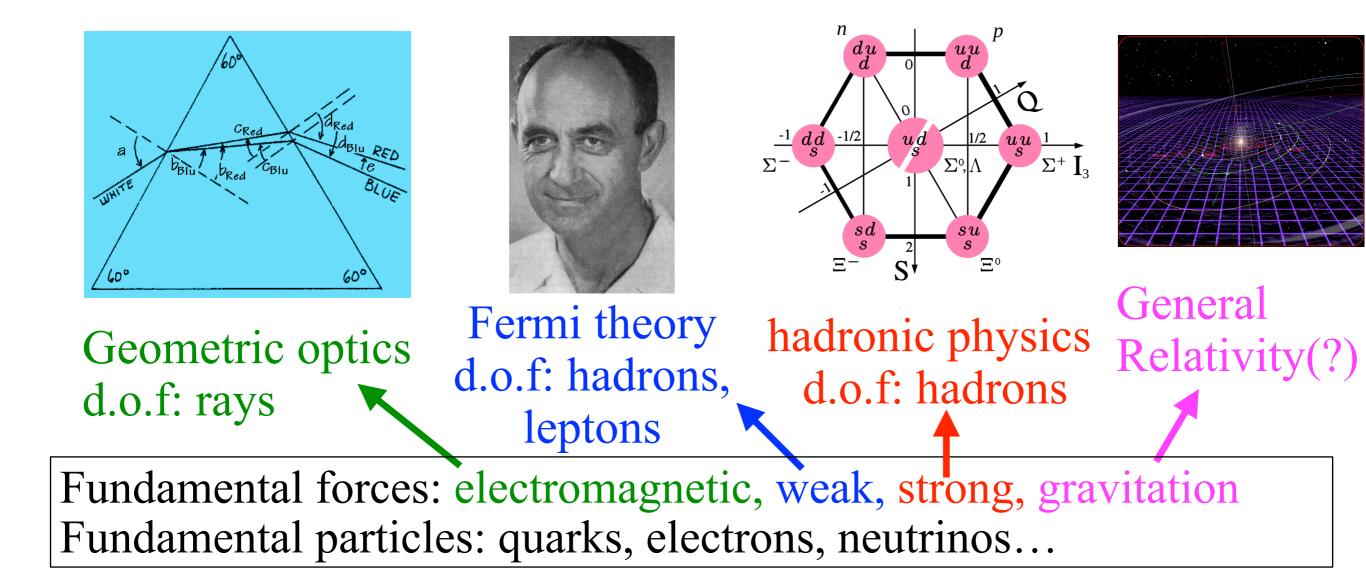
• Nucleon: most of mass of known matter in the universe. Spin: Fundamental observable. Fundamental understanding of matter.

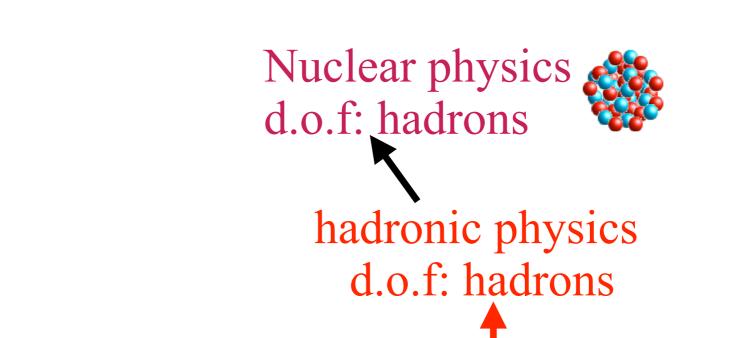
 \Rightarrow understand its elementary bricks

- Spin degrees of freedom: additional handles to test theories.
 - Constituent quark model, Parity symmetry of physical laws, Ellis-Jaffe sum rule, ...
 - Spin permits more complete study of QCD;
 - mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

Fundamental forces: electromagnetic, weak, strong, gravitation Fundamental particles: quarks, electrons, neutrinos...

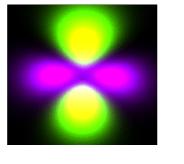




Fundamental forces: electromagnetic, weak, strong, gravitation Fundamental particles: quarks, electrons, neutrinos...

Molecular physics d.o.f: atoms, Van der Waals f.

Chemistry



Biology

Atomic physics

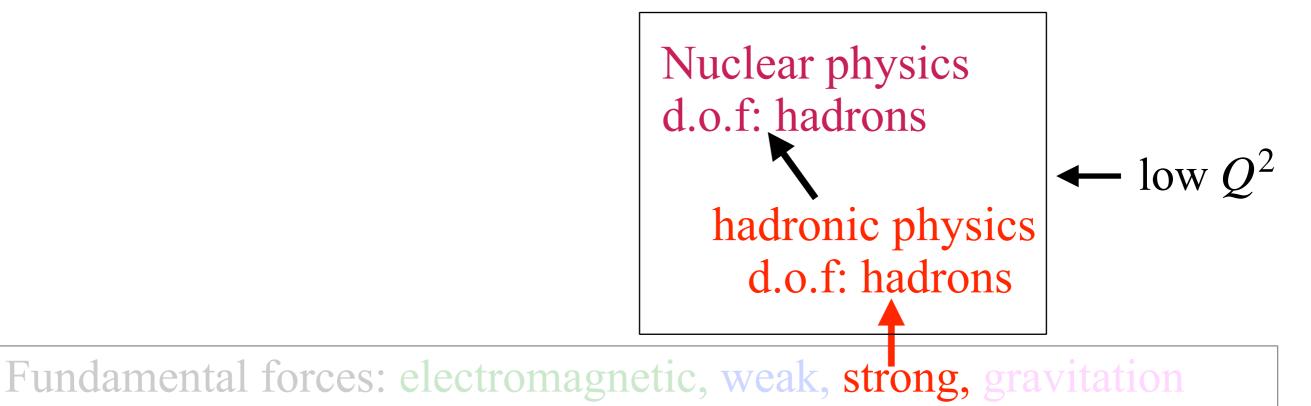
d.o.f: electrons, nuclei, EM field • Nuclear physics d.o.f: hadrons

Neurology

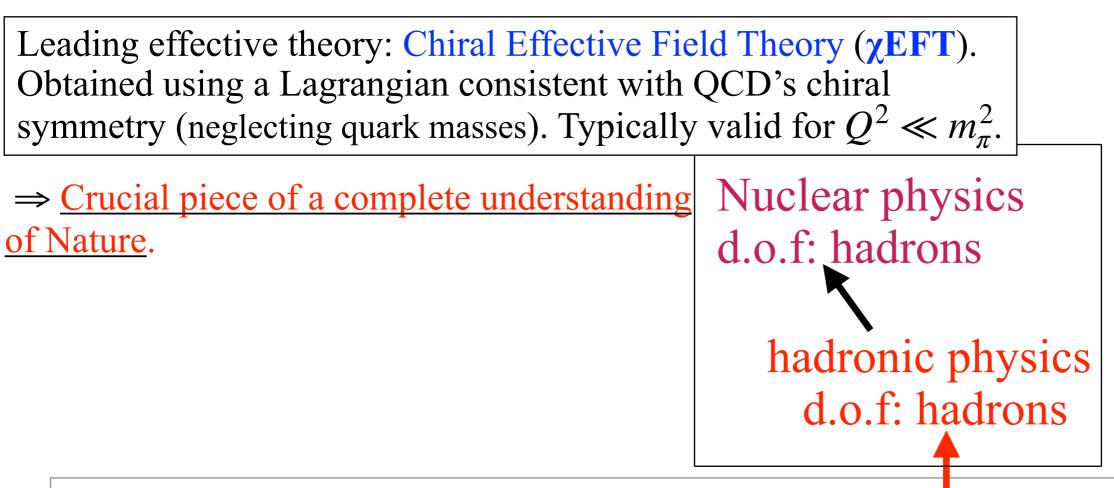
Psychology

hadronic physics d.o.f: hadrons

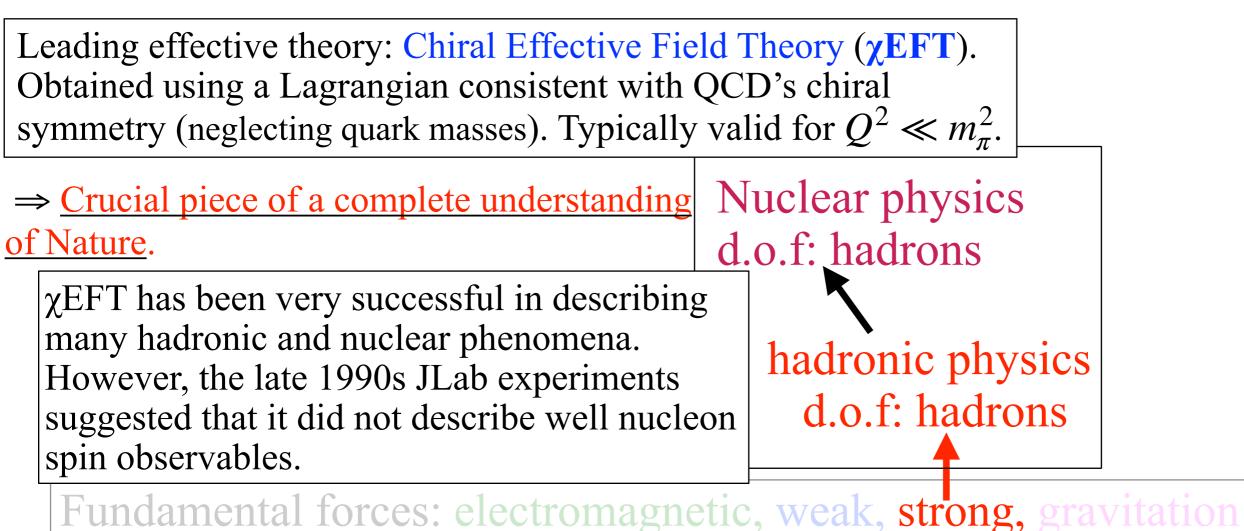
Fundamental forces: electromagnetic, weak, strong, gravitation Fundamental particles: quarks, electrons, neutrinos...



Fundamental particles: quarks, electrons, neutrinos...



Fundamental forces: electromagnetic, weak, strong, gravitation Fundamental particles: quarks, electrons, neutrinos...

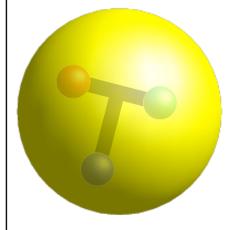


Fundamental particles: quarks, electrons, neutrinos...

Nuclear physics d.o.f: hadrons

> hadronic physics d.o.f: hadrons

d.o.f: hadrons



Emerging quantities that characterize the nucleon: charge, mass, anomalous magnetic moment, generalized spin polarizabilities...

Some hadronic quantities can be measured directly: charge, mass, (anomalous) magnetic moment...

Others cannot: e.g. generalized spin polarizabilities. To access them, we used **sum rules**.

Sum rule: relation (rule) between a static property of the target and an integral (sum) over a dynamical quantity

Some hadronic quantities can be measured directly: charge, mass, (anomalous) magnetic moment...

Others cannot: e.g. generalized spin polarizabilities. To access them, we used sum rules.

Sum rule: relation (rule) between a static property of the target and an integral (sum) over a dynamical quantity

Ex:

Bjorken sum rule (most famous QCD spin sum rule). Derived for infinite Q^2 :

 $\int_{0}^{1} g_{1}^{p} - g_{1}^{n} dx = \frac{1}{6} g_{a}^{\rho}$ Axial charge $\int_{0}^{1} g_{1}^{p} - g_{1}^{n} dx = \frac{1}{6} g_{a}^{\rho}$ (The axial charge is best measured directly, in β -decay, so this sum rule* is used to test QCD) Neutron spin structure function Proton spin structure function

*or rather its generalization to finite Q^2

Spin polarizabilities sum rules:

Generalized forward spin polarizability: $\gamma_{0} = \frac{4e^{2}M^{2}}{\pi Q^{6}} \int_{0}^{1} x^{2} (g_{1} - \frac{4M^{2}}{Q^{2}} x^{2}g_{2}) dx$ Longitudinal-Transverse polarizability: $\delta_{LT} = \frac{4e^{2}M^{2}}{\pi Q^{6}} \int_{0}^{1} x^{2} (g_{1} + g_{2}) dx$

We do not know how to experimentally access γ_0 and δ_{LT} directly, so sum rules are used to measure them.

What are spin polarizabilities?

Polarizabilities encode the 2^{nd} order reaction of a body subjected to a (bona-fide, i.e. $Q^2 = 0$) electromagnetic field.

The full reaction is described by two Compton scattering amplitudes, f_1 (spin-independent) and f_2 (spin-dependent).

At low photon energy v, one can expand them in powers of v:

Spin-independent
$$\rightarrow f_1(\nu) = -\frac{\alpha}{M} + \cdots$$

Spin-dependent $\rightarrow f_2(\nu) = -\frac{\alpha \kappa^2}{2M^2}\nu + \cdots$
Purely elastic
reaction
(rigid object)

What are spin polarizabilities?

Polarizabilities encode the 2^{nd} order reaction of a body subjected to a (bona-fide, i.e. $Q^2 = 0$) electromagnetic field.

The full reaction is described by two Compton scattering amplitudes, f_1 (spin-independent) and f_2 (spin-dependent).

At low photon energy v, one can expand them in powers of v:

Spin-independent
$$\rightarrow f_1(\nu) = -\frac{\alpha}{M} + (\alpha_E + \beta_M)\nu^2 + \mathcal{O}(\nu^4) \leftarrow \text{Polarizabilities}$$

Spin-dependent $\rightarrow f_2(\nu) = -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) \leftarrow \text{Spin-polarizabilities}$
Reaction with deformation (internal rearrangement)

What are spin polarizabilities?

Polarizabilities encode the 2^{nd} order reaction of a body subjected to a (bona-fide, i.e. $Q^2 = 0$) electromagnetic field.

The full reaction is described by two Compton scattering amplitudes, f_1 (spin-independent) and f_2 (spin-dependent).

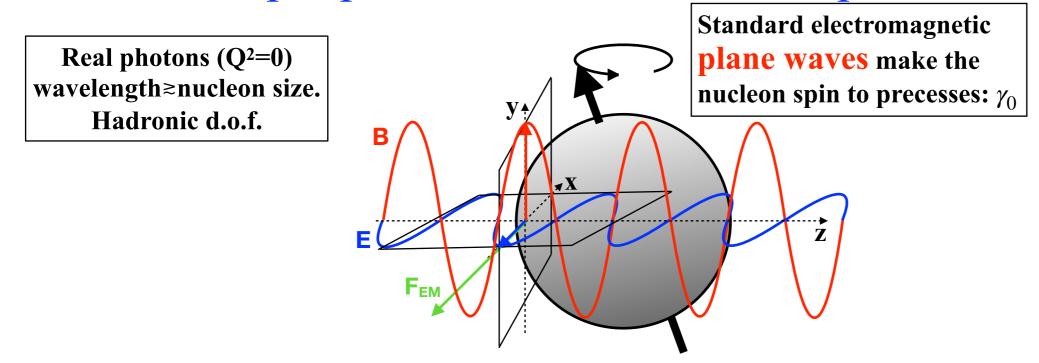
At low photon energy v, one can expand them in powers of v:

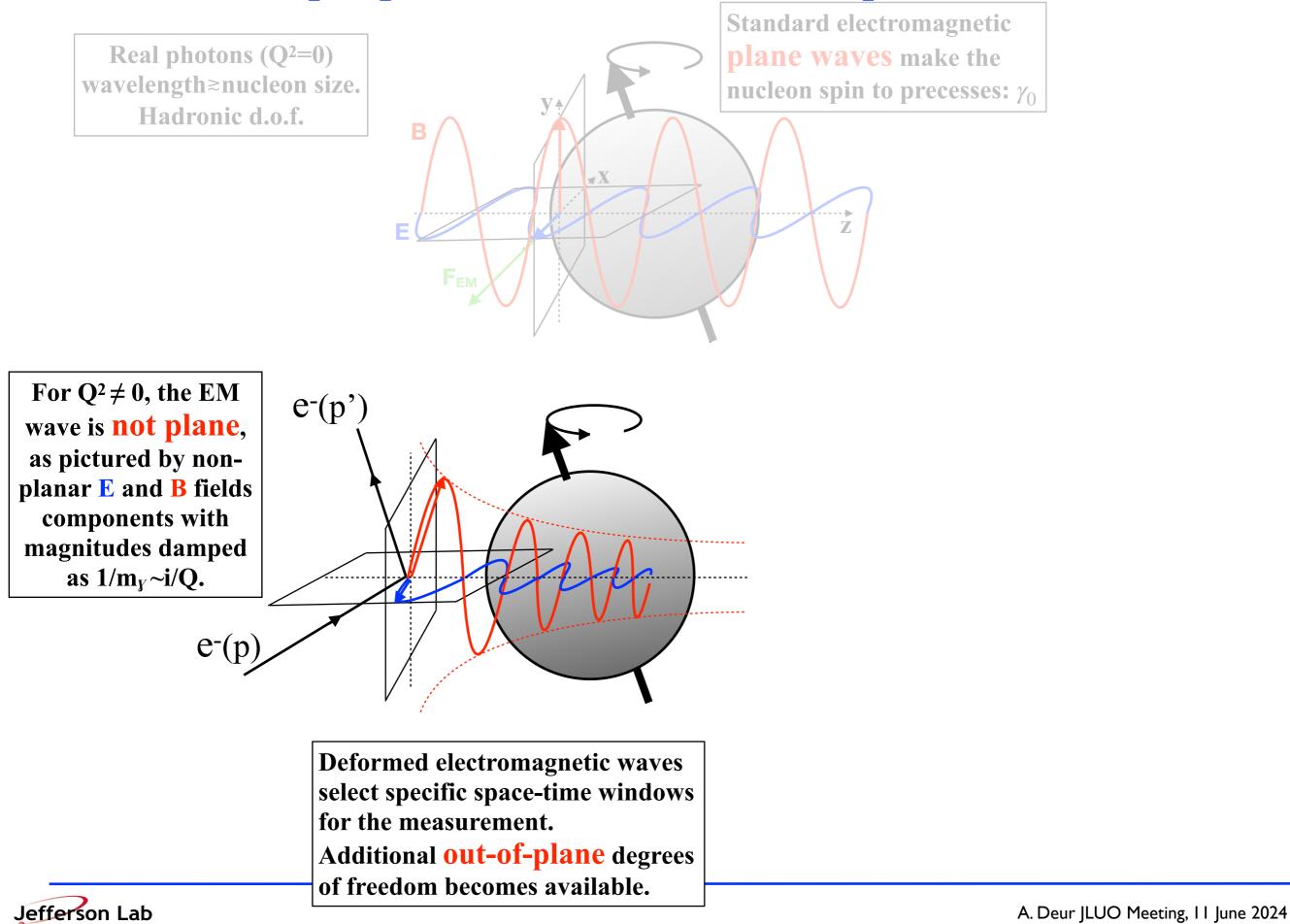
Spin-independent
$$\rightarrow f_1(\nu) = -\frac{\alpha}{M} + (\alpha_E + \beta_M)\nu^2 + \mathcal{O}(\nu^4) \leftarrow \text{Polarizabilities}$$

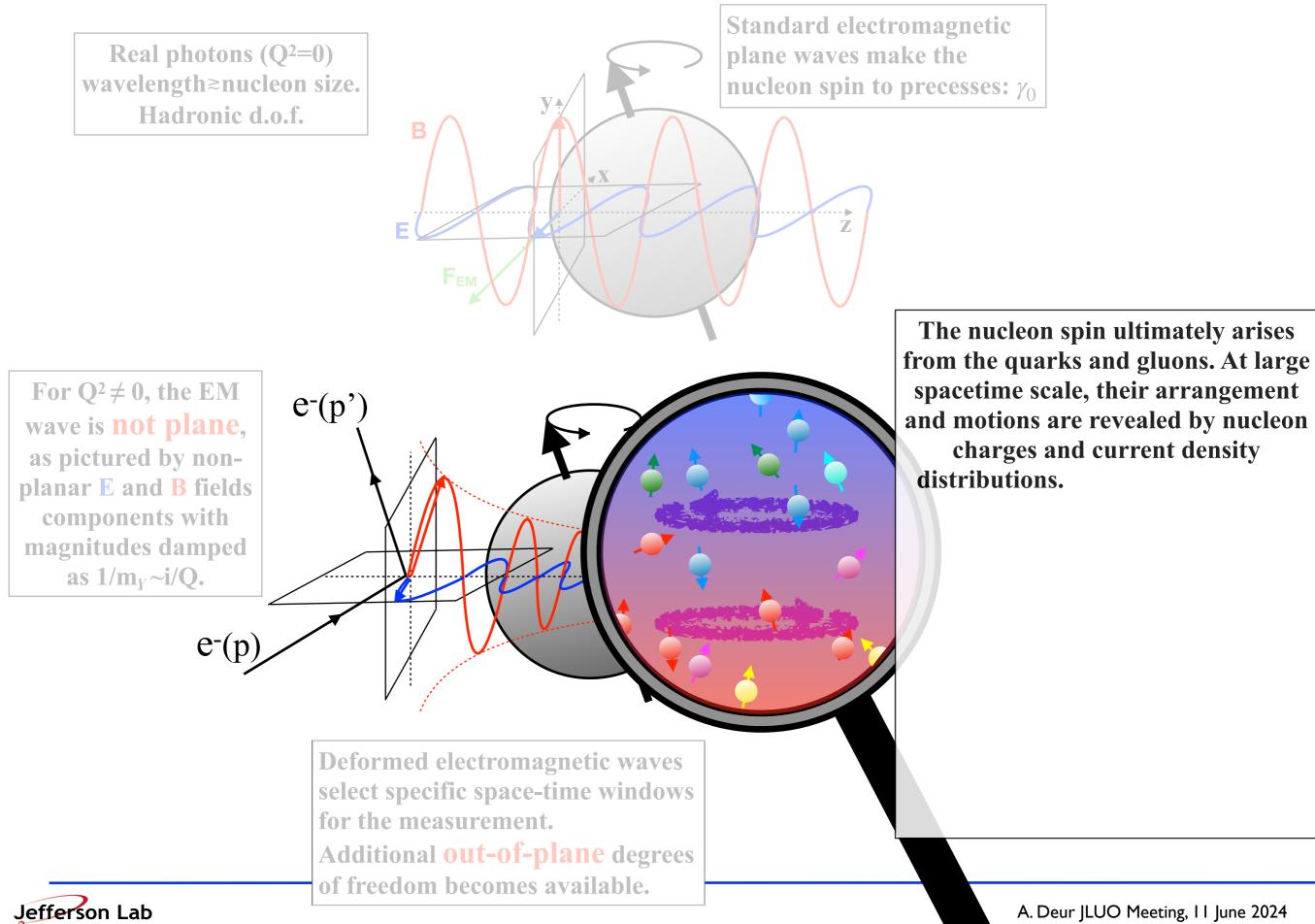
Spin-dependent $\rightarrow f_2(\nu) = -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) \leftarrow \text{Spin-polarizabilities}$
Reaction with deformation (internal rearrangement)

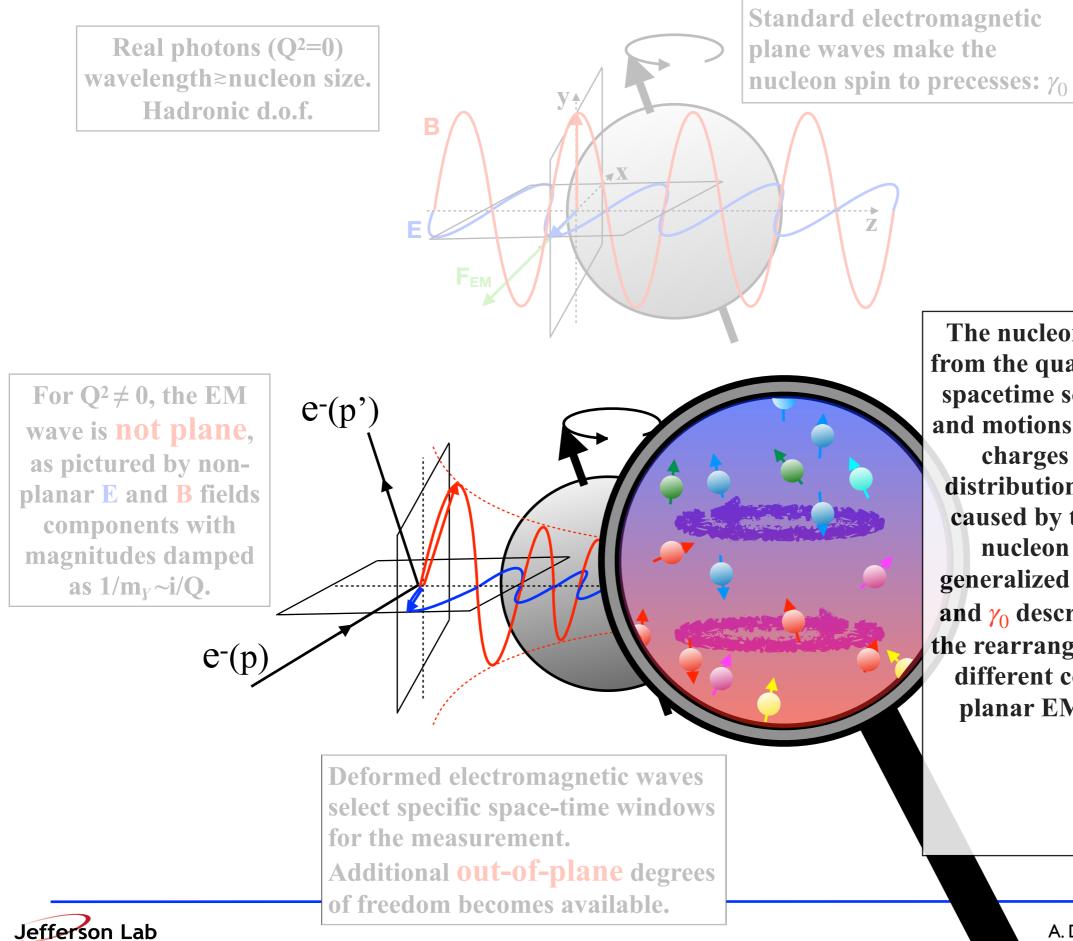
If $Q^2 \neq 0$, the virtual photon has a longitudinal spin component, and δ_{LT} appears (*LT* stands for Longitudinal-Transverse interference term).

Jefferson Lab

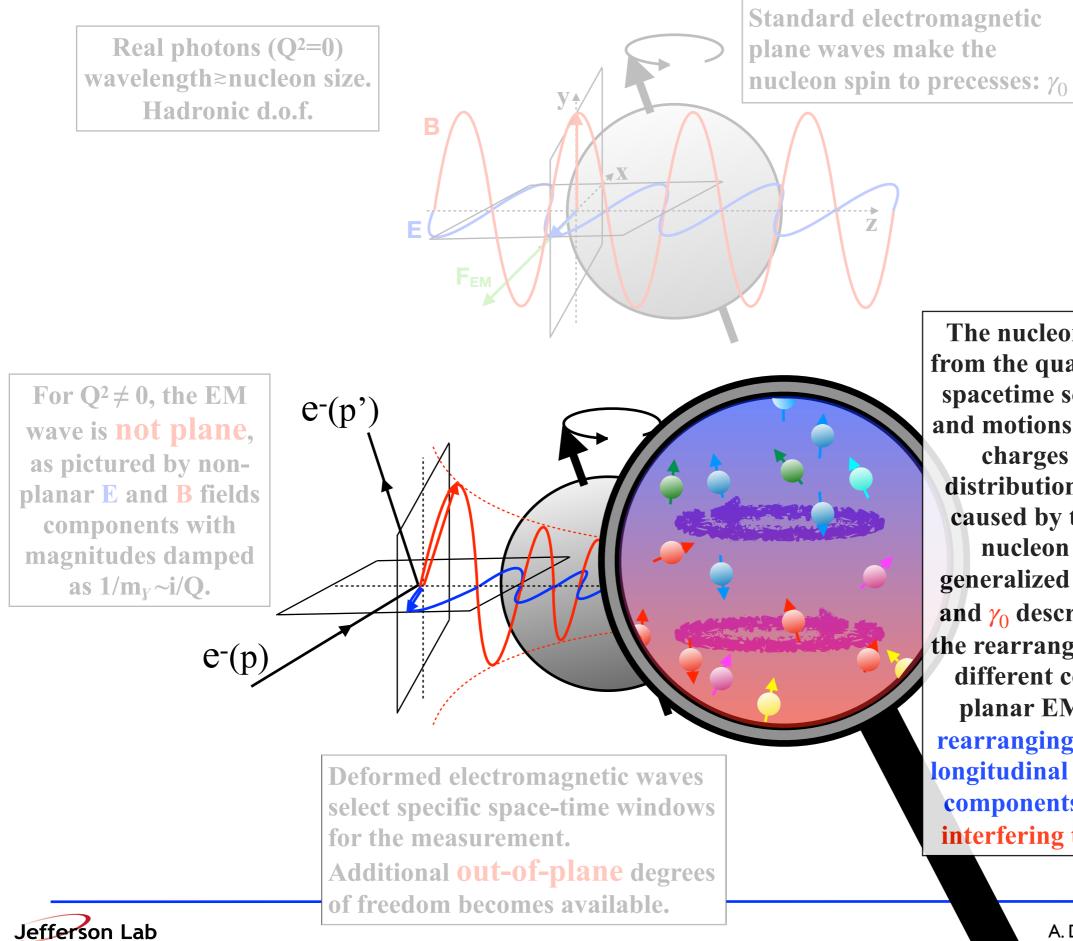








The nucleon spin ultimately arises from the quarks and gluons. At large spacetime scale, their arrangement and motions are revealed by nucleon charges and current density distributions. The rearrangements caused by the EM wave make the nucleon spin to precess. The generalized spin polarizabilities δ_{LT} and γ_0 describe the consequences of the rearrangements coming from the different components of the nonplanar EM field



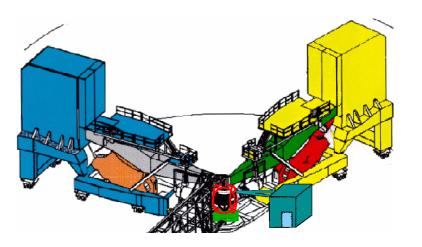
The nucleon spin ultimately arises from the quarks and gluons. At large spacetime scale, their arrangement and motions are revealed by nucleon charges and current density distributions. The rearrangements caused by the EM wave make the nucleon spin to precess. The generalized spin polarizabilities δ_{LT} and γ_0 describe the consequences of the rearrangements coming from the different components of the nonplanar EM field: δ_{LT} reveals the rearranging effect of the interfering longitudinal and transverse EM field components, and γ_0 the effect of its interfering transverse components.

Results on measurements of spin polarizabilities

Study of the spin structure of the neutron and proton at low Q^2

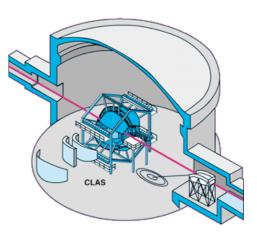
E97-110 (neutron, using longitudinally and transversally polarized ³He): Spokespeople: J.P. Chen, A.D., F. Garibaldi

E08-027 (NH₃, longitudinally and transversally polarized): Spokespeople: A. Camsonne, J.P. Chen, D. Crabb, **K. Slifer** JLab Hall A:



E03-006 (NH₃, longitudinally polarized):
Spokespeople: M. Ripani, M. Battaglieri, A.D., R. de Vita
E06-017 (ND₃, longitudinally polarized):
Spokespeople: A.D., G. Dodge, M. Ripani, K. Slifer

JLab Hall B:

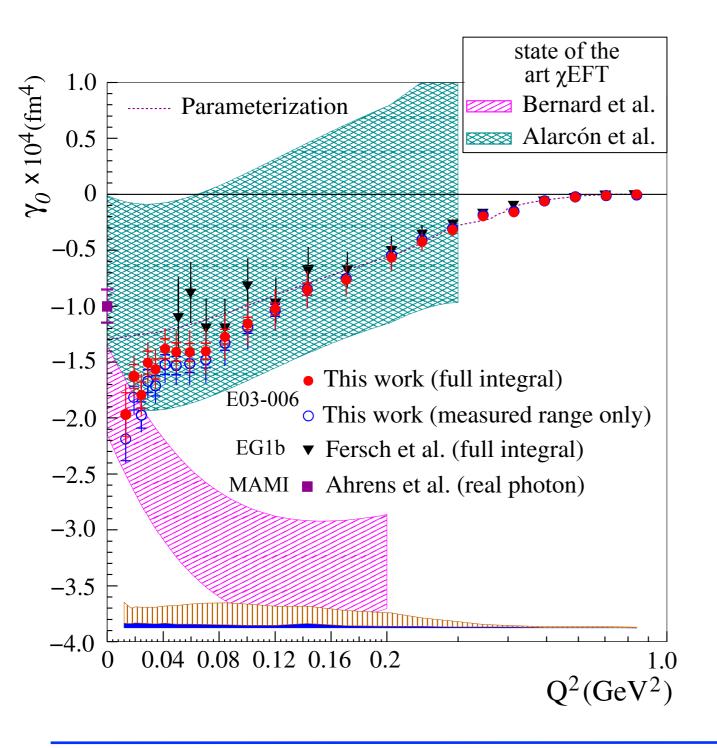


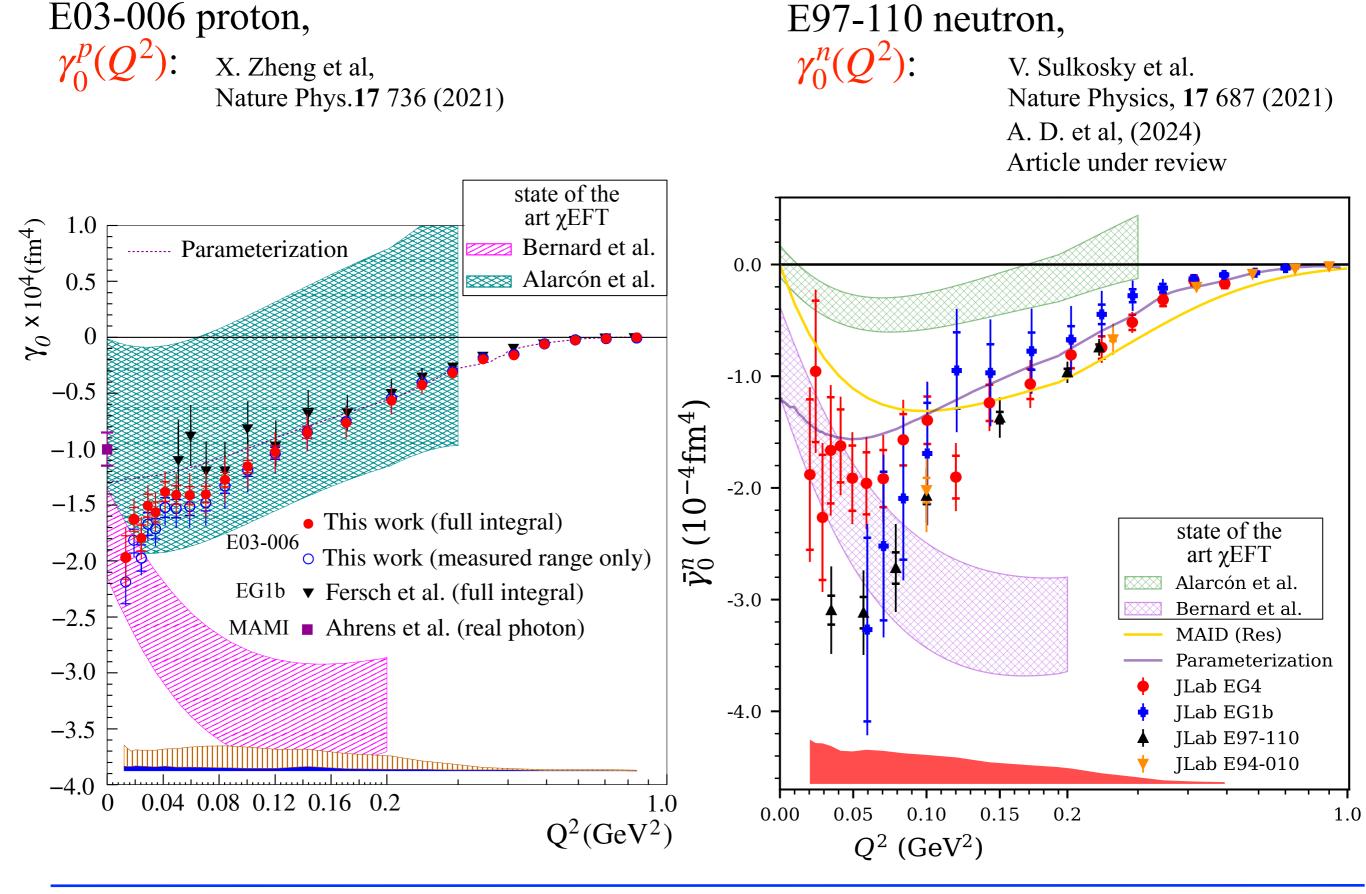
Low Q² + covering large v range so that sum rule's integrals can be formed \Rightarrow forward angles First nucleon spin structure JLab data reaching well into the χ EFT applicability domain.

E03-006 proton,

 $\gamma_0^p(Q^2)$:

X. Zheng et al, Nature Phys.**17** 736 (2021)

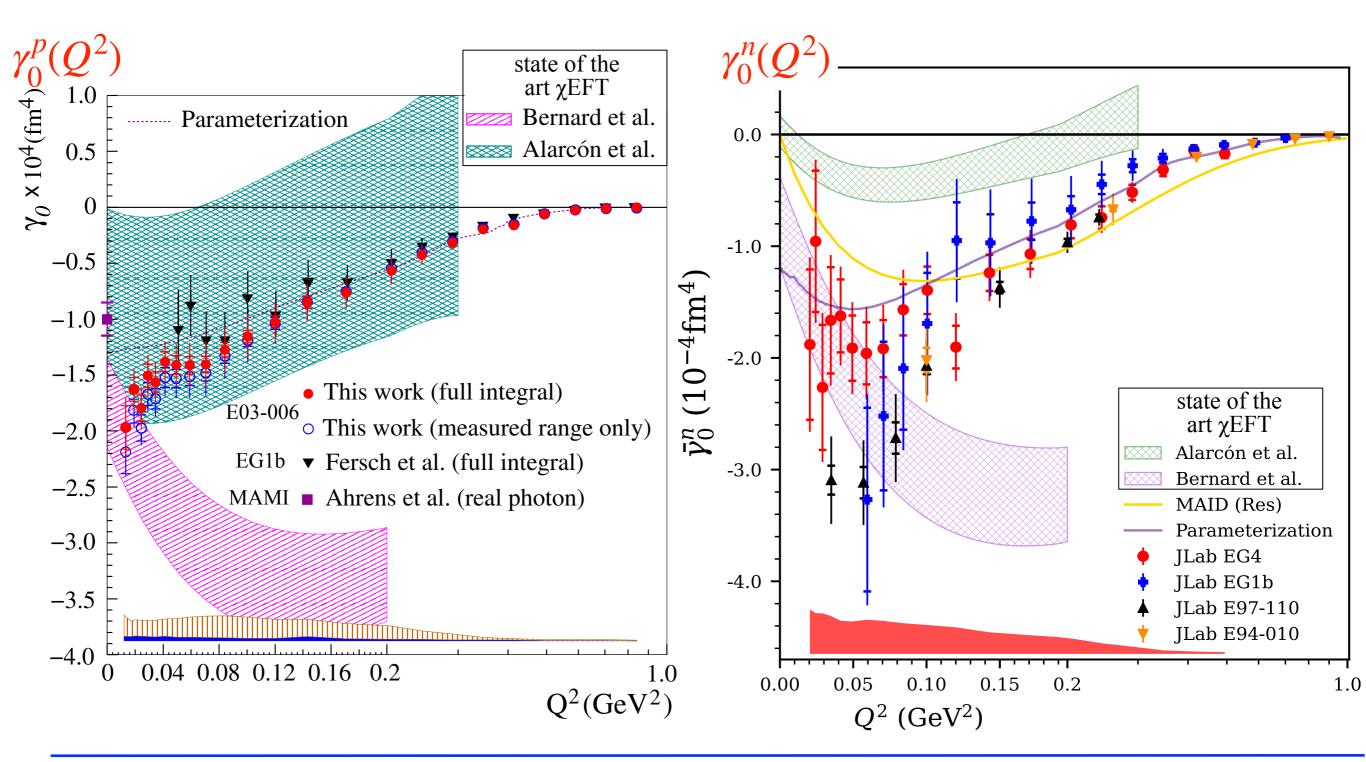




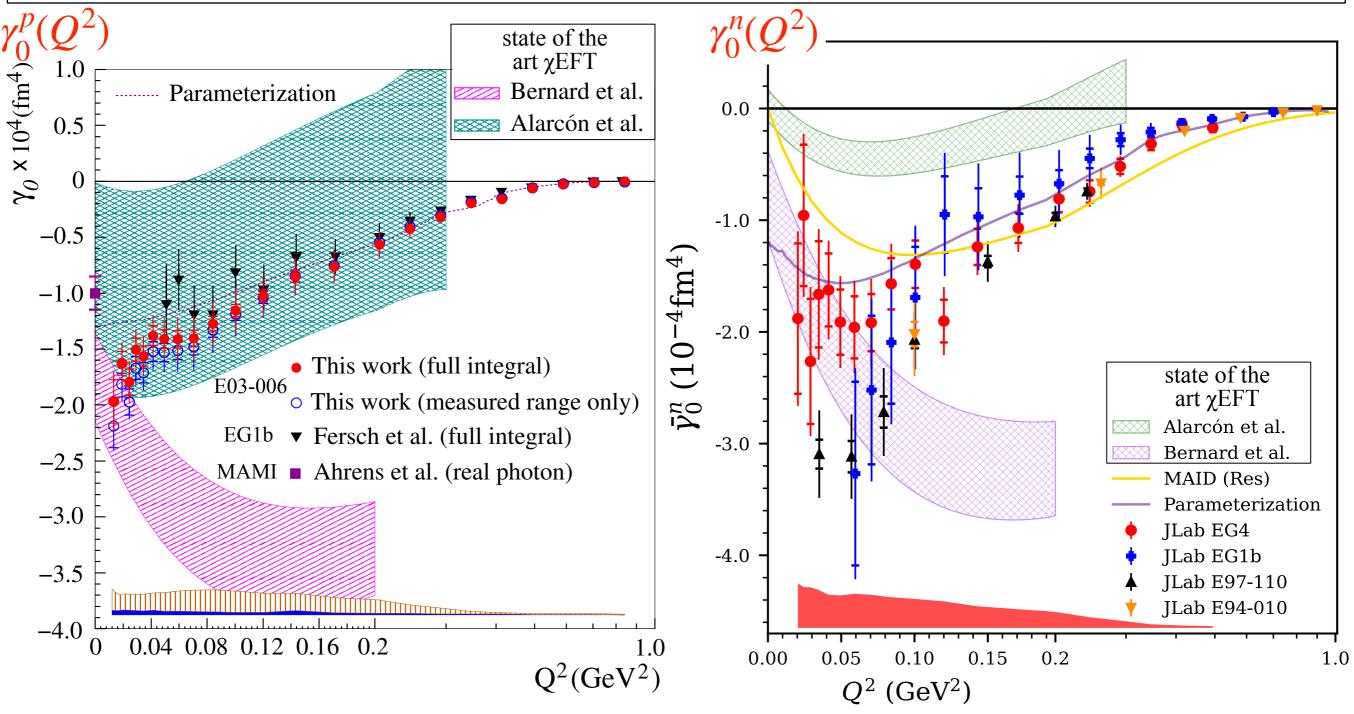
•New data agree with previous data at larger Q^2 (E94-010/EG1b).

•χEFT calculation of Alarcón et al agrees with data for proton, but large uncertainty, and disagree for neutron.

•Bernard et al. χ EFT result agrees for lowest Q^2 points. Proton: large slope at low Q^2 supported by the MAMI+EG4 data



Interpretation from effective theory (hadronic d.o.f freedom): γ_0 is mostly the difference between contributions from the Δ resonance (negative) and from the nucleon's pion cloud (positive). At $Q^2 = 0$, the Δ dominates. As the spacetime resolution becomes finer (larger Q^2) the contribution from to the (extended) pion cloud becomes even smaller. At larger Q^2 , γ_0 vanishes since it is a global property of the nucleon.



 $\delta_{LT}(Q^2)$:

- Δ resonance contribution suppressed: Expect to be a robust χEFT prediction (Δ d.o.f difficult to include in χEFT calculations);
- Higher moment: Expect to be a robust moment measurement (essentially no unmeasured low-*x* issue).

⇒ The disagreement between $\delta_{LT}^n(Q^2)$ data from earlier experiment (E94-010) and χ EFT was particularly surprising: " δ_{LT} puzzle".

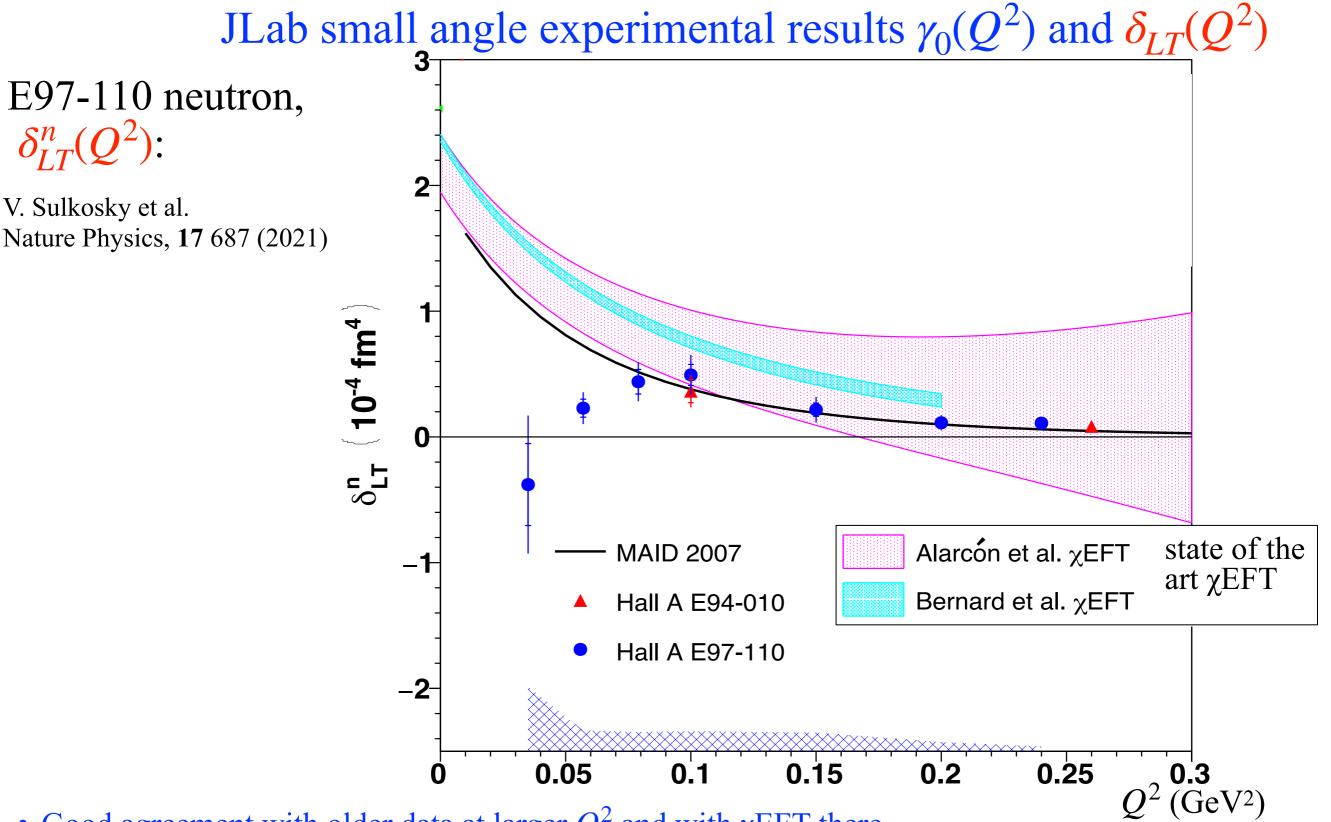
E08-027 proton, g2p data $\delta^p_{LT}(Q^2)$: 2.0 Hall B model MAID model D. Ruth, et al, Ref. Bernard et al. Nat. Phys.18 1441 (2022) Ref. Alarcón et al. 1.5 state of the art xEFT δ_{LT} (10⁻⁴ fm⁴) 1.0 0.5 0.12 • First measurement of δ^p_{IT} 0.02 0.06 0.08 0.10 0.14 0.16 0.04

• Agree with χEFT (Bernard et al).

• Agree with other state-of the χ EFT (Alarcón et al) for relative Q^2 -behavior, but not absolute value.

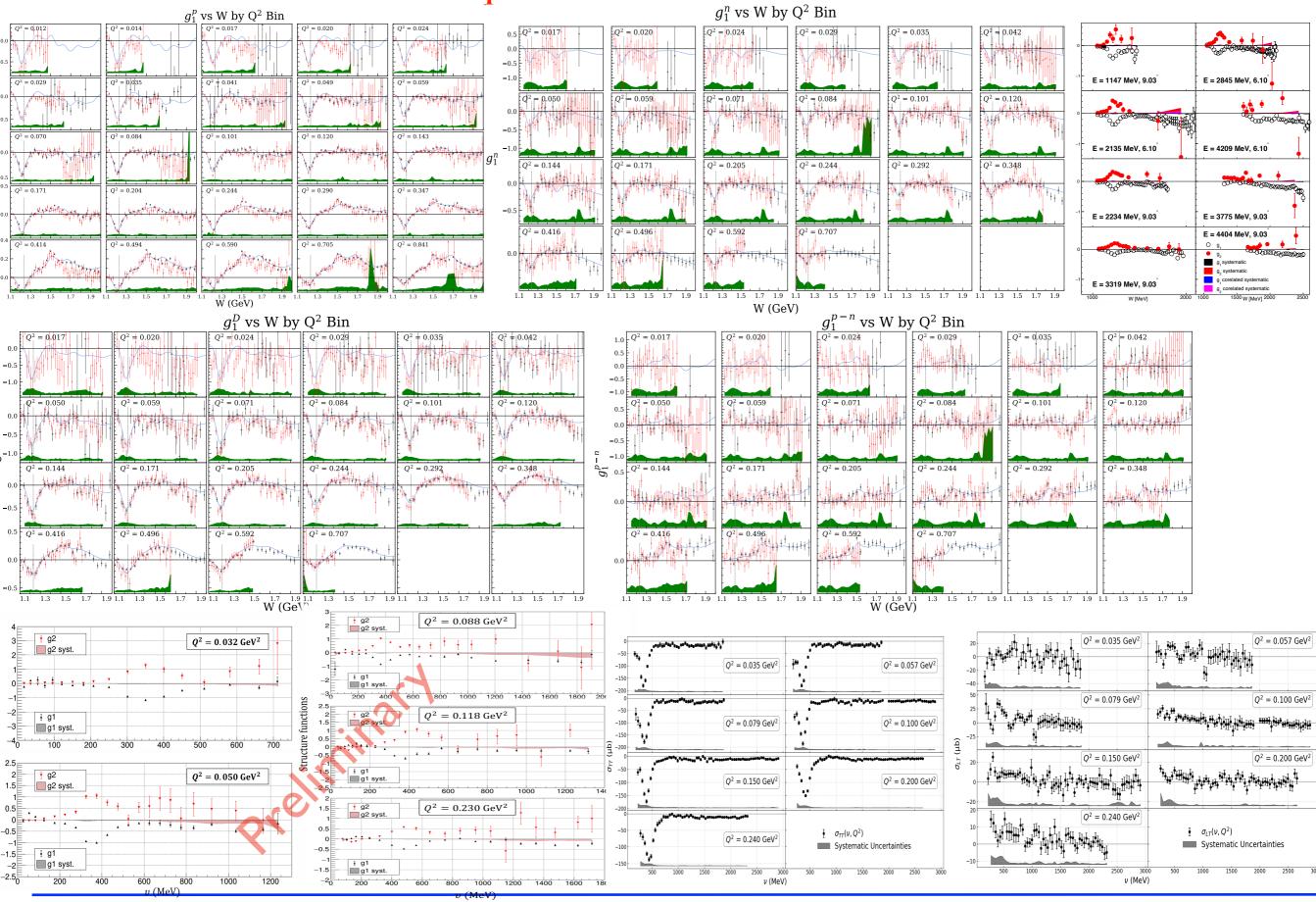
• " $\delta_{LT}(Q^2)$ puzzle" solved?

Jefferson Lab



- Good agreement with older data at larger Q^2 and with χEFT there.
- Disagreement with χ EFT at lower Q^2 , although first moment $\int [g_1 + g_2] dx$ agrees with Schwinger sum rule, see back-up slides.
- \Rightarrow " $\delta_{LT}^n(Q^2)$ puzzle" still remains.

Lots more data on spin structure functions and their moments



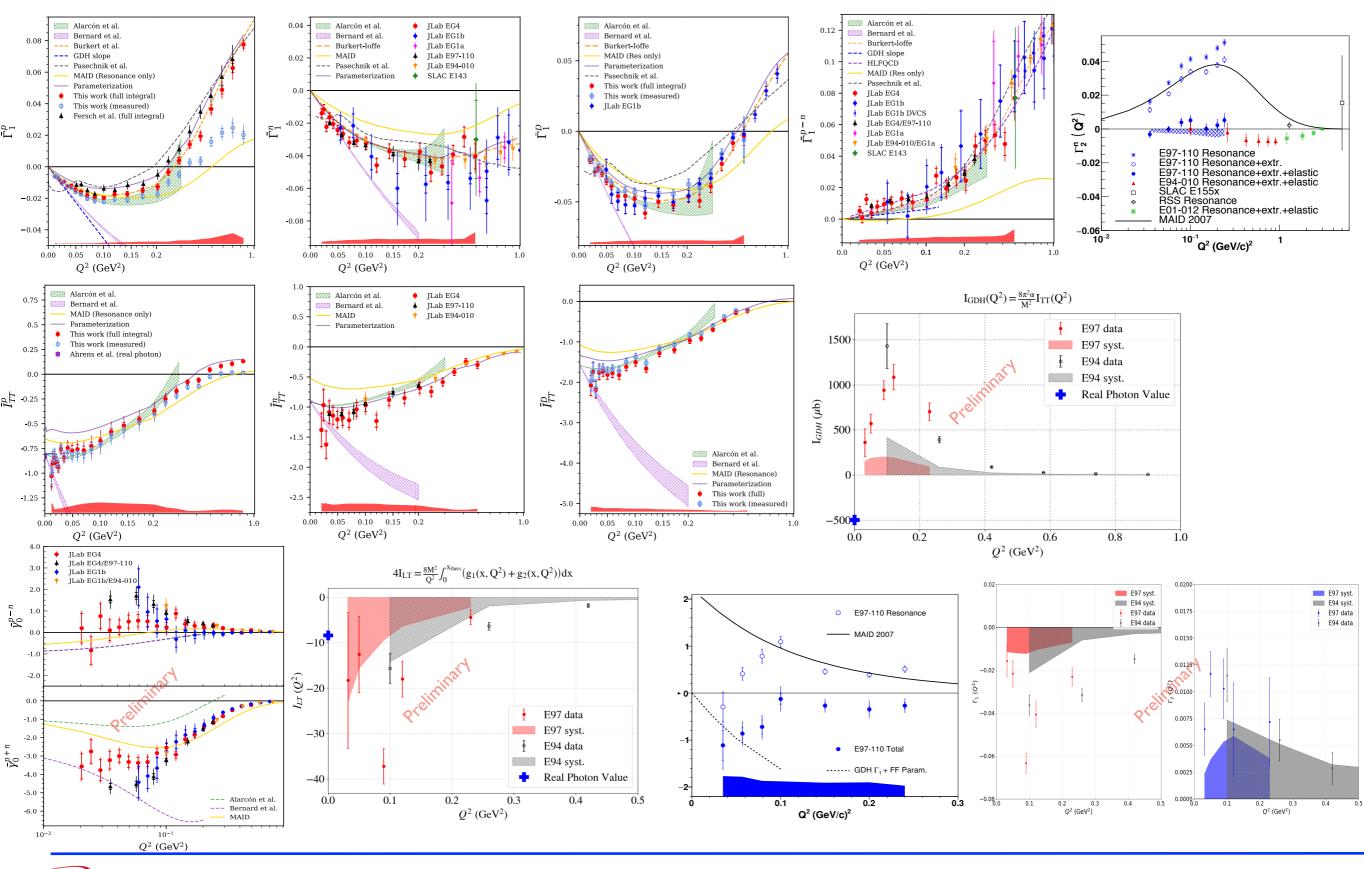
Jefferson Lab

 g_1^L

Struct

A. Deur JLUO Meeting, 11 June 2024

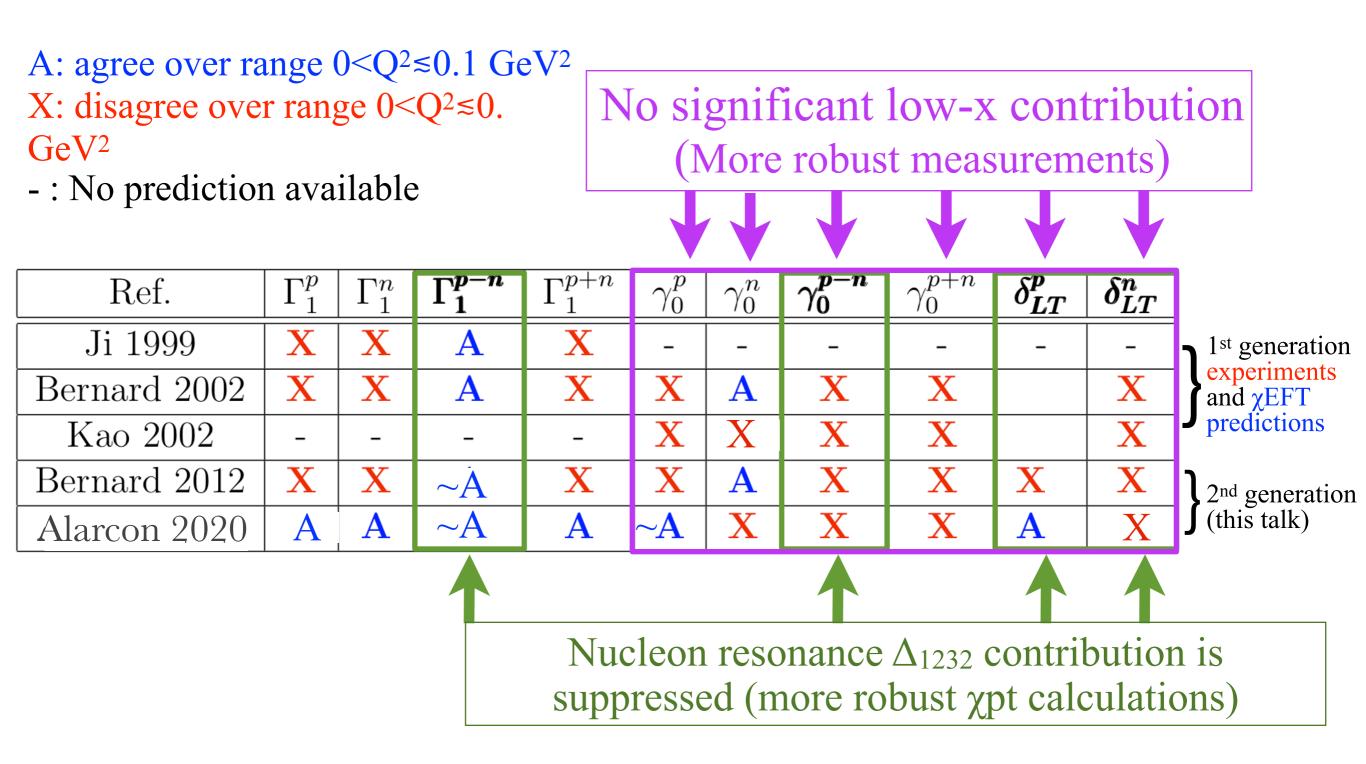
Lots more data on spin structure functions and their moments



Jefferson Lab

A. Deur JLUO Meeting, 11 June 2024

Extensive test of χEFT with spin degrees of freedoms



Extensive test of χEFT with spin degrees of freedoms

A: agree over range $0 < Q^2 \le 0.1 \text{ GeV}^2$ X: disagree over range $0 < Q^2 \le 0$. GeV²

- : No prediction available

Ref.	Γ_1^p	Γ_1^n	Γ_1^{p-n}	Γ_1^{p+n}	γ_0^p	γ_0^n	γ_0^{p-n}	γ_0^{p+n}	δ^p_{LT}	δ^n_{LT}
Ji 1999	X	X	Α	Χ	-	-	-	-	-	-
Bernard 2002	X	X	Α	Χ	Χ	Α	X	X		Χ
Kao 2002	-	-	-	-	Χ	Χ	X	X		Χ
Bernard 2012	Χ	Χ	~À	X	Χ	Α	X	X	Χ	X
Alarcon 2020	A	Α	~A	Α	~A	X	X	X	Α	X

Improvement compared to the state of affaires of early 2000s.

Yet, mixed agreement, depending on the observable, despite χ EFT refinements (new expansion scheme, including the Δ_{1232} d.o.f,...) and despite data now being well into the expected validity domain of χ EFT.

Well-controlled χ EFT description of spin observables at large distance remains challenging.

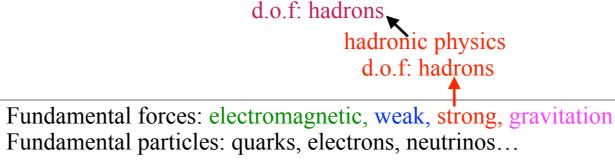
Conclusion

 χ EFT, although successful in many instances, is challenged by results from dedicated (low Q^2 , χ EFT domain) spin experiments.

To be sure, low Q^2 sum rule measurements are challenging (forward angles, low-*x* extrapolation, high-*x* contamination). But the experiments were run independently with very different detectors and methods. \Rightarrow We seem to be verifying James Bjorken's statement:

"Polarization data has often been the graveyard of fashionable theories. If theorists had their way they might well ban such measurements altogether out of self protection."

This is a problem: χEFT is the leading approach to manage the first level of complexity of the strong force.



Back-up slides

χEFT series

Domain of applicability: Q²=0 to somewhere between $m_{\pi}^2 \approx 0.02$ GeV² and $\Lambda_{\chi}^2 \approx 1$ GeV² (the chiral symmetry breaking scale). Depends on the order at which the series is expanded.

Main χ PT expansion (π -N loops): small parameter m_{π}/Λ_{χ} .

Including Δ effects (Δ -N loops): additional expansion parameter(s). Two schemes:

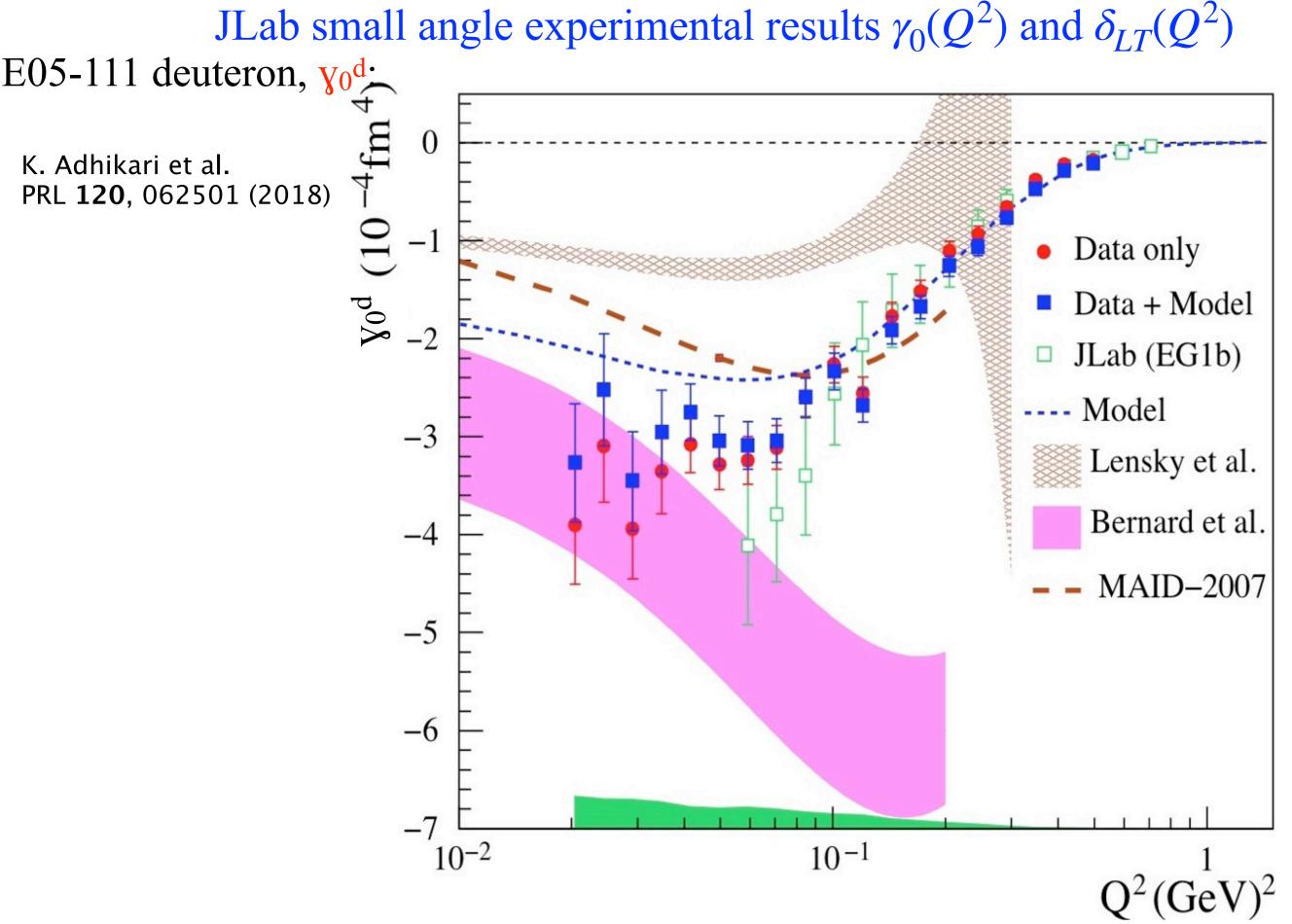
- $\delta_{N\Delta} \equiv M_{\Delta} M_N$ considered to be of same order as m_{π} (Bernard et al)
- $\delta_{N\Delta}$ considered as intermediate scale > m_{π} (Alarcon et al.)
- \Rightarrow various Δ contributions may arise at different order in the two schemes.

At high enough order, the scheme difference should be negligible.

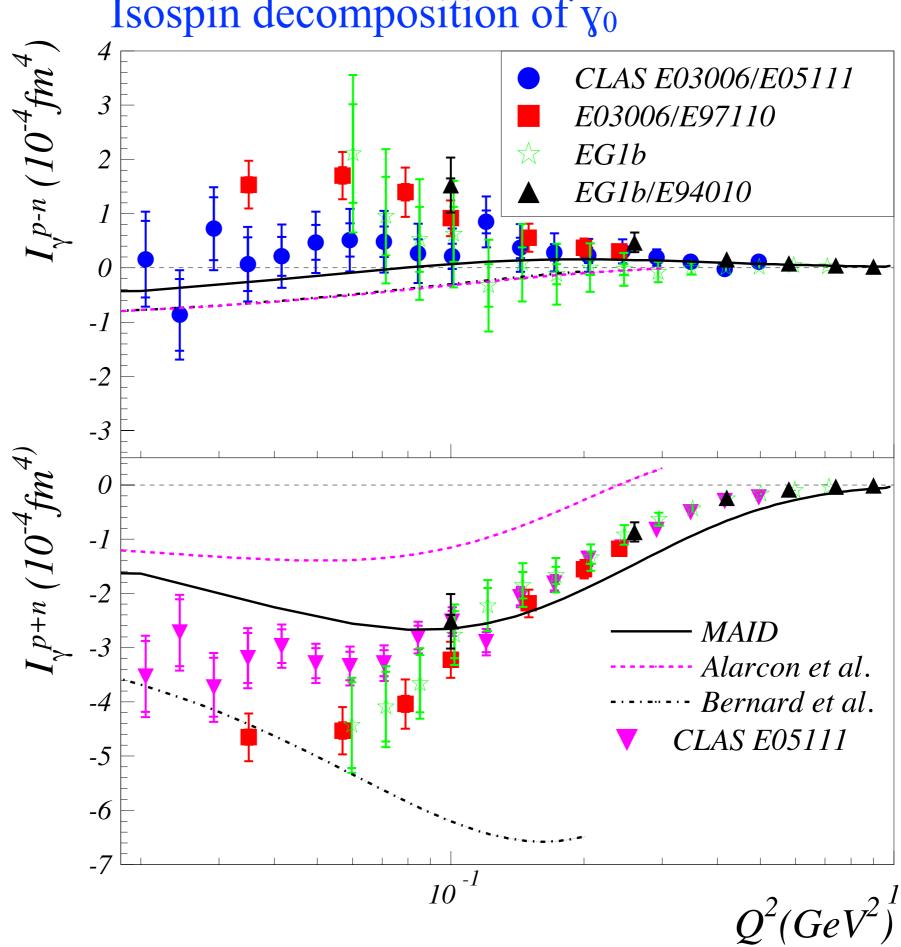
Bigger difference between two state of the art calculations:

Alarcón et al. includes empirical form factors to the relevant couplings to approximate some of the high-order contributions. Accounts for the suppression of γ_0 and δ_{LT} at large Q².

Bernard et al. is a purer calculation, with no such empirical addition, but does not account well for large Q^2 suppression.



A. Deur JLUO Meeting, I I June 2024



Isospin decomposition of y_0

A. Deur JLUO Meeting, 11 June 2024

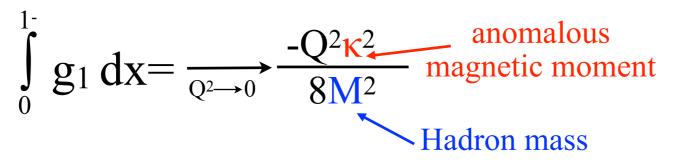
Γ_1 measurements from E97-110 and EG4

 $\Gamma_1 \equiv \int g_1(x,Q^2) dx.$

Bjorken sum rule (most famous QCD spin sum rule). Derived for infinite Q²:

 $\int g_1^p g_1^n dx = \frac{1}{6} g_a$ Axial charge (The axial charge is best measured directly, in β -decay, so this sum rule is used to test QCD)

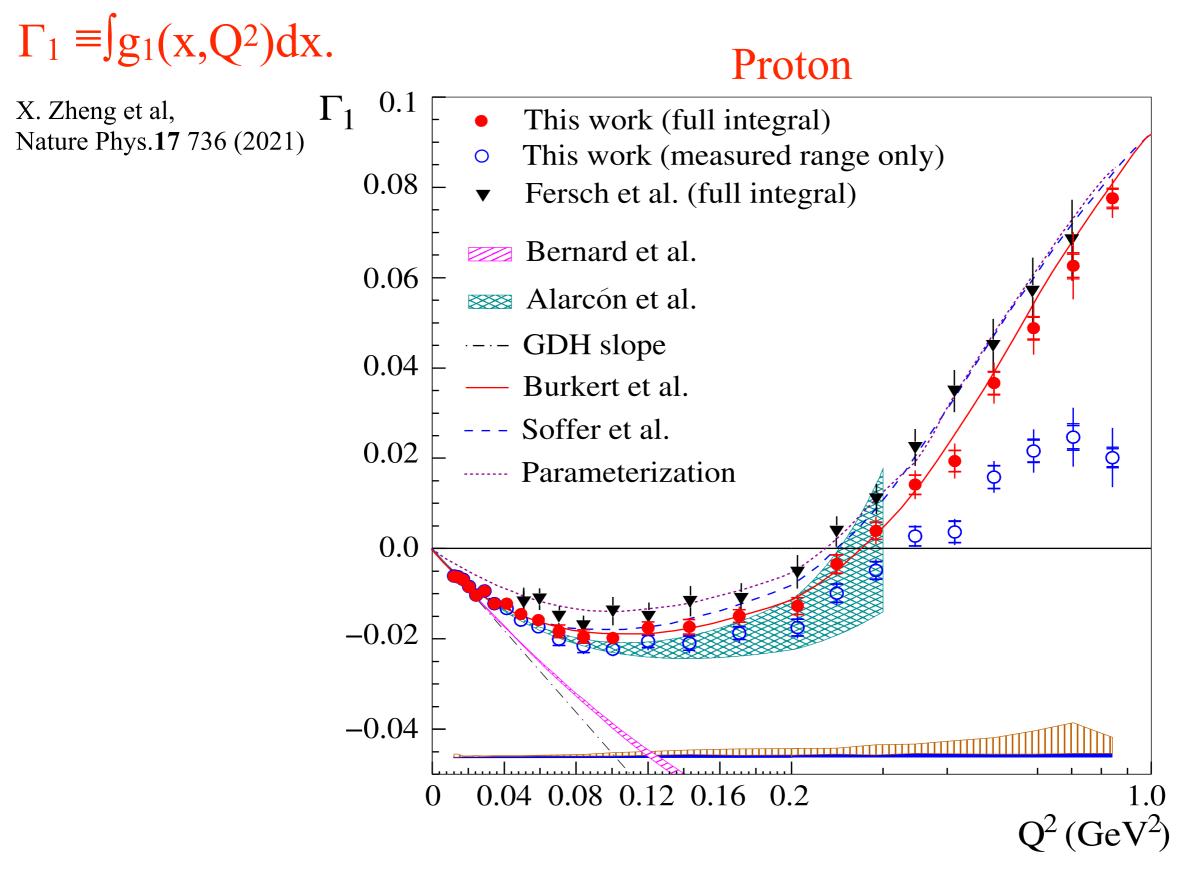
The Gerasimov-Drell-Hearn sum rule:



(The anomalous magnetic moment is best measured directly, so this sum rule is used to study the hadron structure)

Both sum rules can be generalized to finite and non-zero Q².

 Γ_1 measurements from JLab

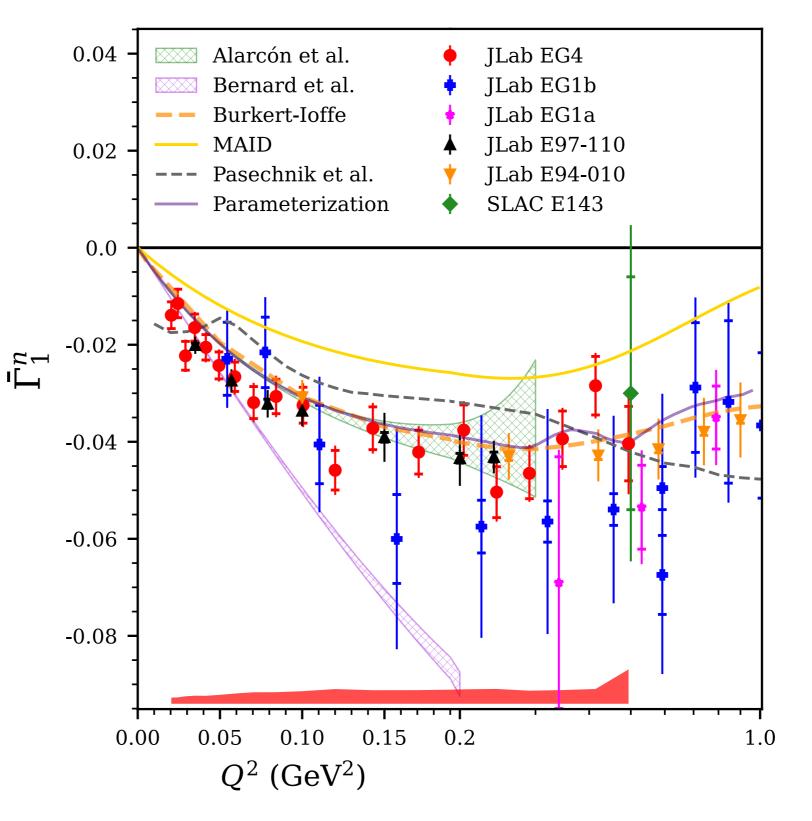


 Γ_1 measurements from JLab

$\Gamma_1 \equiv \int g_1(x,Q^2) dx.$

V. Sulkosky et al. PLB 805 135428 (2020)

A. D. et al, (2024) Article under review



Γ_1 measurements from JLab

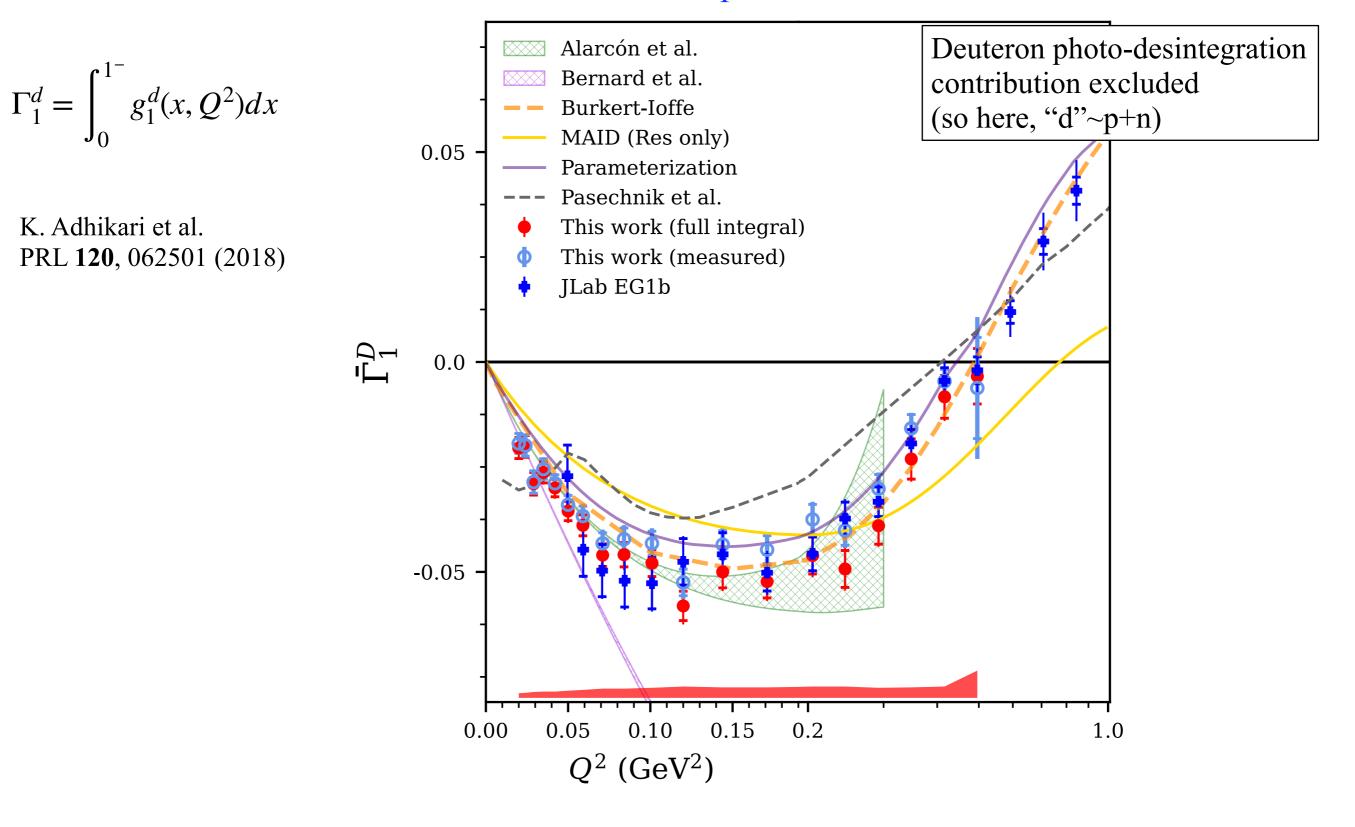
Proton-neutron = Bjorken sum

A.D. et al. PLB 825 136878 (2022)

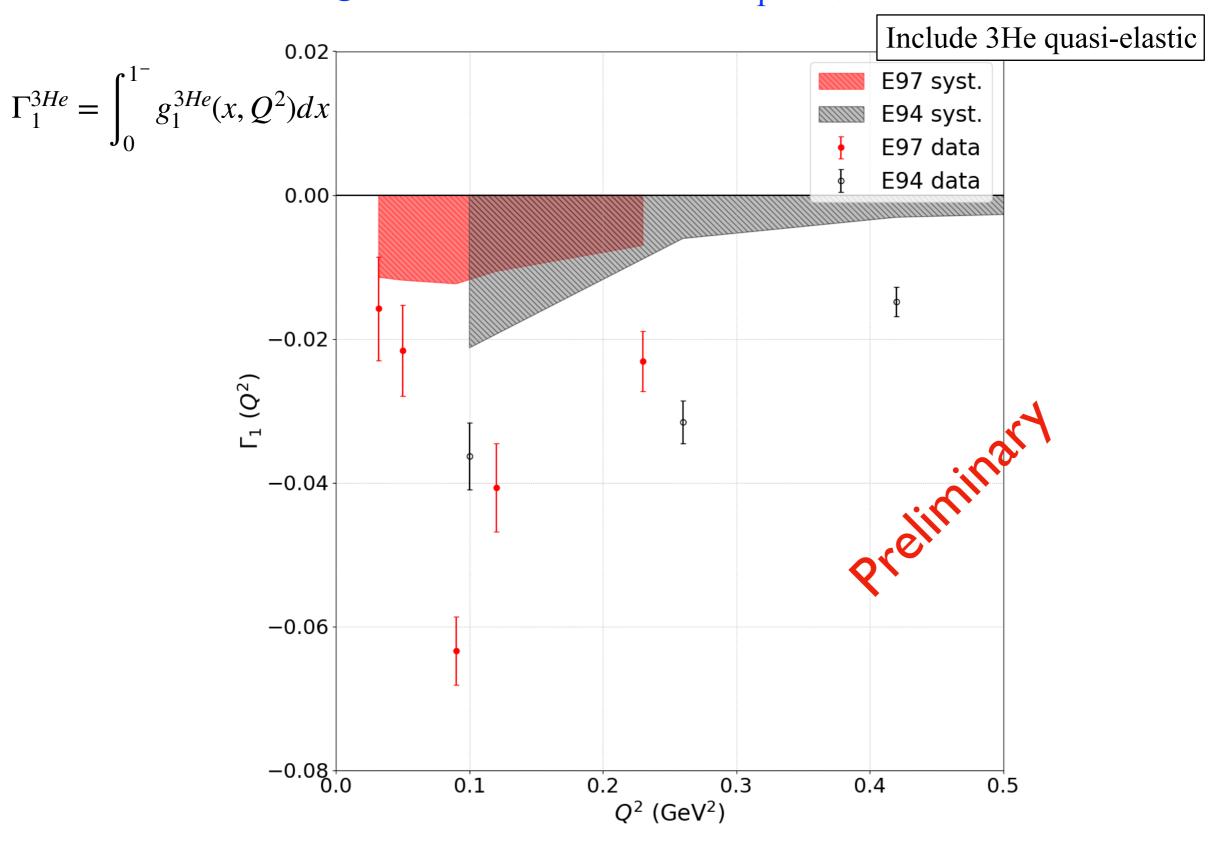
Alarcón et al. 0.12 Bernard et al. Burkert-Ioffe GDH slope 0.1 HLFQCD MAID (Res only) Pasechnik et al. 0.08 JLab EG4 JLab EG1b JLab EG1b DVCS L JLab EG4/E97-110 0.06 Γ_1^p JLab EG1a JLab E94-010/EG1a SLAC E143 0.04 0.02 0.0 0.2 0.05 0.1 0.0 1.0 Q^2 (GeV²)

∆-resonance contribution suppressed for the Bjorken sum

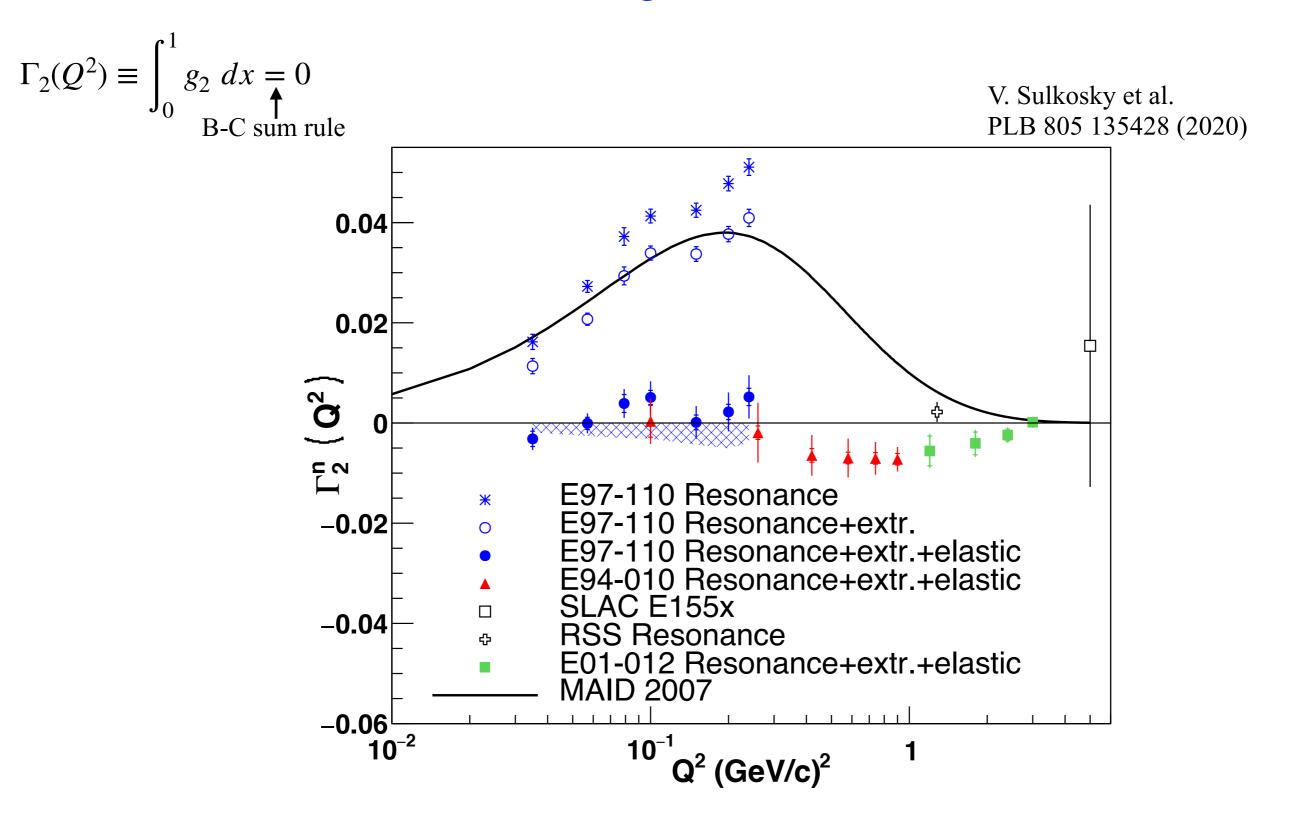
First moments: generalized GDH sum $\Gamma_1^d(Q^2)$ measurement from EG4



First moments: generalized GDH sum $\Gamma_1^{3He}(Q^2)$ from E97-110

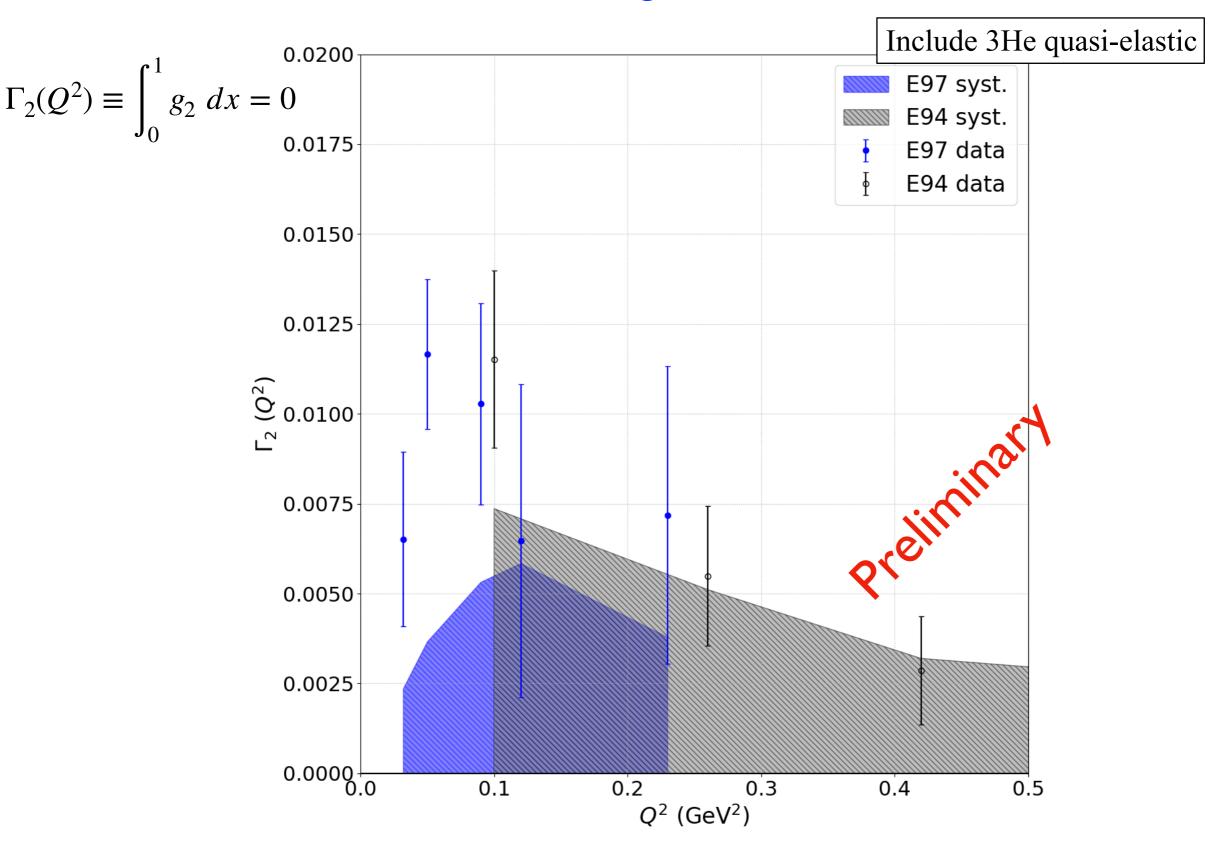


First moments: Burkhardt–Cottingham sum rule on neutron from E97-110

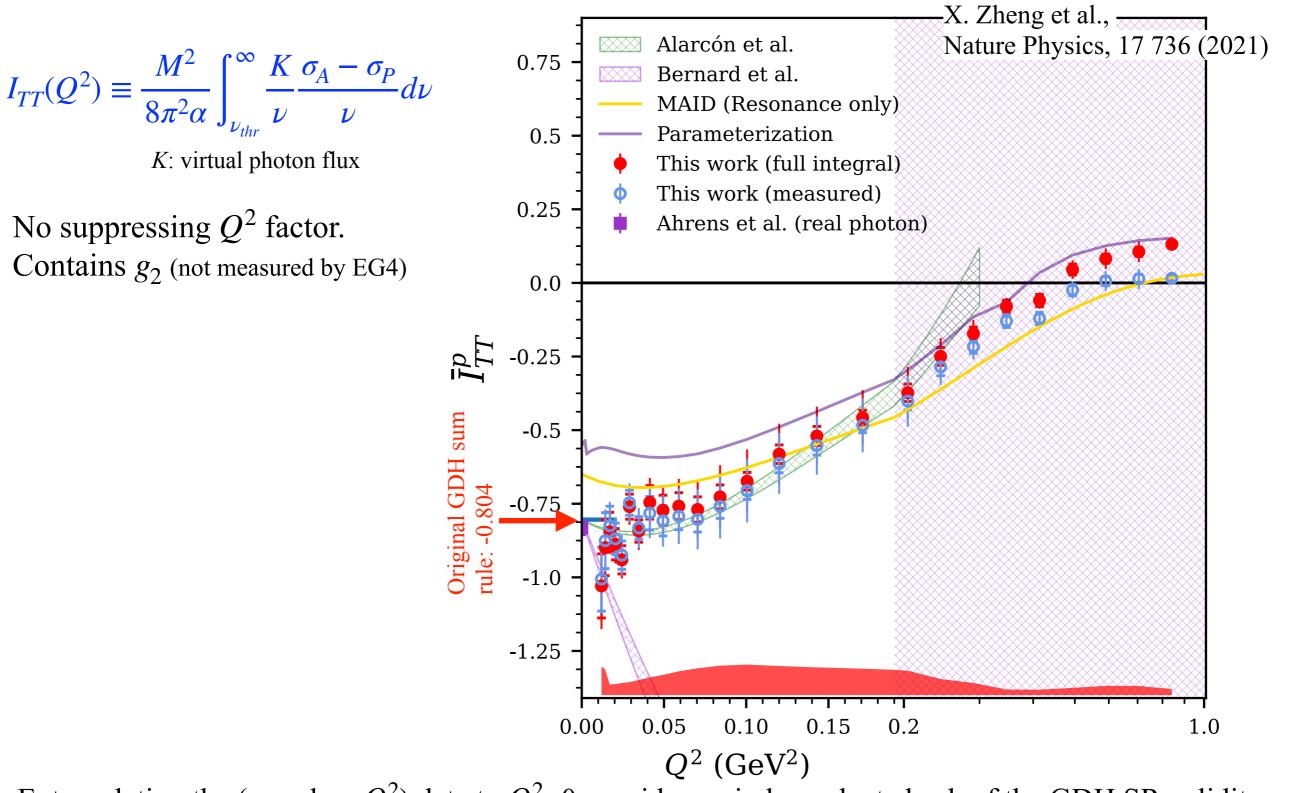


E97-110 verifies the B-C sum rule at low Q². Older experiments at higher Q² also verify it.

First moments: Burkhardt–Cottingham sum rule on ³He from E97-110



Another generalization of GDH sum: $I_{TT}^p(Q^2)$. EG4 Data

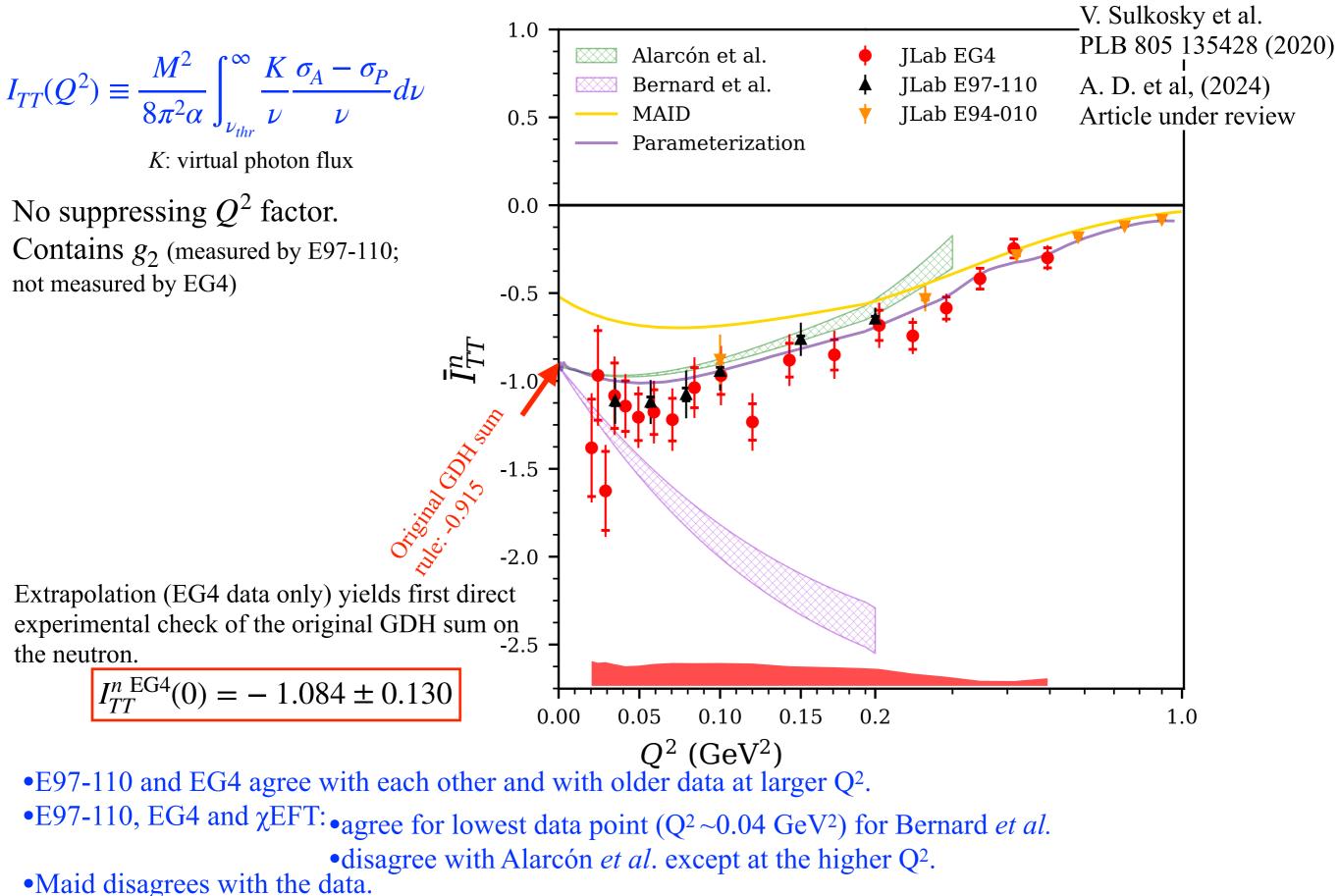


Extrapolating the (very low Q^2) data to $Q^2=0$ provides an independent check of the GDH SR validity, with a different method (inclusive data) than photoproduction experiments (exclusive data).

$$I_{TT}^{p \text{ EG4}}(0) = -0.798 \pm 0.042$$

Agrees with the GDH SR, with precision similar to photoproduction method: $I_{TT}^{p \text{ MAMI}}(0) = -0.832 \pm 0.023(stat) \pm 0.063(syst)$

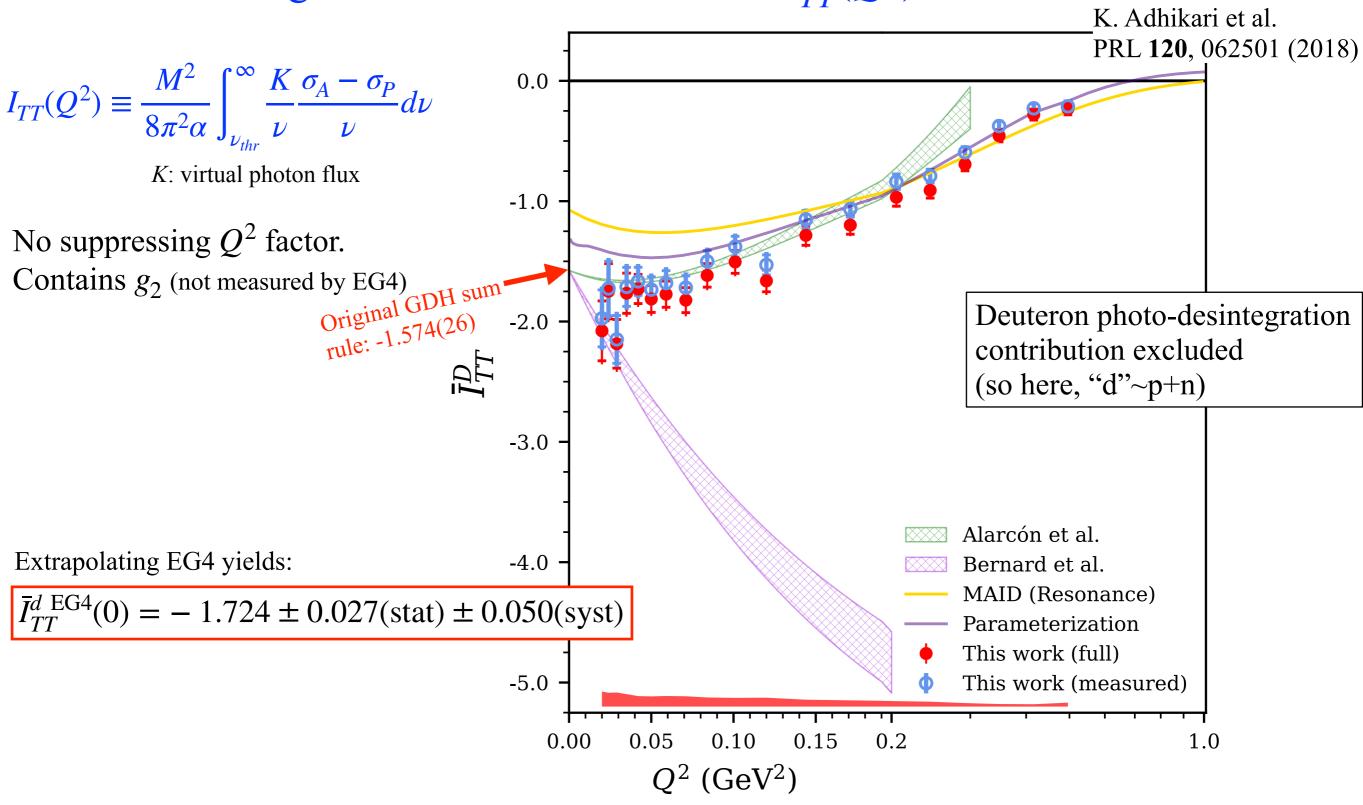
Another generalization of GDH sum: $I_{TT}^n(Q^2)$. E97-110 & EG4 Data



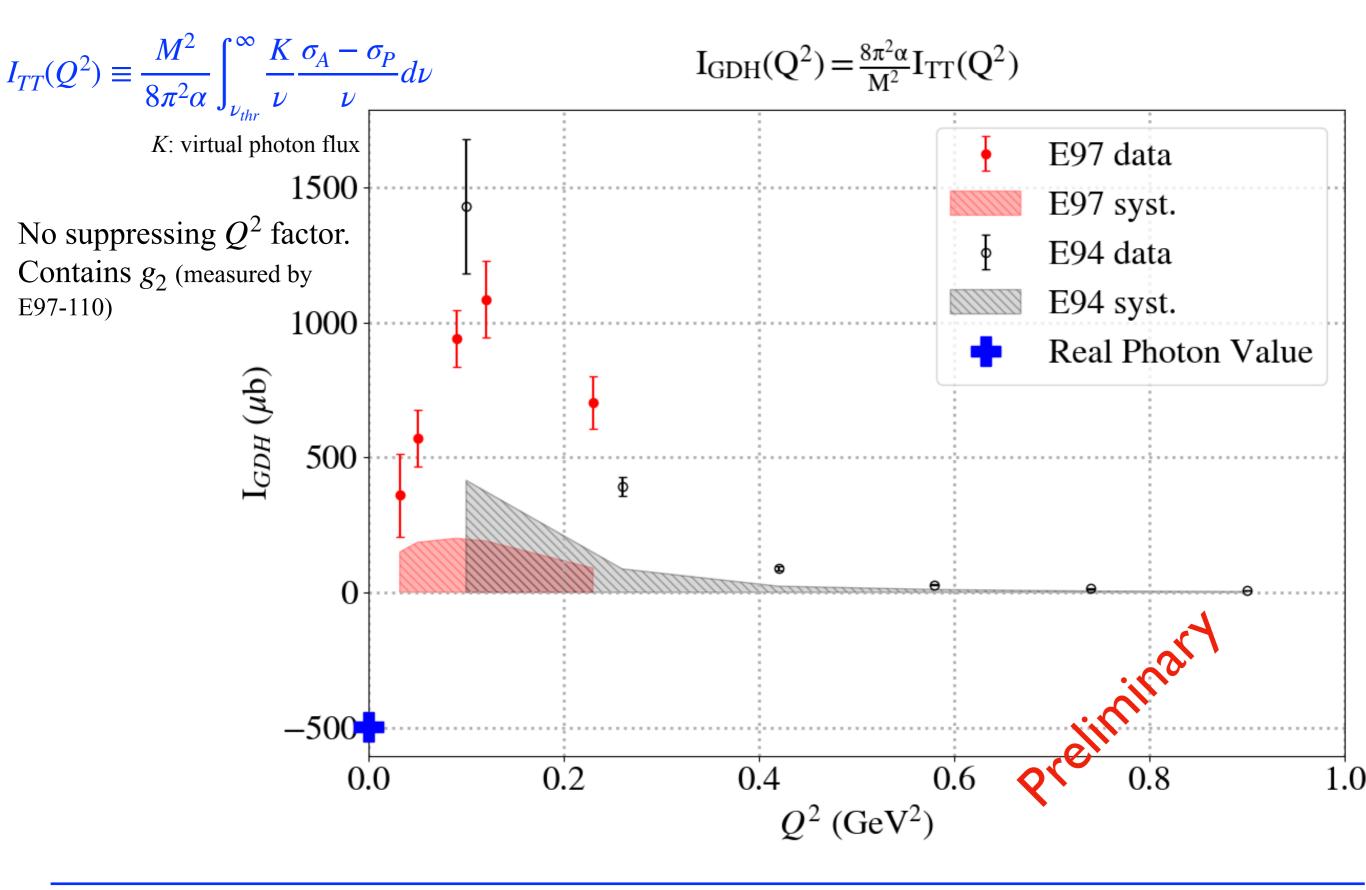
Jefferson Lab

A. Deur JLUO Meeting, 11 June 2024

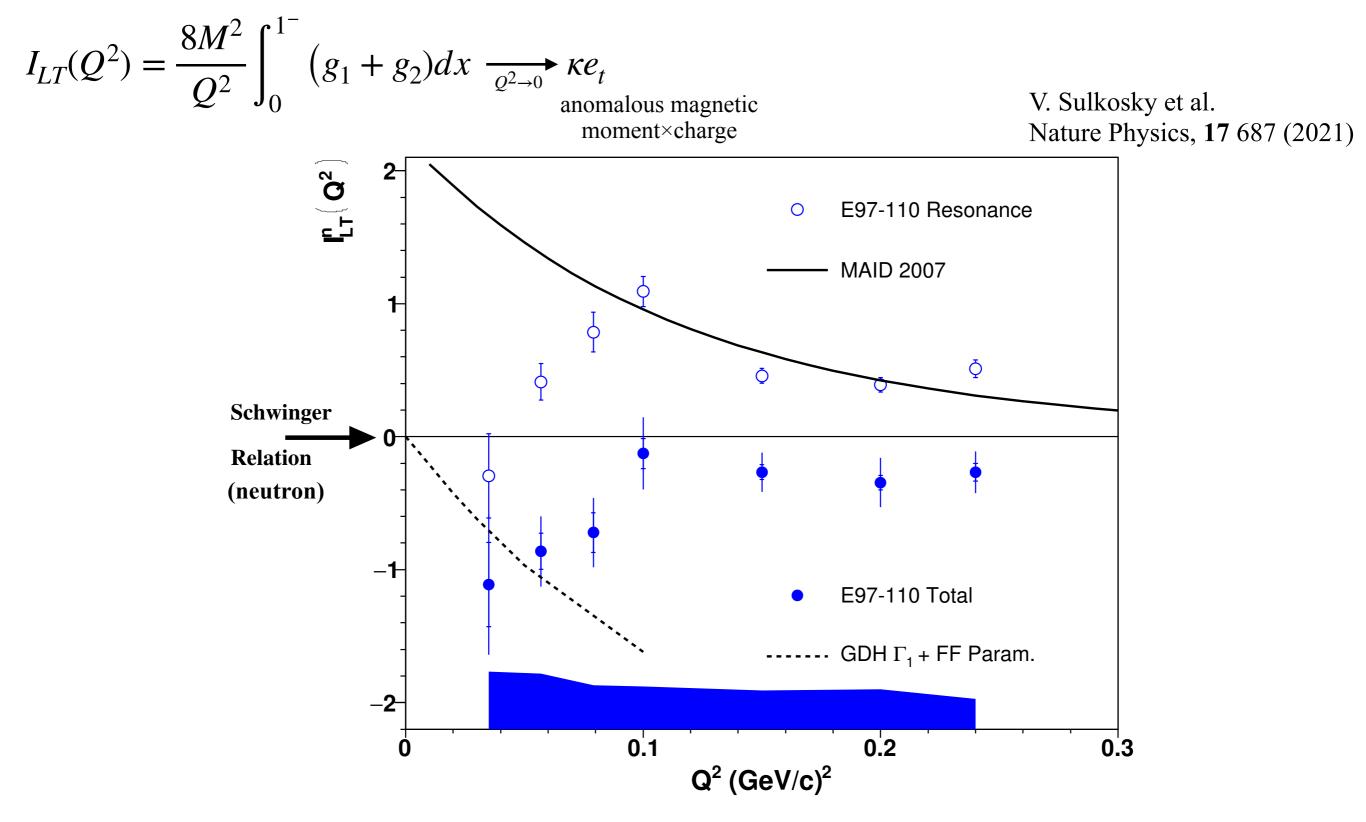
Another generalization of GDH sum: $\overline{I}_{TT}^d(Q^2)$. EG4 Data



Another generalization of GDH sum: $\bar{I}_{TT}^{3He}(Q^2)$, E97-110 Data



First moments: Schwinger sum rule on neutron from E97-110



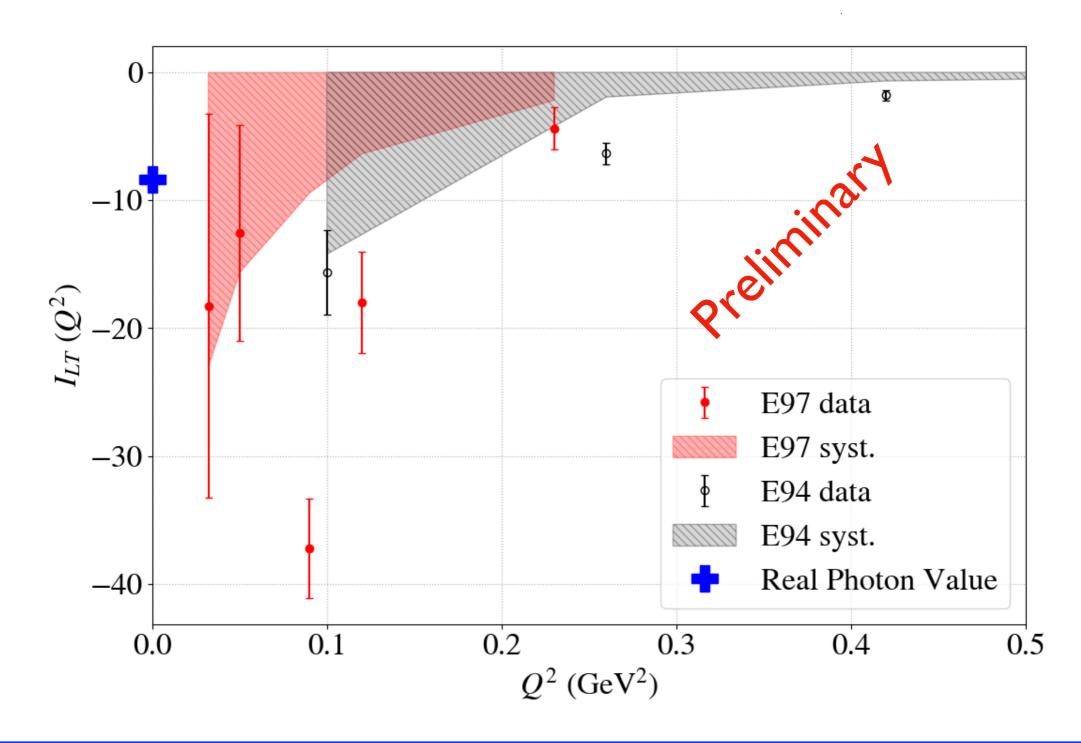
E97-110 (+GDH+BC sum rule+known neutron elastic form-factor) agrees with Schwinger sum rule.

First moments: Schwinger sum rule on ³He from E97-110

$$I_{LT}(Q^2) = \frac{8M^2}{Q^2} \int_0^{1^-} (g_1 + g_2) dx \xrightarrow[Q^2 \to 0]{} \kappa e_t$$

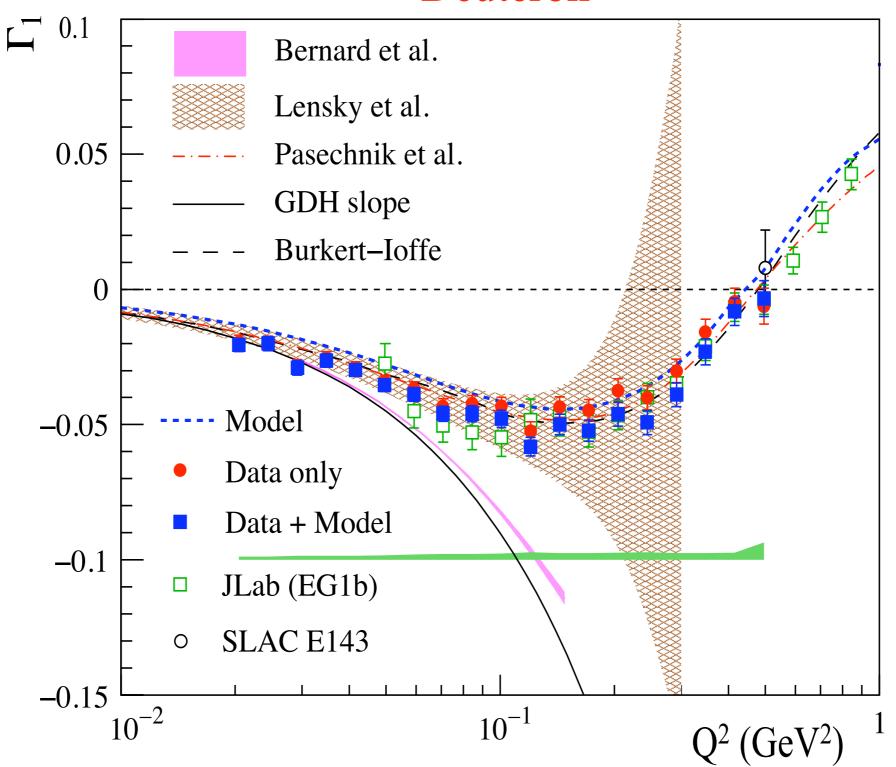
anomalous ma

nomalous magnetic moment×charge



Γ_1 measurements from JLab

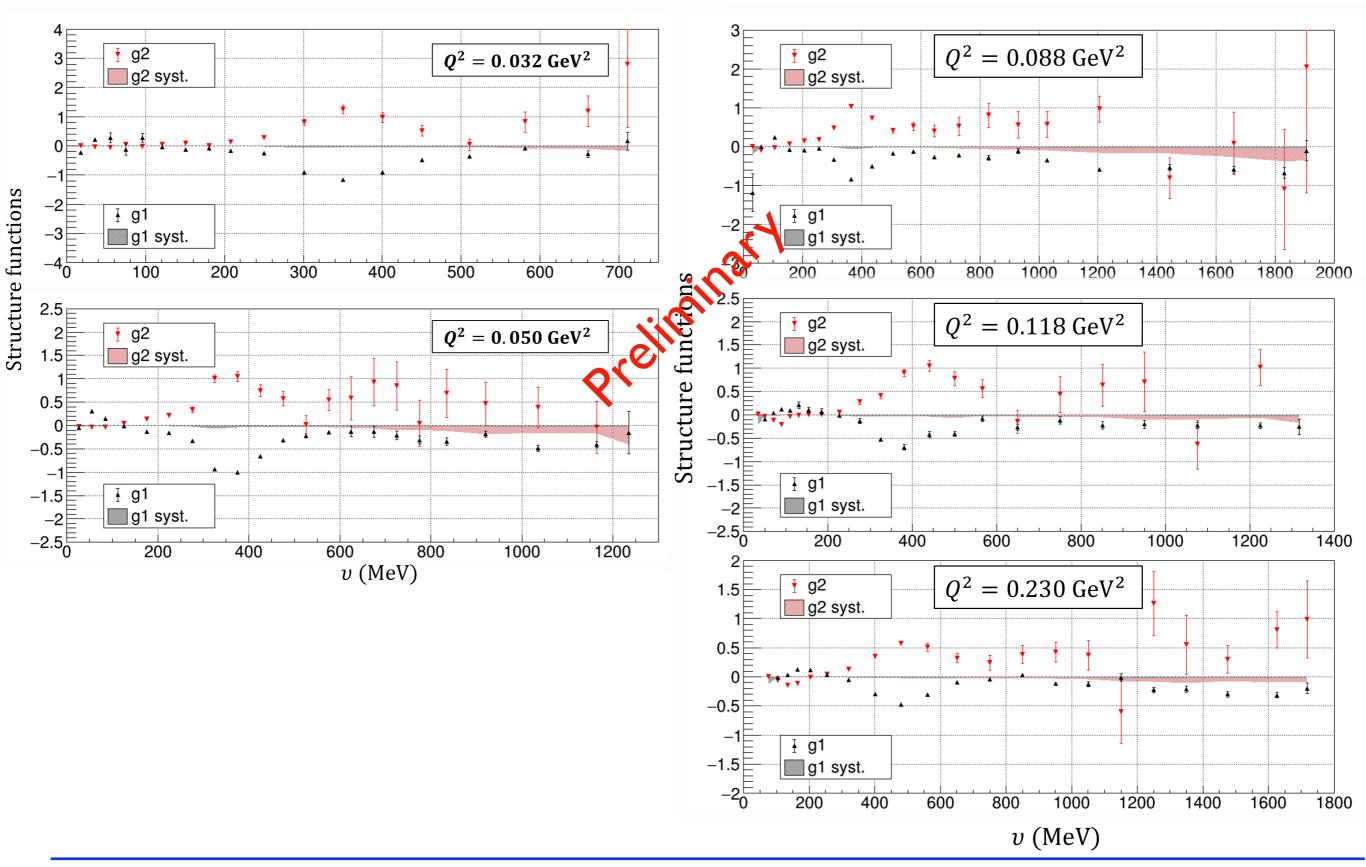
K. Adhikari et al. PRL **120**, 062501 (2018)



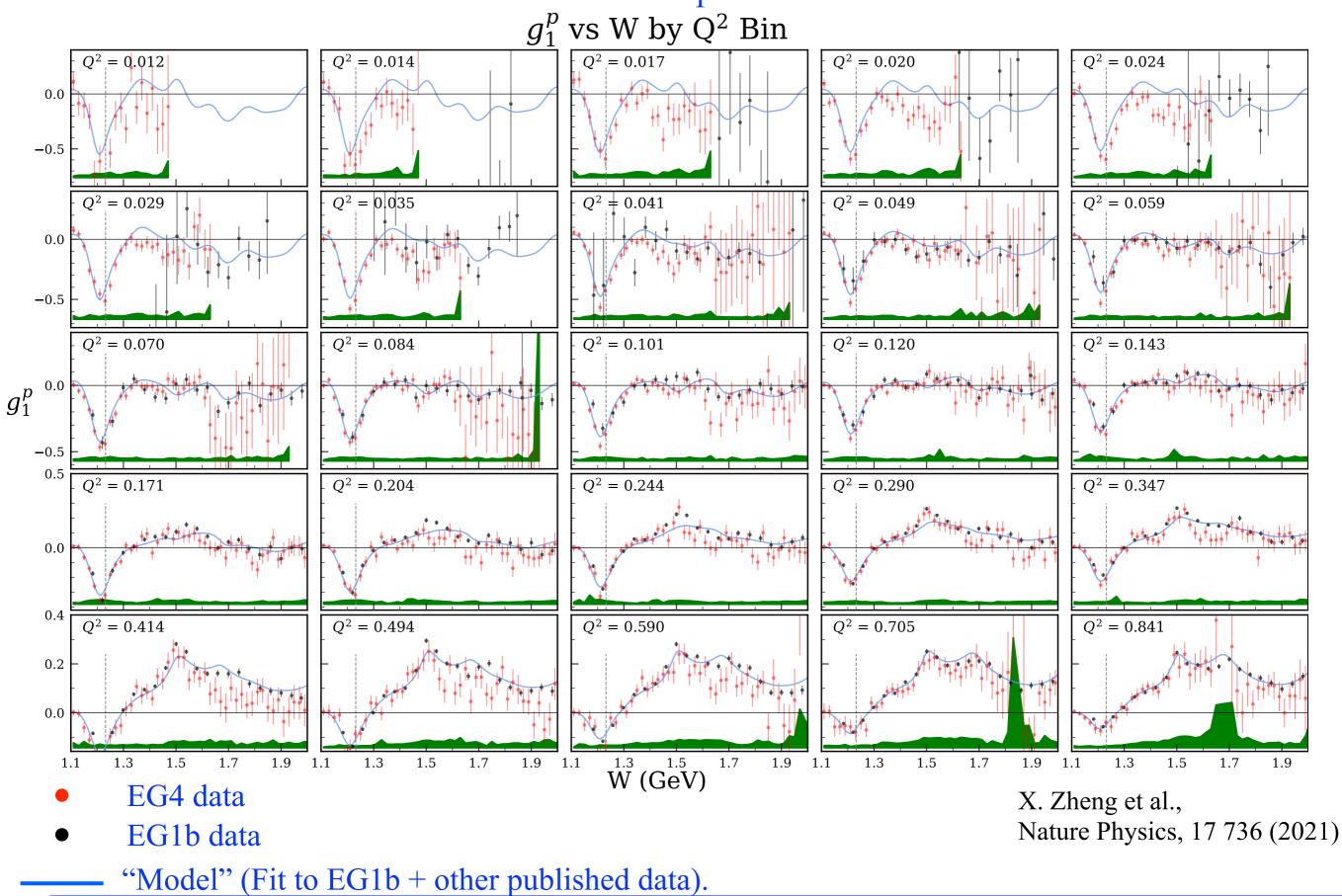
Deuteron

Monday, November 13, 2017

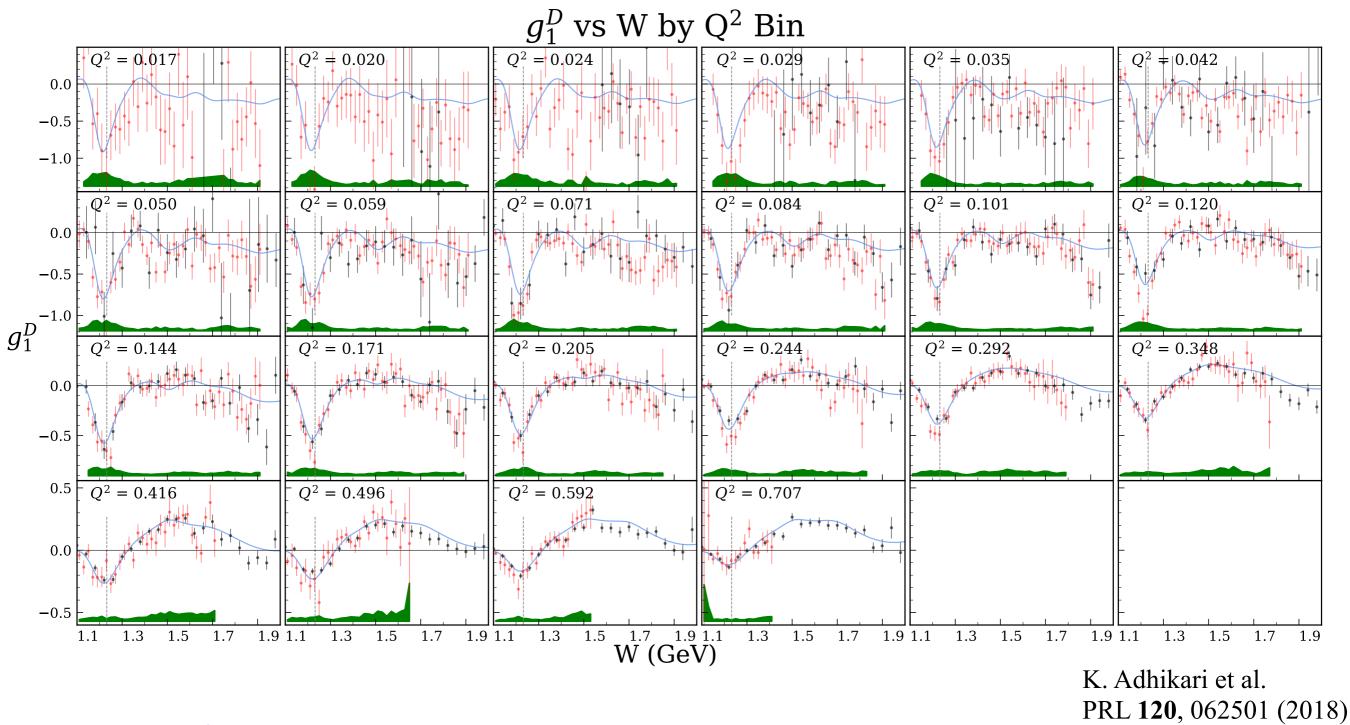
$g_1^{^{3}\text{He}}(\nu, Q^2)$ and $g_2^{^{3}\text{He}}(\nu, Q^2)$ with quasi-elastic, from E97-110



Spin structure function $g_1^p(W, Q^2)$ data from EG4



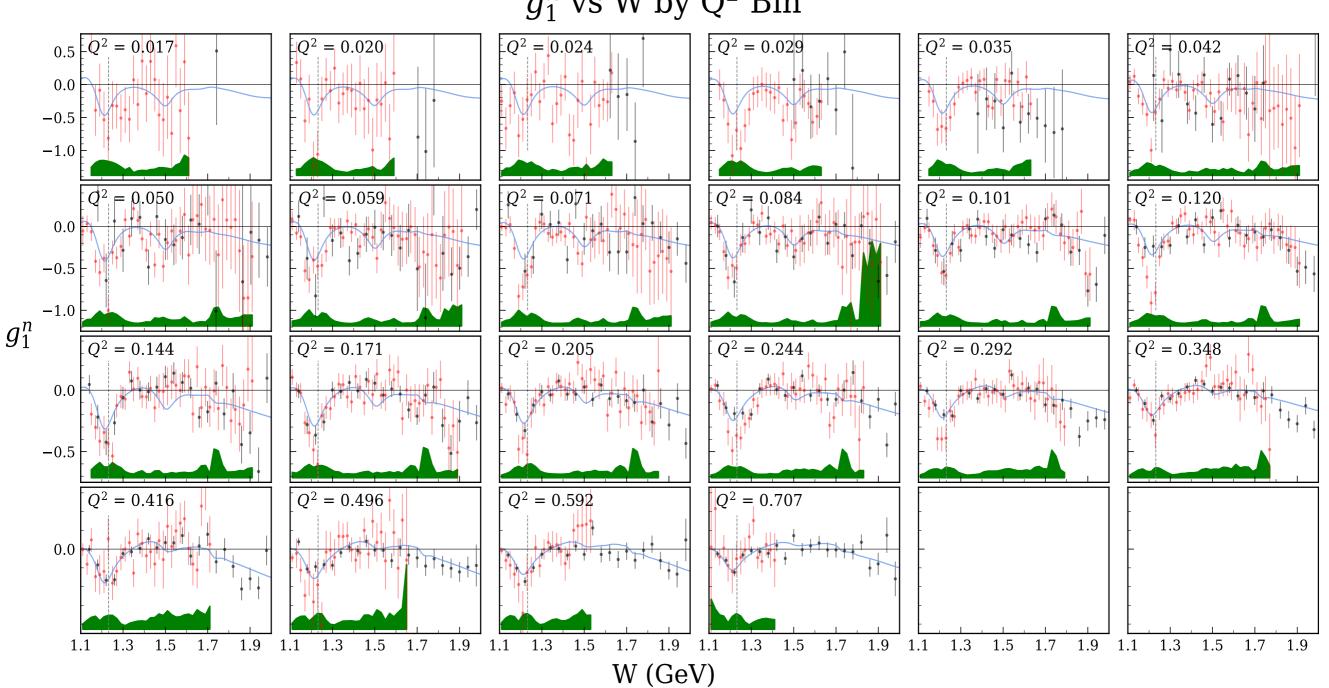
Spin structure function $g_1^d(W, Q^2)$ data from EG4



- EG4 data
- EG1b data

"Model" (Fit to EG1b + other published data).

Spin structure function $g_1^n(W, Q^2)$ data from EG4

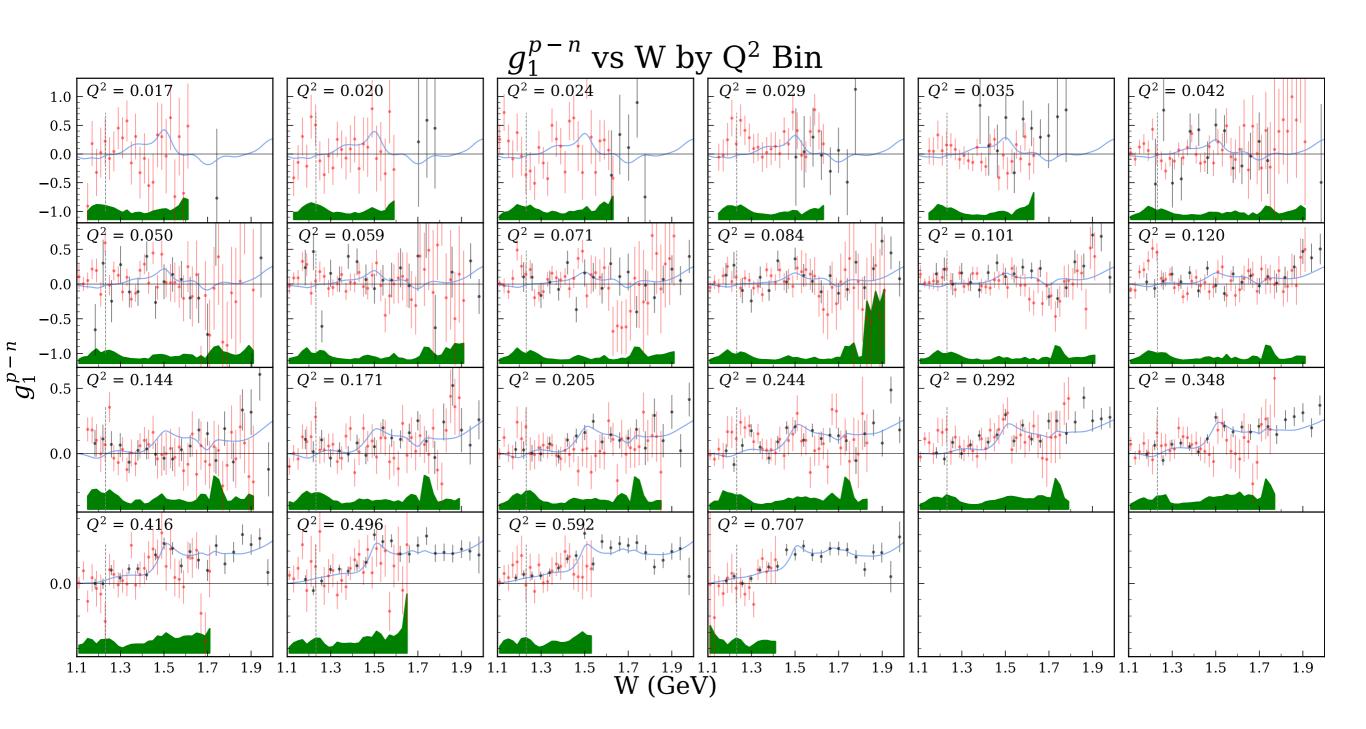


 g_1^n vs W by Q² Bin

- EG4 data
- EG1b data

"Model" (Fit to EG1b + other published data).

Spin structure function $g_1^{p-n}(W, Q^2)$ data from EG4

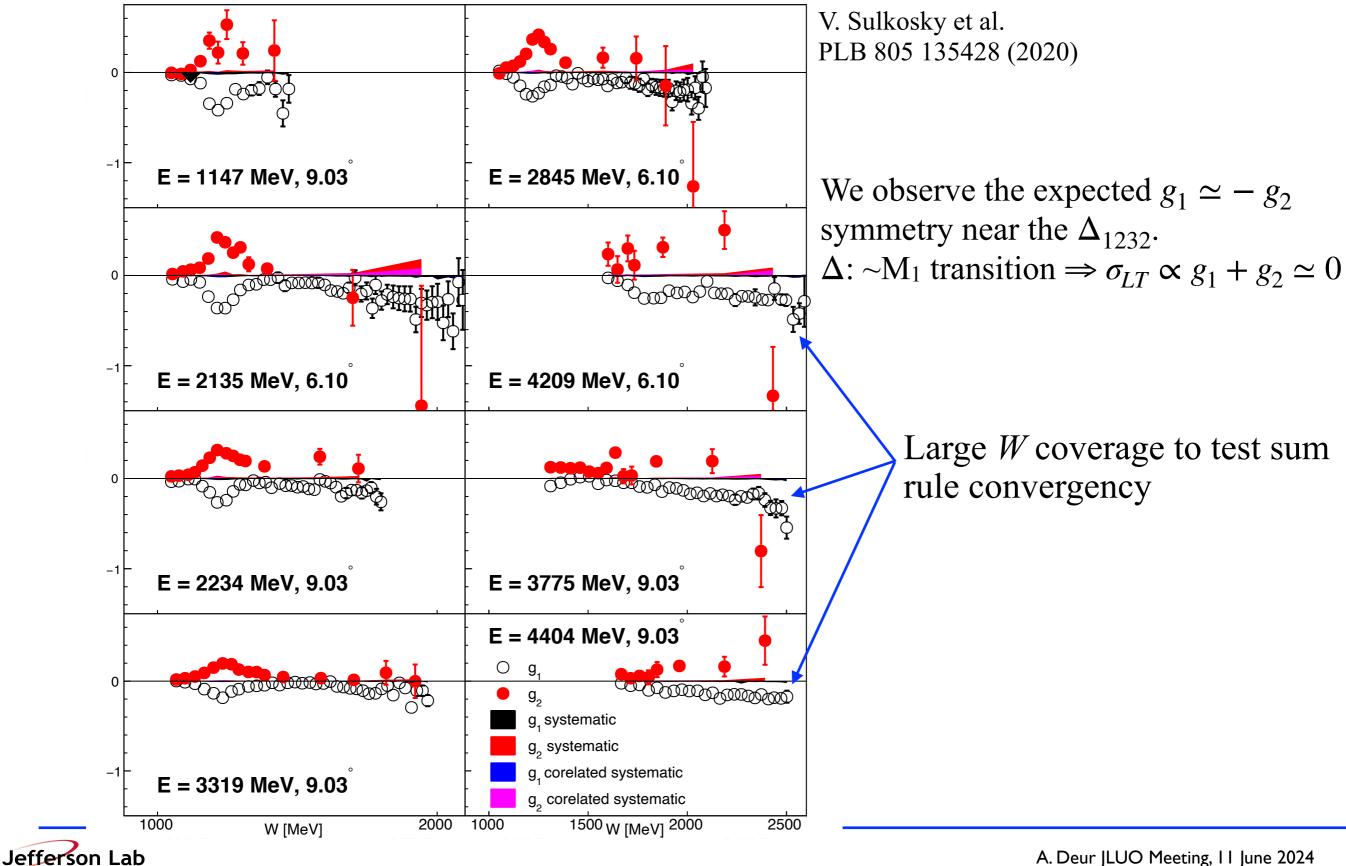


- EG4 data
- EG1b data

"Model" (Fit to EG1b + other published data).

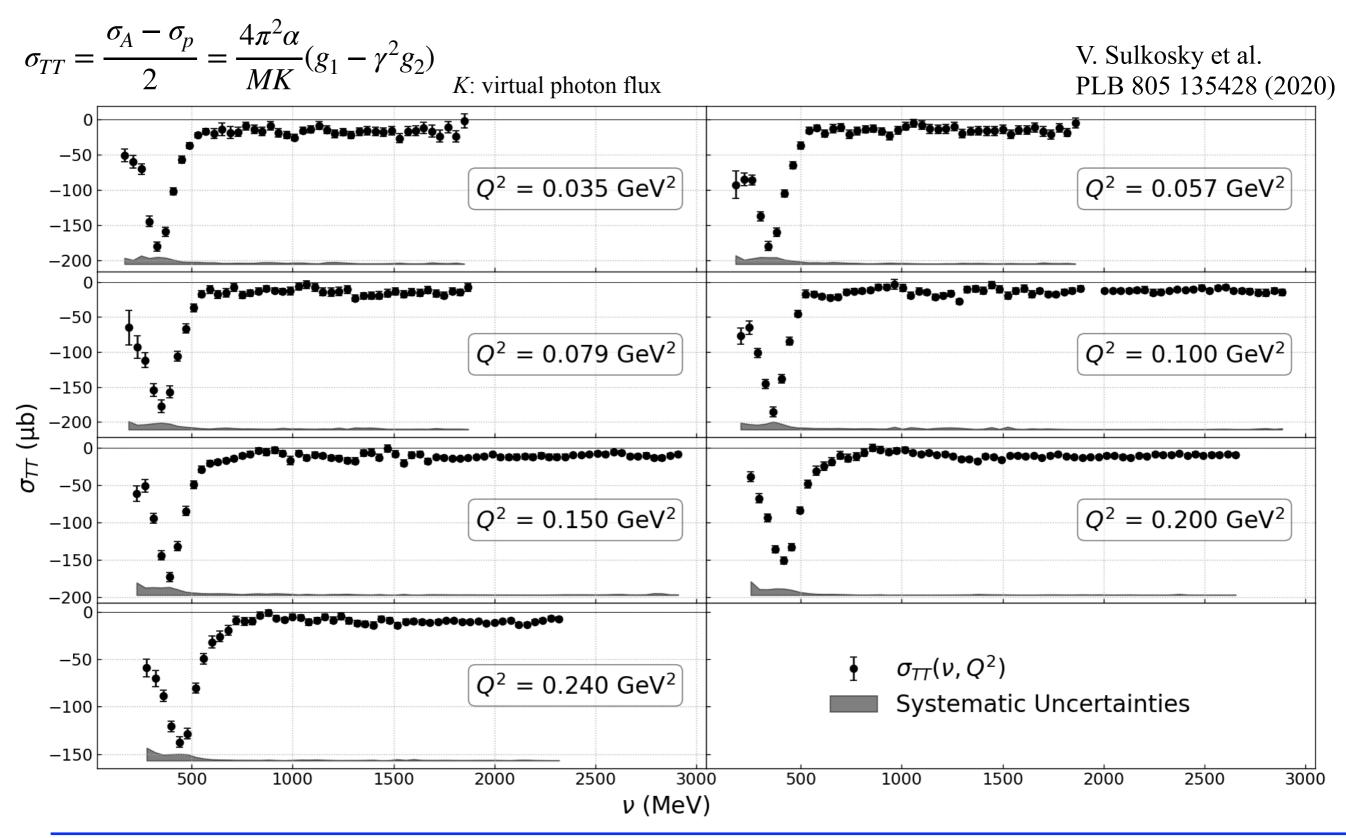
Spin structure function $g_1^{^{3}\text{He}}(W, Q^2)$ and $g_2^{^{3}\text{He}}(W, Q^2)$ data from E97-110

We do not know how to reliably extract neutron information from ³He for non-integrated quantities (e.g., spin structure functions. polarized cross-section difference...)



Polarized cross-section $\sigma_{TT}^{^{3}\text{He}}(\nu, Q^{2})$ data from E97-110

We do not know how to reliably extract neutron information from ³He for non-integrated quantities (e.g., spin structure functions, polarized cross-section difference...)



Polarized cross-section $\sigma_{LT}^{^{3}\text{He}}(\nu, Q^{2})$ data from E97-110

We do not know how to reliably extract neutron information from ³He for non-integrated quantities (e.g., spin structure functions, polarized cross-section difference...)

