Meson Spectroscopy at GlueX

Will Imoehl on behalf of the GlueX Collaboration

Carnegie Nellon University

Jefferson Lab Users Organization Annual Meeting

Exotic Hadrons in Quark Model

• Conventional hadrons are mesons $(q\bar{q})$ or baryons (qqq)

- Additional color singlet states allowed
- Hybrid mesons are unique probe for QCD
 - States are $q\bar{q}$ with excited gluonic field
 - Hybrid spectrum \iff gluon contribution to properties of hadrons
 - i.e. Mass, J^{PC}

Lattice QCD Light Meson Spectrum

• Candidates for π_1 and either η_1 or η_1' have been observed

[Dudek, Edwards, Guo, Thomas, PRD 88 094505(2013)]

Hybrid Mesons - JPAC π_1 **Result**

- Only one I = 1 hybrid meson with $J^{PC} = 1^{-+}$ expected below 2.0 GeV/ c^2
- Historically, $\pi_1(1400)$ found only in $\eta \pi$, $\pi_1(1600)$ found in $\eta' \pi$, $\rho \pi$, $f_1(1285)\pi$,

Coupled channel analysis only requires a single resonance pole (Adam's talk)

[A.Rodas et.al. PRL 122, 042002 (2019), B.Kopf et.al. Eur.Phys.J.C 81, 1056 (2021)]

Hybrid Mesons - BESIII $\eta_1^{(')}$ **Result**

- BESIII studied the decay $J/\psi \rightarrow \gamma \eta \eta'$ using sample of 10 billion J/ψ
- PWA finds significant signal for and $I = 0, J^{PC} = 1^{-+}$ state
- Blue is fit without $\eta_1^{(\prime)}$, red is with $\eta_1^{(\prime)}$
- Fit to mass distribution looks unimpressive

PWA fits decay angles too, state may not peak in mass distribution

Hybrid Mesons - BESIII $\eta_1^{(')}$ Result

- BESIII studied the decay $J/\psi \rightarrow \gamma \eta \eta'$ using sample of 10 billion J/ψ
- PWA finds significant signal for an $I = 0, J^{PC} = 1^{-+}$ state
- Blue is fit without $\eta_1^{(')}$, red is with $\eta_1^{(')}$
- Fit to mass distribution looks unimpressive

PWA fits decay angles too, state may not peak in mass distribution

[PRL 129 192002 (2022)].

The Path to Hybrid Mesons at GlueX

- Primary goal of GlueX is mapping out hybrid meson spectrum
- Understand production processes using conventional mesons
 - Study of beam asymmetries, SDMEs
- Identifying conventional mesons [like $a_2(1320)$] through PWA
- Use previous measurements and lattice results
 - $\pi_1(1600)$ is well established in several decay modes
 - Prediction of π_1 decay widths based on lattice QCD
- Ultimately want to establish spectrum of hybrid mesons

The Path to Hybrid Mesons at GlueX

- Primary goal of GlueX is mapping out hybrid meson spectrum
- Understand production processes using conventional mesons
 - Study of beam asymmetries, SDMEs
- Identifying conventional mesons [like $a_2(1320)$] through PWA
- Use previous measurements and lattice results
 - $\pi_1(1600)$ is well established in several decay modes
 - Prediction of π_1 decay widths based on lattice QCD
- Ultimately want to establish spectrum of hybrid mesons

The GlueX Experiment

- CEBAF electrons impinge on diamond radiator
- Linearly polarized photons hit liquid hydrogen target
- Can reconstruct both charged and neutral particles

Data Set	Coherent Peak Luminosity	Luminosity for $E_{\gamma} > 6$ GeV	Percent Collecte
GlueX Phase-I	125.0 pb-1	439.6 pb -1	100%
GlueX Phase-II	132.4 pb-1	386.2 pb -1	33%

PWA Amplitudes

- Broad overlapping states can interfere
- Perform partial wave analysis (PWA)
 - Fit angular distributions in data to determine J^{PC} of produced resonances
- t-channel production through natural or unnatural exchange particles
 - Natural for $J^P = 0^+, 1^-, 2^+, \dots$
 - Unnatural for $J^P = 0^-, 1^+, 2^-, \dots$

Sensitivity to naturality of exchange particle comes from photon polarization

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline S-\text{wave} \ (\ell=0) & P-\text{wave} \ (\ell=1) & D-\text{wave} \ (\ell=2) \\ \hline J^{PC} & 0^{++} & 1^{-+} \ (\text{exotic}) & 2^{++} \\ \hline \end{array}$$

PWA Amplitudes

- Natural for $J^P = 0^+, 1^-, 2^+, \dots$
- Unnatural for $J^P = 0^-, 1^+, 2^-, \dots$
- $\cos\theta$ and ϕ describe resonance decay
- Φ angle between production plane and photon polarization vector
- Use Z_l^m amplitude basis: $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega)e^{-i\Phi}$

$$I(\Omega, \Phi) = 2\kappa \sum_{k} \left\{ (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{\bullet} \operatorname{Re}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{\bullet} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{\bullet} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

Mass Independent PWA to $\eta \pi^0$ **System**

Study process $\gamma p \rightarrow \eta \pi^0 p$

- Each point in plots an independent fit to data \bullet
- Large S wave natural exchange contribution
- Clear $a_2(1320)$ signal in D_2^+ wave
- Use TMD mod

[V.Mathieu et.al. (JPAC) PRD 102, 014003 (2020)]

- Challenges: leakage between waves, ambiguities
 - Number of fit
- Add physical constraint to reduce complexity

del:
$$L_m^{\epsilon} = S_0^{\pm}, D_0^{\pm}, D_1^{\pm}, D_2^{\pm}, D_{-1}^{-1}$$

t parameters =
$$\sum_{\ell=0}^{\ell_{max}} 2 \cdot (2\ell + 1)$$

Semi-Mass Independent PWA to $\eta\pi^0$ **System**

Showing coherent sum of all S wave and all D wave contributions

PWA of $\eta \pi^0$ **System -** $a_2^0(1320)$ **Cross Section**

- Measured values agree well with TMD model (based on unpolarized CLAS data)

• First separation of natural and unnatural production mechanisms - publication in progress

PWA of $\eta \pi^{-}$ **System** $\gamma p \rightarrow \eta \pi^{-} \Delta^{++}$

- Same stability issues as $\eta\pi^0$
 - Use semi-mass independent fit
- Additional complications from Δ^{++}

 $M(\eta\pi^{-}) [GeV/c^2]$

11

PWA of $\eta \pi^{-}$ **System** $\gamma p \rightarrow \eta \pi^{-} \Delta^{++}$

- Additional complications from Δ^{++}
 - Additional decay angles
 - Background at larger -t

Lattice QCD Predicted π_1 Decay Widths

- $b_1\pi$ PWA difficult S-wave decay with broad b_1 isobar

What can we learn from $b_1\pi$?

- b_1 has large decay width to $\omega\pi$

 π_1^0 should contribute in $\gamma p \rightarrow \omega \pi^+ \pi^- p$

Upper Limit on π_1 **Photoproduction**

- π_1 is isospin-1, but $\omega \pi^+ \pi^-$ can have I = 1 and I = 0
- Use isospin conservation to separate I = 1 part of $\omega \pi^+ \pi^-$

Fits to $I = 1 \ \omega \pi \pi$ Systems

- Expect $I = 1 \ \omega \pi \pi$ to have contribution from $a_2(1320)$
- Fit assuming just $a_2(1320)$ and $\pi_1(1600)$ contribute

$a_2(1320)$ Breit-Wigner [PDG]

$\pi_1(1600)$ Breit-Wigner [JPAC]

$$\frac{\sigma(\pi_1^0)_{ul}}{\sigma(a_2^0(1320))} < 2.09$$

$$\frac{\sigma(\pi_1)_{ul}}{\sigma(a_2(1320))} < 1.40$$

Projecting π_1 Limit to $\eta^{(\prime)}\pi$ final states

- Use LQCD π_1 decay widths to estimate maximum π_1 in $\eta^{(\prime)}\pi$
- $\eta\pi$ expected to have at most percentlevel contribution from $\pi_1(1600)$
- Cannot rule out large $\pi_1(1600)$ contribution in $\eta'\pi$
- Publication nearing submission!
- ---- GlueX-I Data
 - a₂ MC Projection
 - π_1 MC Upper Limit

- exotic signal

Physics Outside the Hybrid Meson Search

- Primary goal of GlueX is mapping out hybrid meson spectrum
- Understand production processes using conventional mesons
 - Study of beam asymmetries, SDME's
- Identifying conventional mesons [like $a_2(1320)$] through PWA
- Use previous measurements and lattice results
 - $\pi_1(1600)$ is well established in several decay modes
 - Prediction of decay widths based on lattice QCD
- Baryon anti-baryon (Hao), vector pseudo scalar analyses (Edmundo)
- Results on $\phi \pi \pi$, $K_{c}K_{c}$, $K_{c}K_{L}$

Search for $\phi(2170)$ in $\phi\pi\pi$

- Exotic meson candidate Y(4230) found decaying to $\pi\pi J/\psi$
- $\phi(2170)$ believed to be strange equivalent
- Measure $\sigma(\gamma p \rightarrow \phi \pi \pi p)$ vs. $M(\phi \pi \pi)$
- Fit background poly + $\phi(2170)$ Voigtian
- Large background and systematics set limit
- $\sigma(\gamma p \to \phi(2170)p) < 379 \text{ pb at } 90\% \text{ CL}$

Studies on KK

- $K_{S}K_{S}$ has $J^{PC} = (0, 2, ...)^{++}$
 - Glueball candidates
- Preliminary PWA results

Structure visible in both S and D waves

Studies on KK

- $K_{S}K_{L}$ has $J^{PC} = (1,3,...)^{--}$
 - Vector meson hybrids
- Very preliminary results

Counts / 20 MeV

40 20

Large peak from ϕ , additional structure at higher mass PWA under way

Conclusion

- GlueX has very active spectroscopy program
 - Linearly polarized photon beam gives access to production mechanisms
- $\pi_1(1600)$ upper limit nearing submission
 - Determine largest discovery potential is in $\eta'\pi$ final state
- Neutral $a_2^0(1320)$ cross section nearing publication
 - First time production mechanisms have been separated
- Many interesting projects outside of the exotic hybrid meson search
 Acknowledgements: <u>gluex.org/thanks</u>

