

Simulation Study of W-ScFi Calorimeter for Pair Spectrometer Luminosity Detector at ePIC

Early Career Day – EICUG 2024 – Lehigh University

Aranya Giri

Relativistic Heavy Ion Lab Department of Physics, University of Houston

Advisor – Prof. Rene Bellwied

Date - 22nd June, 2024

The Electron Ion Collider

• Brookhaven National Laboratory (BNL), New York is the host site for the future Electron-Ion Collider (EIC).

- First detector (experiment) is @ IP6, the electron Proton-Ion Collider (ePIC) experiment.
- The collider and experiment is expected to commission at 2032.

- Variable e-p COM energy range from ~ 20 to 100 GeV, upgradable to ~140 GeV.
- High electron-nucleon **luminosity**.

arXiv.2103.05419

Luminosity

Luminosity is the maximum no. of collisions that can be produced in the collider

$$L = f N^2 / 4 \pi r^2$$

Rate of any event during collision (R) = $L \cdot \text{cross-section}(\sigma)$ of the associated process

Precise measurement of L = Precise measurement of \sigma Higher Luminosity = Higher rate to observe any physics processes

At EIC, precision ~ 1% & High Luminosity ~ 10³³⁻³⁴ cm⁻² s⁻¹

https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.luminosity

Luminosity Detector – Past to Future

[1] https://www.rhichome.bnl.gov/RHIC/Runs/

Luminosity Detector – Bremsstrahlung Process

- HERA (Forerunner of EIC) measured luminosity via Bremsstrahlung (BH) radiation produced during collisions.
- Radiation due to elastic scattering of electron near strong electric field (p / Nu).

1. High Rate ~ 4.7 MHz [2]

- 2. Precisely calculable cross-section from QED, Bethe-Heilter equation
- 3. Almost all produced BH γs are along e- beam direction, $\theta_{\gamma} \sim m_e$ / E_e

Interaction Region of ePIC at EIC

Measurement of bremsstrahlung photons

https://arxiv.org/abs/2103.05419

Interaction Region of ePIC at EIC

Low energy synchrotron radiation as major background

Measurement of bremsstrahlung photons

https://arxiv.org/abs/2103.05419

Pair Spectrometer Luminosity Detector

Fig. The base model of ePIC Pair Spectrometer Luminosity Detector

To measure LUMINOSITY !

$$L = R / \sigma_{BH}$$

Pair Spectrometer Luminosity Detector

Exit Window ePIC Luminosity Pair Spectrometer Z = -18.5 m DD4hep Implementation Collimator Z = -22.6 mSweeper Magnet Ion-Beam Crabbing Magn Z = -56 m2 tracking planes for both top & bottom arms Analyzer Magnet Direct-V Z = -60 mCAL PS CALs + Trackers Z = -64 m Exit Cap of Vacuum Chamber Vacuum chamber with conversion foil inside

Fig. Current ePIC Luminosity Detector design with e⁻ and p beam pipes and magnets built by Dhevan G., Aranya G. & Justin C. in DD4hep. The placement of different component not fixed, changes according to experimental needs.

https://arxiv.org/pdf/2106.08993.pdf

Interaction Point

Calorimeter

- Calorimeters completely absorbs the incident particle and measure its energy and position.
- The incident particle initiates a particle shower. Each secondary particle deposits energy and produces further particles until the full energy is absorbed.
- The composition and the dimensions of these showers depend on the type and energy of the primary particle (e±, photons or hadrons) .

Fig. Shower generation by photon in EM CAL

W-ScFi Calorimeter

1) Requirements

I. Fairly good energy and position resolution.
II.Radiation Hard for compact size.
III.Low integration time (< 10 ns bunch spacing).
IV.Track shower profile for improved pile-up (multiple e⁼ hits) treatment.

2) A Electromagnetic Sampling Calorimeter I. Passive "hard" material – Tungsten (W) II.Active Absorber – Plastic Scintillating Fibers

- 3) The Volumetric Ratio of W : ScFi is 4:1
- 4) Layered Structure Alternate layers have fiber running parallel along X or Y direction.

5) Brass holders are used to keep the fibers uniform.

W-ScFi Calorimeter

1) Requirements

I. Fairly good energy and position resolution.
II.Radiation Hard for compact size.
III.Low integration time (< 10 ns bunch spacing).
IV.Track shower profile for improved pile-up (multiple e⁻ hits) treatment.

2) A Electromagnetic Sampling Calorimeter I. Passive "hard" material – Tungsten (W) II.Active Absorber – Plastic Scintillating Fibers

- 3) The Volumetric Ratio of W : ScFi is 4:1
- 4) Layered Structure Alternate layers have fiber running parallel along X or Y direction.

5) Brass holders are used to keep the fibers uniform.

Fig. X|| layer in CAL

W-ScFi Calorimeter

Simulation Results – Sampling Fraction

Sampling Fraction is ~ 3% and independent of incident particle energy

Simulation Results – Energy Resolution

Simulation Results – Energy Resolution

Simulation Results – Energy Resolution

Energy resolution of a calorimeter is determined by fluctuations in the processes by which energy is deposited and measured.

$$\boxed{\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c}$$

Respective terms in the equation :

Stochastic (a): Includes the event-by-event fluctuations of shower development in calorimeter. ($8.8\%/\sqrt{E(GeV)}$)

Noise (b): From the electronic noise of the readout chain and depends on the detector technique and on the features of the readout circuit. (20 MeV)

Constant (c): From non-uniformity, like from imperfections in the detector mechanical structure and readout system, from temperature gradients, from the detector aging, from radiation damage, etc. (~ 0)

Simulation Results – Position resolution

Egen = 3.5 GeV	Egen = 3.5 GeV	1)For each generated energy (1.0, 18.0) GeV, the (reconstructed – generated) vertex distribution is fitted with Gaussian distribution.
Egen = 11.5 GeV	Egen = 11.5 GeV	 2) The fit parameters, i. sigma is used to calculate position resolution. ii. Mean ideally should be equal to zero but deviations was observed.

*Position measurements are in centimeters

Simulation Results – Position Resolution

*Position measurements are in centimeters

Simulation Results – Radiation Length

Radiation length (X_0) of a calorimeter is the longitudinal distance where energy of shower becomes 1/e times the incident energy.

• Depends on material of calorimeter.

Egen = 3.5 GeV Egen = 11.5 GeV 1) For each generated energy (1.0, 18.0) GeV, the deposited energy distribution along longitudinal direction (z) is fitted with Gamma distribution. $f(x; \alpha, \beta) = \frac{x^{\alpha-1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)} \quad \text{for } x > 0 \quad \alpha, \beta > 0$

Simulation Results – Radiation Length & Shower Depth

- The fit parameters, alpha and beta is used to calculate $z_{max} = (\alpha 1)/\beta$, the location where maximum energy is deposited.
- $z_{max} = X_0 (log(Egen) + c), X_0 = 0.8248 cm$
- Shower Depth Longitudinal depth of calorimeter in terms of X_0 : (18 cm / 0.8248 cm) = 22 X_0

Simulation Results – Moliere Radius

Moliere radius (r_m) is the radius of a cylinder containing on average 90% of the shower's energy deposition.

• Depends on the material of calorimeter.

Conclusion

Design of W-ScFi calorimeter of Pair Spectrometer Luminosity Detector at EIC for ePIC experiment. → It has been successfully implemented DD4hep for simulation.

 Characteristics of calorimeter like energy resolution, position resolution, radiation length & Moliere radius is studied.

Future Work

- → To study effect of radiation damage in the calorimeter.
- → Study optical parameters of scintillating fiber.
- → Beam test with first prototype build with collaborators at York University, UK

Thank You

Natural Sciences and Mathematics

Simulation Results – Position Resolution

Electron Gun Parameters:

Simulation Results – Position Resolution

- Energy deposition (Edep_i) in 9 fibers of each SiPM is associated with a position, pos_i where i = {SiPMs}
- The center of SiPM is the associated position , Pos_i = { x_center or y_center } depending on layer.
- For a slice say j, in Suppose X|| layers, the mean y_j is

$$y_j = rac{\sum_{i}^{i \in j} y_i E_{dep}^i}{\sum_{i}^{i \in j} E_{dep}^i}$$

• Find the mean position in each slice

m =	\bar{yz}	-i	$\bar{j}\bar{z}$
	$\bar{z^2}$	- 2	\overline{z}^2