Towards benchmarking of the partonic structure of the proton by the EXCLAIM collaboration

July 22nd 2024

-

EXCLAIM (Exclusives with Artificial Intelligence and Machine Learning)

- ML/AI: Yaohang Li, Gia-Wei Chern, Douglas Adams, Tareq Alghamdi, Md. Fayaz Bin-Hossen, Anusha Reddy Singireddy, Siwen Liao
- Experiment: Marie Boër, Debaditya Biswas, Kemal Tezgin
- Lattice QCD: Michael Engelhardt, Huey-Wen Lin, Emanuel Ortiz Pacheco, Liam Hockley
- Phenomenology/Theory: Simonetta Liuti, Gary Goldstein, Matt Sievert, Dennis Sivers, MČ, Saraswati Pandey, Joshua Bautista, Adil Khawaja, Zaki Panjsheeri, Carter Gustin, Andrew Dotson, Kiara Ruffin

Nucleon structure

DVCS: $\ell + p \rightarrow \ell + \gamma + p$

$$\frac{d^{5}\sigma_{DVCS}}{dx_{B}dydtd\phi d\varphi} \propto 4\left(1-x_{B}\right)\left(\left|\mathcal{H}\right|^{2}+\left|\mathcal{H}\right|^{2}\right)+.$$

$$\mathcal{H}^{A}\left(\xi,\Delta^{2},Q^{2}\right)=\int_{-1}^{1}\frac{dx}{2\xi}\,^{A}T\left(x,\xi\mid\alpha_{s}\left(\mu_{R}\right),\left\{\frac{Q^{2}}{\mu^{2}}\right\}\right)H^{A}\left(x,\xi,\Delta^{2},\Delta^{2}\right)$$
hard scale

• •

GPD models

Goldstein-Gonzales-Liuti

CFF extraction

Partons 2018

Can we benchmark?

VAIM (Variational Autoencoder Inverse Mapper)

C-VAIM architecture to extract CFFs

Decoder after VAIM is trained

cVAIM - CFF results

[arXiv:2405.05826]

PCA 2

Latent space

We are not losing information on \mathfrak{ReH} , we are losing sign information for \mathfrak{SmH} , we cannot extract $\mathfrak{Sm\tilde{E}}$, etc...

Symbolic regression (PySR)

D			
t	Q^2	ϕ	
-0.1	2	0	
-0.2	4	20	
•	-	•	

Attempted expression

$$y + ax^2 + bx + c$$

Symbolic regression on lattice and phenomenological models

- Numerically inexpensive and highly customizable
- Are the results stable and physical?
- Does it compare to neural networks?

Expressions evaluated per second: 7.760e+04 Head worker occupation: 12.8% Progress: 172 / 200 total iterations (86.000%)					
Hall of Fame:					
Complexity 3 5 7 9 10	Loss 1.708e-02 5.798e-03 3.690e-03 2.859e-03 2.834e-03	Score 5.314e+00 5.401e-01 2.259e-01 1.276e-01 8.746e-03	Equation y = -0.073884 * -0.77004 $y = 1.0953 * (0.82268 - x_0)$ $y = (0.83205 - x_0) * (1.5454 - x_0)$ $y = (0.88501 - x_0) * (1.8414 - (x_0 + x_0))$ $y = custom_function(0.88676) * ((x_0 - 0.88676) * (0.88676 - x_0))$		
11 12	2.809e-03 2.804e-03	8.867e-03 2.049e-03)) $y = (x_0 - 0.90462) * (((-1.7693 + x_0) + x_0) * 1.0997)$ $y = ((x_0 - 0.90212) * 1.0593) * ((custom_function(0.20822) + x0) + x_0)$		
17 19	2.800e-03 2.777e-03	2.783e-04 4.149e-03	$y = ((x_0 - 1.1832) * (custom_function(0.37198) + (x_0 + x_0))) + \dots \\ ((-0.052411 * custom_function(x_0)) * x_0) \\ y = ((x_0 - 0.97894) * (x_0 - 0.97894)) * ((1.5362 - (x_0 * ((x_0 \dots + -0.48992) + x_0))) + 0.17568)$		
20	2.762e-03	5.127e-03	$y = (((x_0 * ((0.525770.12462) + (custom_function(0.12709) * x_0))) + 1.331) * (0.88898 - x_0)) * (1.32 - x_0)$		

We encourage parametrizations:

1) $H^{u-d}(x,t) = P(x)F(t)$

2)
$$H^{u-d}(x,t) = x^{\alpha}(1-x)^{\beta}P(x,t)$$

3)
$$H^{u-d}(x,t) = x^{\alpha}(1-x)^{\beta}P(x)F(t)$$

with custom loss:

• MSE + Non-Factorization Penalty

• MSE + Integral Constraint $\int_{0}^{1} dx H^{u-d}(x,0,0) = \dots,$

complexity:

• Maximum complexity allowed for power operator (a,b) = (4,1) $(1 - x)^{\beta}$,

and forcing the PDF form:

• replace eq. 2) with $H^{u-d}(x, y, t) = x^{\alpha}y^{\beta}P(x, t)$, where y = 1-x, and do 3-D fit.

Figures by A. Dotson, A. Reddy and Z. Panjsheeri

MSE:
$$H^{u-d}(x,0,t) = \frac{0.831 - x}{-t(x+0.24) + x^2 + 0.21}$$

MSE+factorization: $H^{u-d}(x,0,t) = \frac{3(1-0.77x)^{4.1}}{-t+0.6}$
forced PDF form: $H^{u-d}(x,0,t) = x^{-0.09}(1-x)^{0.43}e^{-0.68\ln^2(1-x)}e^{-t+10.68}$

Factorized form has worse χ^2 , even though VGG has implemented factorization!

Can we benchmark?

- We need uncertainty quantification for all results and phenomenological models!
- We need to understand if interpolation and extrapolation are reliable
- Likelihood analysis as a means of assessing the information content in the data