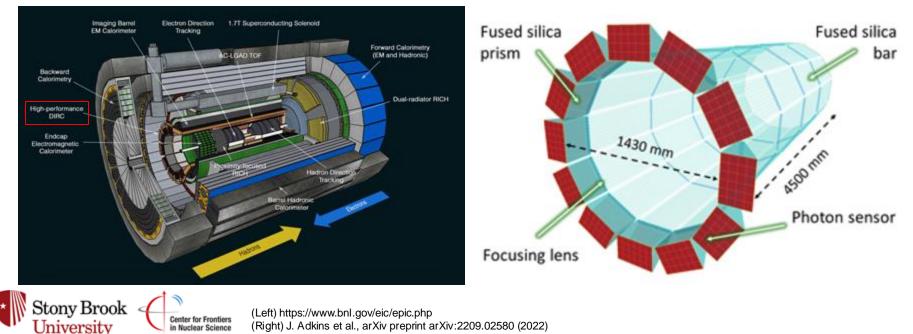
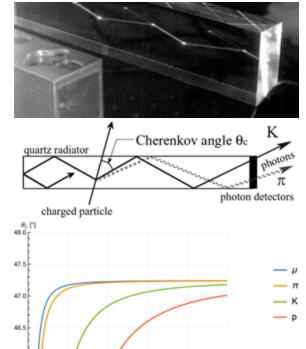
Construction of a Cosmic Ray Telescope for the hpDIRC Radiators at the Electron Ion Collider


Nathan Shankman

Stony Brook University Department of Physics and Astronomy Center for Frontiers in Nuclear Science

High Performance DIRC Detector

• DIRC radiator bars will be used in the hpDIRC detector in the ePIC detector at the EIC for hadronic PID

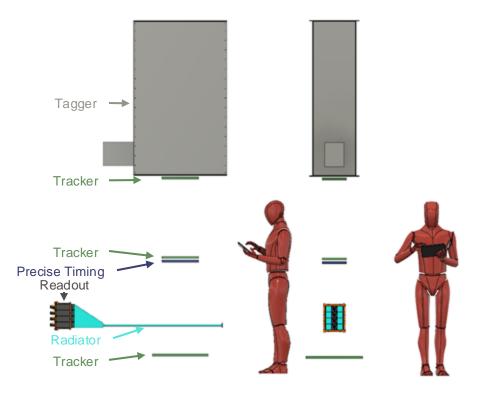


DIRC

- Detection of Internally Reflected Cherenkov radiation
- Charged particles moving faster than light in a medium → Cherenkov radiation
- DIRC radiators: Synthetic Fused Silica (SiO₂)
- n = 1.473

Stony Brook

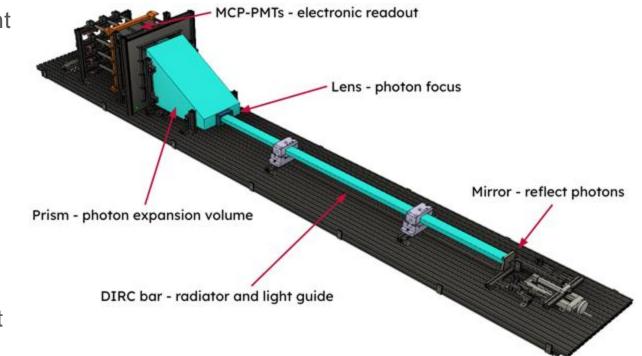
- Internal reflection coefficient: 0.9997
- Cherenkov photons produced in the radiators internally reflect to an electronic readout where their trajectories can be reconstructed and analyzed for PID via the Cherenkov angle



(Top & Middle) J. Cohen-Tanugi et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 515, 680 (2003). p [GeVic]

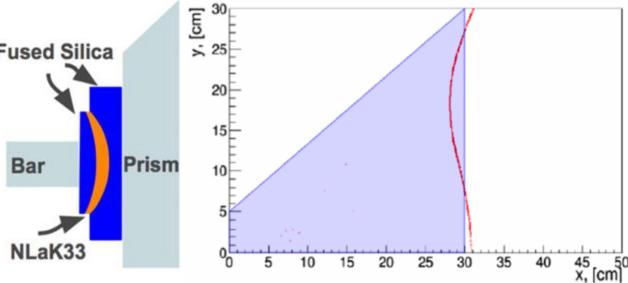
Cosmic Ray Telescope

- Test and characterize DIRC
 radiators
- CO₂ Momentum Threshold Tagger (momentum cutoff)
- µ-RWELL (tracker)
- μ-RWELL (tracker)
- PICOSEC (timing)
- DIRC bar (radiator and light guide)
- GEM (tracker)



Dark Box

- Block external light
- User friendly bar mobility
- House DIRC
 hardware
- Mirror
- Radiator
- Lens
- Prism
- Electronic readout



Lens and Prism

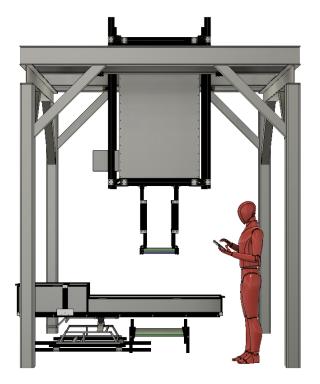
- Focus and defocus photons onto a flat readout Fused Silica plane
- 3-layer-lens
- Originally lanthanum crown glass, now synthetic sapphire
- Synthetic fused silica

Stony Brook

Motion Platform

- Controlled Pitch and Roll for multiple muon incident angles
- Completed box on motion platform

SBU Clean Tent



Center for Frontier in Nuclear Science

Summary

- Constructing a Cosmic Ray Telescope to characterize the DIRC radiators to be used in the hpDIRC detector in the ePIC detector in the EIC
- The dark box and its parts are completed
- Installation of tracking, timing, and tagging
- We will start taking cosmic ray data before 2025

References

[10] M. Banks, Italy cancels €1bn SuperB collider, 2012. [24] N. I. I. Maliki and S. A. Othman, Radiation Biophysics 50 A. Accardi et al., The European Physical Journal A 52, 1 (2016). [39] D. Griffiths, Introduction to elementary particles (John Wiley & Sons, ADDRESS 2020) J. Fast et al., Nuclear Instruments and Methods in Physics Research Section A: [25] Y. Hu et al., Scientific reports 7, 8695 (2017). [2] G. Kalicy, Journal of Instrumentation 15, C11006 (2020). Accelerators, Spectrometers, Detectors and Associated Equipment 876, 145 (2017). [40] H. Koike et al., Advanced Materials Research 154, 1288 (2011). [26] T. Gorringe and D. Hertzog, Progress in Particle and Nuclear Physics 84, 73 (2015). [3] I. Adam et al., Nuclear Instruments and Methods in Physics Research Section A: [12] A. Abashian et al., Nuclear Instruments and Methods in Physics Research Section Accelerators, Spectrometers, Detectors and Associated Equipment 538, 281 (2005). [41] R. N. Patra et al., Nuclear Instruments and Methods in Physics Research Section A. [27] V. Tishchenko et al., Physical Review D 87, 052003 (2013). A: Accelerators, Spectrometers, Detectors and Associated Equipment 479, 117 Accelerators, Spectrometers, Detectors and Associated Equipment 862, 25 (2017). [4] A. Höcker et al., Nuclear Instruments and Methods in Physics Research Section A: [28] P. D. Group et al., Progress of Theoretical and Experimental Physics 2022, 083C01 (2002).Accelerators, Spectrometers, Detectors and Associated Equipment 446, 310 (2000). [42] S. Bachmann et al., Nuclear Instruments and Methods in Physics Research Section (2022)[13] F. Barbosa et al., Nuclear Instruments and Methods in Physics Research Section A: A: Accelerators, Spectrometers, Detectors and Associated Equipment 478, 104 [5] J. Schwiening et al., Nuclear Instruments and Methods in Physics Research Section Accelerators, Spectrometers, Detectors and Associated Equipment 876, 69 (2017). [29] K. N. Borozdin et al., Nature 422, 277 (2003). (2002). A: Accelerators, Spectrometers, Detectors and Associated Equipment 553, 317 [14] A. Ali et al., in Journal of Physics: Conference Series, IOP Publishing (PUI)- [30] L. Liu and P. Solis, Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Research Section A: Aceri [14] A. Ali et al., in Journal of Physics: Conference Series, IOP Publishing (PUI)-[30] L. Liu and P. Solis, Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Research Section A: Aceri [30] L. Liu and P. Solis, Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Research Section A: Aceri [30] L. Liu and P. Solis, Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Research Section A: Aceri [30] L. Liu and P. Solis, Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Research Section A: Aceri [30] A. Ali et al., in Journal of Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Research Section A: Aceri [30] A. Ali et al., in Journal of Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Department, Massachusetts Institute of Technology. [43] F. Sauli, Nuclear Instruments and Methods in Physics Department, Massachusetts Institute of Technology. [40] F. Sauli, Nuclear Instruments and Methods in Physics Department, Massachusetts Institute of Technology. [40] F. Sauli, Nuclear Institute of Technology. [40] F. Sauli, Nuclear Institute of Technology. [40] F. Sa LISHER, ADDRESS, 2022), No. 1, p. 012009. Cambridge, MA 2139, (2007). erators, Spectrometers, Detectors and Associated Equipment 805, 2 (2016). [6] J. Va'vra, D. Roberts, and B. Ratcliff, Nuclear Instruments and Methods in Physics [15] S. Adhikari et al., Nuclear Instruments and Methods in Physics Research Section [31] J. Cohen-Tanugi et al., Nuclear Instruments and Methods in Physics Research [44] M. P. Lener et al., Nuclear Instruments and Methods in Physics Research Section Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-A: Accelerators, Spectrometers, Detectors and Associated Equipment 987, 164807 Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 515. A: Accelerators, Spectrometers, Detectors and Associated Equipment 824, 565 (2021).680 (2003). (2006). [7] S. Collaboration et al., arXiv preprint arXiv:0709.0451 (2007). [16] J. Schwiening et al., Journal of Instrumentation 13, C03004 (2018). [32] J. Va'vra, BABAR DIRC Note 140, (2001). [45] J. Bortfeldt et al., Nuclear Instruments and Methods in Physics Research Section [8] L. Burmistrov et al., Nuclear Instruments and Methods in Physics Research Sec-A: Accelerators, Spectrometers, Detectors and Associated Equipment 903, 317 [17] M. Destefanis et al., Nuclear Physics B-Proceedings Supplements 245, 199 (2013). [33] B. Ratcliff and J. Schwiening, Handbook of Particle Detection and Imaging tion A: Accelerators, Spectrometers, Detectors and Associated Equipment 695, 83 (2018). (Springer, ADDRESS, 2021), pp. 583-608. [18] G. Boca, in EPJ Web of Conferences, EDP Sciences (PUBLISHER, ADDRESS, [46] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics (Cambridge [9] M. Biagini, in Journal of Physics: Conference Series, IOP Publishing (PUB-2014), Vol. 72, p. 00002 [34] O. Čip, F. Petr, V. Matoušek, and J. Lazar, Physica scripta 2005, 48 (2005). University Press, ADDRESS, 2017). LISHER, ADDRESS, 2008), No. 11, p. 112001. [19] P. Collaboration et al., arXiv preprint arXiv:1912.12638 23 (2019). [35] I. M. Frank and I. E. Tamm, Compt. Rend. Acad. Sci. URSS 14, 109 (1937). [47] M. Traxler et al., GSI Scientific Report (2006). [20] M. Diren et al., Nuclear Instruments and Methods in Physics Research Section A: [36] G. Kalicy et al., Journal of Instrumentation 11, C07015 (2016). [48] J. Adkins et al., arXiv preprint arXiv:2209.02580 (2022). Accelerators, Spectrometers, Detectors and Associated Equipment 876, 198 (2017). [37] P. Collaboration et al., arXiv preprint arXiv:1710.00684 (2017). [49] H. Witte et al., in 18th Int. Particle Accelerator Conf. (IPAC'21), Campinas, SP, [21] E. Etzelmüller, (2017). [38] B. K. Lubsandorzhiev, Nuclear Instruments and Methods in Physics Research Sec-Brazil (PUBLISHER, ADDRESS, 2021). [22] P. J. Mohr, B. N. Taylor, and D. B. Newell, (2012). tion A: Accelerators, Spectrometers, Detectors and Associated Equipment 567. [50] S. Hirose et al., Nuclear Instruments and Methods in Physics Research Section A. 236 (2006). [23] B. M. Bolotovskii, Physics-Uspekhi 52, 1099 (2009). Accelerators, Spectrometers, Detectors and Associated Equipment 766, 163 (2014).

(2005).

(2012).

ment 639, 282 (2011).