Soft function study in $pp \rightarrow V + j + X$ processes

Gloria Tejedor García

HUGS Summer School 2024

June 14th 2024

Gloria Tejedor García

Soft function study in $pp \rightarrow V + j + X$ processes

June 14th 2024

Soft function study in $pp \rightarrow V + j + X$ processes

June 14th 2024

イロト イヨト イヨト イヨト

2 / 40

Contents

NOTATION

FROM QCD TO SCET I

- Quark fields
- Gluon fields
- SCET effective Lagrangian
- Wilson lines
- Fields decoupling in SCET

(3) $pp \rightarrow V + j + X$ FACTORIZATION

- Factorization Theorem
- Soft function calculation
- TMDs definition
- Soft function anomalous dimension

CONCLUSIONS

Contents

NOTATION

FROM QCD TO SCET I

- Quark fields
- Gluon fields
- SCET effective Lagrangian
- Wilson lines
- Fields decoupling in SCET

3) pp ightarrow V + j + X FACTORIZATION

- Factorization Theorem
- Soft function calculation
- TMDs definition
- Soft function anomalous dimension

4 CONCLUSIONS

Light-like vectors: $n^{\mu} = \frac{1}{\sqrt{2}}(1, 0, 0, 1)$ $\bar{n}^{\mu} = \frac{1}{\sqrt{2}}(1, 0, 0, -1)$ $n^{2} = \bar{n}^{2} = 0, \ \bar{n} \cdot n = 1.$

 p^{μ} can be decomposed in terms of its light-cone components:

$$p^{\mu} = p_{+}\bar{n}^{\mu} + p_{-}n^{\mu} + p_{\perp}^{\mu} = (p_{+}, p_{-}, p_{\perp})_{n};$$

with
$$\begin{cases} p_{+} = n \cdot p, \ p_{-} = \bar{n} \cdot p, \\ p^{2} = 2p_{+}p_{-} + p_{\perp}^{2} = 2p_{+}p_{-} - \mathbf{p}^{2}. \end{cases}$$

Expansion parameter λ :

$$p_1^2 \sim p_2^2 \sim \lambda^2 Q^2$$

Regions with a non-null contribution (see INTRODUCTION TO SOFT-COLLINEAR

EFFECTIVE THEORY, T. BECHER ET AL. [1]:

- Hard Region, $h \rightarrow k^{\mu} \sim (1,1,1)Q$.
- Collinear Region, $c o k^{\mu} \sim (\lambda^2, 1, \lambda)Q$.
- Anti-Collinear Region, $\bar{c} \rightarrow k^{\mu} \sim (1, \lambda^2, \lambda)Q$.
- Soft Region, $s \to k^{\mu} \sim (\lambda, \lambda, \lambda)Q$.
- Ultra-Soft Region, us $\rightarrow k^{\mu} \sim (\lambda^2, \lambda^2, \lambda^2)Q$.

Contents

NOTATION

FROM QCD TO SCET I

- Quark fields
- Gluon fields
- SCET effective Lagrangian
- Wilson lines
- Fields decoupling in SCET

3) $pp \rightarrow V + j + X$ FACTORIZATION

- Factorization Theorem
- Soft function calculation
- TMDs definition
- Soft function anomalous dimension

4 CONCLUSIONS

Main problems:

- $\psi(x)$ (quark field) and $A_{\mu}(x)$ (gluon field) scale with **different powers** of λ .
- We should check that the theory does not modify the fields dependence on λ.
- The non-local operator require Wilson lines to preserve the gauge invariance.

• Gluon fields:

$$A^{\mu}(x) \to A^{\mu}_{c}(x) + A^{\mu}_{us}(x)$$

• Quarks fields:

$$\psi(x) \to \psi_{c}(x) + \psi_{us}(x)$$

where $\psi_{c}(x) \equiv \xi(x) + \eta(x) \begin{cases} \xi = P_{+}\psi_{c} \equiv \frac{\hbar\hbar}{2}\psi_{c} \\ \eta = P_{-}\psi_{c} \equiv \frac{\hbar\hbar}{2}\psi_{c} \end{cases}$

Gloria Tejedor García

$$\langle 0|T\{A^{\mu}(x)A^{\mu}(0)\}|0
angle = \int rac{d^4p}{(2\pi)^4} rac{i}{p^2 + i0} e^{-ip \cdot x} \left[-g^{\mu
u} + \xi rac{p^{\mu}p^{
u}}{p^2}
ight]$$

1

• Collinear fields
$$\begin{cases} (n \cdot A_c) \sim \lambda^2 \\ (\bar{n} \cdot A_c) \sim \lambda^0 \\ (A_c)_{\perp} \sim \lambda \end{cases}$$

• Ultra-soft fields $\longrightarrow A^{\mu}_{\mu\nu} \sim \lambda^2$

Gloria Tejedor García

Soft function study in $pp \rightarrow V + j + X$ processes

SCET effective Lagrangian

Gluon field: $A^{\mu}(x) \rightarrow (n \cdot A_{c}(x) + n \cdot A_{us}(x))\bar{n}^{\mu} + (\bar{n} \cdot A_{c}(x))n^{\mu} + (A^{\mu}_{c})_{\perp}(x)$

SCET I Lagrangian

$$\mathcal{L}_{\text{SCET I}} = \bar{\psi}_{us} i \not{\!\!D}_{us} \psi_{us} - \frac{1}{4} (F^{us,a}_{\mu\nu})^2 - \frac{1}{4} (F^{c,a}_{\mu\nu})^2 + \\ + \bar{\xi} \not{\!n} \left[i(n \cdot D) + i(\not{\!\!D}_c)_\perp \frac{1}{i2(\bar{n} \cdot D_c)} i(\not{\!\!D}_c)_\perp \right] \xi$$

•
$$iD_{\mu} \equiv (i\partial_{\mu} + gA_{\mu})$$

• $iD^{\mu} = i(n \cdot D)\bar{n}^{\mu} + i(\bar{n} \cdot D_{c})n^{\mu} + i(D_{c}^{\mu})_{\perp}$
• $i(n \cdot D) = i(n \cdot \partial) + g(n \cdot A_{us}^{a}(x_{-})) + g(n \cdot A_{c}^{a}(x))$
• $igF_{\mu\nu}^{us} = [iD_{\mu}^{us}, iD_{\nu}^{us}]; igF_{\mu\nu}^{c} = [iD_{\mu}, iD_{\nu}]$

Gloria Tejedor García

We define an **infinite** Wilson line for each of both fields which form SCET:

•
$$W_c(x) \equiv [x, -\infty\bar{n}] = \operatorname{Pexp}\left[ig \int_{-\infty}^{0} ds \ \bar{n} \cdot A_c(x+s\bar{n}) \right]$$
 (collinear)
• $S_n(x) = \operatorname{Pexp}\left[ig \int_{-\infty}^{0} ds \ n \cdot A_{us}(x+sn) \right]$ (ultra-soft)

$$W(x) \to V(x)W(x)V^{\dagger}(-\infty\bar{n}) \Longrightarrow \underbrace{\chi(x) \equiv W^{\dagger}(x)\psi(x), \ \bar{\chi}(x) \equiv \bar{\psi}(x)W(x)}_{\text{gauge invariant}}$$

Fields decoupling in SCET

Lagrangian with collinear and ultra-soft fields interaction:

$$\mathcal{L}_{c+us} = \bar{\xi}i(n\cdot D)\xi$$

We will consider the following transformations:

•
$$\xi(x) \to S_n(x_-)\xi^{(0)}(x),$$

• $A_c^{\mu}(x) \to S_n(x_-)A_c^{(0)\mu}(x)S_n^{\dagger}(x_-).$

Thus,

$$i(n \cdot D)\xi(x) \to i(n \cdot D')S_n(x_-)\xi^{(0)}(x) = = \left(in \cdot \partial + gn \cdot S_n(x_-)A_c^{(0)}(x)S_n^{\dagger}(x_-) + gn \cdot A_{us}(x_-)\right)S_n(x_-)\xi^{(0)}(x) = = S_n(x_-)i\left(n \cdot D_c^{(0)}(x)\right)\xi^{(0)}(x).$$

We will work with **SCET II**, which implies: SCET I + soft fields.

$$p_s + p_{SCETI} = (\lambda, \lambda, \lambda) + (\lambda, 1, \lambda^2) = (\lambda, 1, \lambda)$$

This result does **not** match any of the variables which defines our cross section (**real modes**) and, when it comes to the Lagrangian, we do not consider the virtual modes, but the real ones \implies The collinear and soft components are independent from each other.

Contents

FROM QCD TO SCET I

- Quark fields
- Gluon fields
- SCET effective Lagrangian
- Wilson lines
- Fields decoupling in SCET

3 $pp \rightarrow V + j + X$ FACTORIZATION

- Factorization Theorem
- Soft function calculation
- TMDs definition
- Soft function anomalous dimension

4 CONCLUSIONS

$pp \rightarrow V + j + X$ FACTORIZATION

Our processes of interest:

Aplications:

- Obtain some fundamental parameters.
- Physics beyond the SM.
- Improve our hadronic radiation knowledge.
- Study of the enviroment where the event happens: quarks and gluons plasma (QGP).

Gloria Tejedor García

Other processes of interest

PUBLISHED FOR SISSA BY DSPRINGER

RECEIVED: August 28, 2020 REVISED: October 30, 2020 ACCEPTED: November 28, 2020 PUBLISHED: January 15, 2021

TMD factorization for dijet and heavy-meson pair in DIS

Rafael F. del Castillo,^a Miguel G. Echevarria,^b Yiannis Makris^c and Ignazio Scimemi^a

^a Departamento de Física Teórica & IPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain ^bDepartamento de Física y Matemáticas, Universidad de Alcalá, 28805 Alcalá de Henares (Madrid), Spain

^cINFN Sezione di Pavia,

via Bassi 6, I-27100 Pavia, Italy

E-mail: raffer06@ucm.es, m.garciae@uah.es, yiannis.makris@pv.infn.it, ignazios@ucm.es

dijet LO process: $q^{\mu} = \frac{Q}{\sqrt{2}}(n^{\mu} - n^{\mu}) = (0, 0, 0, Q)$ p_{1}^{μ} heavy meson pair at LO: p_{1}^{μ} $k^{\mu} = \frac{\xi}{\sqrt{2x}}Qh^{\mu} = \frac{\xi}{2x}(Q, 0, 0, -Q)$ $\notin \square \models$

Gloria Tejedor García

We rewrite the cross section as

$$\int d\sigma = \int \frac{d^3 \mathbf{p}_V}{2p_V^0} \int \frac{d^3 \mathbf{p}_j}{2p_j^0} \int \frac{d^3 \mathbf{p}_X}{2p_X^0} \tilde{\sigma} \longrightarrow d\hat{\sigma} = \frac{d\sigma}{d\eta_V d\eta_j dx_j dx_1 dx_2 d\mathbf{r}_T d\mathbf{p}_T}$$

with

$$\left. \begin{array}{c} \mathbf{r}_{\mathcal{T}} = \mathbf{p}_{\mathcal{T},V} + \mathbf{p}_{\mathcal{T},j} \\ \mathbf{p}_{\mathcal{T}} = \frac{\mathbf{p}_{\mathcal{T},V} - \mathbf{p}_{\mathcal{T},j}}{2} \end{array} \right\} |\mathbf{r}_{\mathcal{T}}| \ll |\mathbf{p}_{\mathcal{T}}| \text{, where we define } \lambda = \frac{|\mathbf{r}_{\mathcal{T}}|}{|\mathbf{p}_{\mathcal{T}}|}$$

Factorized cross section:

$$d\hat{\sigma} = d\hat{\sigma}^a + d\hat{\sigma}^b + d\hat{\sigma}^c$$

•
$$d\hat{\sigma}^a = \sum_f H_{ff \to \gamma j}(\hat{s}, \hat{t}, \hat{u}, \mu) \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\mathbf{r}_T} F_f(\mathbf{x}_1, \mathbf{b}, \mu, \zeta_1) \times$$

 $\times F_f(\mathbf{x}_2, \mathbf{b}, \mu, \zeta_2) S_{ff}(\mathbf{b}, \mu, \zeta_1, \zeta_2) \Big(C_g(\mathbf{b}, R, \mu) J_g(\mathbf{x}_j, p_T, R, \mu) \Big)$
• $d\hat{\sigma}^b = \sum_f H_{fg \to \gamma j}^{\mu\nu}(\hat{s}, \hat{t}, \hat{u}, \mu) \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\mathbf{r}_T} F_f(\mathbf{x}_1, \mathbf{b}, \mu, \zeta_1) \times$
 $\times F_{g,\mu\nu}(\mathbf{x}_2, \mathbf{b}, \mu, \zeta_2) S_{fg}(\mathbf{b}, \mu, \zeta_1, \zeta_2) \Big(C_f(\mathbf{b}, R, \mu) J_f(\mathbf{x}_j, p_T, R, \mu) \Big).$
• $d\hat{\sigma}^c = d\hat{\sigma}^b (f \leftrightarrow g)$

< 4 ► >

Soft function calculation

$$1a \longrightarrow \hat{S}_{ff}(\mathbf{b}) = \frac{1}{C_A C_F} \langle 0 | S_v^{\dagger}(\mathbf{b}, +\infty)_{ca'} Tr\{S_n(\mathbf{b}, -\infty) T^{a'} \times S_{\overline{n}}^{\dagger}(\mathbf{b}, -\infty) S_{\overline{n}}(0, -\infty) T^a S_n^{\dagger}(0, -\infty) \} \mathcal{S}_v(0, +\infty)_{ac} | 0 \rangle$$
$$1b \longrightarrow \hat{S}_{fg}(\mathbf{b}) = \frac{1}{C_A C_F} \langle 0 | \mathcal{S}_n(\mathbf{b}, -\infty)_{ca'} Tr\{S_v^{\dagger}(\mathbf{b}, +\infty) T^{a'} \times S_{\overline{n}}^{\dagger}(\mathbf{b}, -\infty) S_{\overline{n}}(0, -\infty) T^a S_v(0, +\infty) \} \mathcal{S}_n^{\dagger}(0, -\infty)_{ac} | 0 \rangle$$

Wilson lines

$$S_{\nu}(+\infty,\xi) = P \exp\left[-ig \int_{0}^{+\infty} d\lambda \ v \cdot A(\lambda v + \xi)\right]$$
$$S_{n(\bar{n})}(-\infty,\xi) = P \exp\left[ig \int_{-\infty}^{0} d\lambda \ n(\bar{n}) \cdot A(\lambda n(\bar{n}) + \xi) \ e^{\delta^{+}(\delta^{-})\lambda}\right]$$

Gloria Tejedor García

Soft function calculation

Soft function **perturbative** expansion¹:

$$\hat{S} = \sum_{m=0}^{\infty} a_s^m \hat{S}^{[m]} \longrightarrow \hat{S}^{[1]} = rac{1}{2} \sum_{i
eq j} C^{ij} \hat{S}^{[1]}_{ij}$$

(3.1)

Coefficients for each interaction²:

$$\begin{array}{ll} C_{ff}^{n\bar{n}} = 2 C_F - C_A, & C_{fg}^{n\bar{n}} = C_A, \\ C_{ff}^{vn} = C_A, & C_{fg}^{vn} = C_A, \\ C_{ff}^{v\bar{n}} = C_A, & C_{fg}^{v\bar{n}} = 2 C_F - C_A \end{array}$$

 ${}^1\boldsymbol{a}_s = \frac{\alpha_s}{4\pi} = \frac{g^2}{(4\pi)^2}.$ $^{2}C_{F} \equiv \frac{(N_{c}^{2}-1)}{2N_{c}}$ y $C_{A} \equiv N_{c}$, for $SU(N_{c})$ algebras with $(N_{c}^{2}-1)$ generators associated to $N_c \times N_c$ matrices. June 14th 2024

Gloria Tejedor García

Soft function calculation

$$(2b) \longrightarrow \hat{S}_{\nu n}^{[1]} = 2(4\pi)^2 (n \cdot \nu) (\pi I_{\nu n}^R + i I_{\nu n}^V) + h.c.$$

$$(2c) \longrightarrow \hat{S}_{\nu \bar{n}}^{[1]} = 2(4\pi)^2 (\bar{n} \cdot \nu) (\pi I_{\nu \bar{n}}^R + i I_{\nu \bar{n}}^V) + h.c.$$

$$(2d) \longrightarrow \hat{S}_{n \bar{n}}^{[1]} = 2(4\pi)^2 (n \cdot \bar{n}) (\pi I_{n \bar{n}}^R + i I_{n \bar{n}}^V) + h.c.$$

Gloria Tejedor García

Soft function for (1a):

$$\hat{S}_{ff}^{bare}(\mathbf{b}) = \hat{S}_{ff}^{finite}(\mathbf{b}) + 2a_{s} \left\{ -C_{A} \left[\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \left(\ln \left(B\mu^{2} e^{\gamma_{E}} \right) + \ln \left(-\frac{(\mathbf{v} \cdot \mathbf{b})^{2}}{2v_{+}v_{-}B} \right) \right) \right] + 2C_{F} \left[\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \left(\ln (B\mu^{2} e^{-\gamma_{E}}) - \ln (2\delta^{+}\delta^{-}B) \right) \right] \right\} \text{ with } B = \left(\frac{b_{\perp}}{2} \right)^{2}$$

$$\hat{S}_{ff}^{finite}(\mathbf{b}) = 1 - 2a_{s} \left\{ C_{A} \left[-\frac{\pi^{2}}{12} + \ln\left(B\mu^{2}e^{\gamma_{E}}\right) \left(\ln\left(-\frac{(\mathbf{v}\cdot\mathbf{b})^{2}}{2v_{+}v_{-}B}\right) + \frac{1}{2}\ln\left(B\mu^{2}e^{\gamma_{E}}\right) \right) \right] + 2C_{F} \left[\frac{\pi^{2}}{12} + \ln(B\mu^{2}e^{\gamma_{E}}) \left(\ln(2\delta^{+}\delta^{-}Be^{\gamma_{E}}) - \frac{1}{2}\ln(B\mu^{2}e^{-\gamma_{E}}) \right) \right] \right\}$$

Gloria Tejedor García

Soft function for (1b):

$$\hat{S}_{fg}^{bare}(\mathbf{b}) = \hat{S}_{fg}^{finite}(\mathbf{b}) + 2a_{s} \left\{ C_{A} \left[\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \left(\ln \left(B \mu^{2} e^{-\gamma E} \right) - \ln \left(\frac{\nu_{+}}{\nu_{-}} \right) - \ln(2(\delta^{-})^{2} B) \right) \right] - 2C_{F} \frac{1}{\epsilon} \left[\ln(\delta^{+} \sqrt{B} e^{\gamma E}) + \ln \left(-i \frac{\mathbf{v} \cdot \mathbf{b}}{\nu_{+} \sqrt{B}} \right) \right] \right\}$$

$$\begin{split} \hat{S}_{fg}^{finite}(\mathbf{b}) &= 1 - 2a_s \Biggl\{ 2C_F \ln(B\mu^2 e^{\gamma_E}) \Biggl[\ln(\delta^+ \sqrt{B} e^{\gamma_E}) + \ln\left(-i\frac{\mathbf{v} \cdot \mathbf{b}}{v_+ \sqrt{B}}\right) \Biggr] + \\ &+ C_A \Biggl[\frac{\pi^2}{12} + \ln(B\mu^2 e^{\gamma_E}) \Biggl(\ln(2(\delta^-)^2 B e^{\gamma_E}) + \ln\left(\frac{v_+}{v_-}\right) - \frac{1}{2} \ln(B\mu^2 e^{-\gamma_E}) \Biggr) \Biggr] \end{split}$$

3

 $\hat{B}_f(x_1, \mathbf{b}, \mu, \zeta_1)\hat{B}_i(x_2, \mathbf{b}, \mu, \zeta_2)\hat{S}_{fi}(\mathbf{b}, \mu, \delta^+, \delta^-) = F_f(x_1, \mathbf{b}, \mu, \zeta_1)F_i(x_2, \mathbf{b}, \mu, \zeta_2)S_{fi}(\mathbf{b}, \mu, \zeta_1, \zeta_2)$

•
$$F_f(\mathbf{x}_1, \mathbf{b}, \mu, \zeta_1) = \frac{B_i^{un.}(\mathbf{x}_1, \mathbf{b}, \mu, \delta^+)}{S_f^{\frac{1}{2}}(\mathbf{x}_1, \mathbf{b}, \mu, (\delta^1)^2)}$$

• $F_i(\mathbf{x}_2, \mathbf{b}, \mu, \zeta_2) = \frac{B_i^{un.}(\mathbf{x}_2, \mathbf{b}, \mu, \delta^-)}{S_i^{\frac{1}{2}}(\mathbf{x}_2, \mathbf{b}, \mu, (\delta^2)^2)}$
• $S_{fi}(\mathbf{b}, \mu, \zeta_1, \zeta_2) = \frac{\hat{S}_{fi}(\mathbf{b}, \mu, (\delta^1)^2)S_i^{\frac{1}{2}}(\mathbf{b}, \mu, (\delta^2)^2)}{S_f^{\frac{1}{2}}(\mathbf{b}, \mu, (\delta^1)^2)S_i^{\frac{1}{2}}(\mathbf{b}, \mu, (\delta^2)^2)}$

We fix:
$$\delta^{1} = \frac{\zeta_{1}}{(p_{1}^{+})^{2}} \delta^{+}, \ \delta^{2} = \frac{\zeta_{2}}{(p_{2}^{-})^{2}} \delta^{-}; \ \zeta_{1}\zeta_{2} = (p_{1}^{+})^{2} (p_{2}^{-})^{2}.$$

Gloria Tejedor García

TMDs definition

Renormalized soft function for (1a):

•
$$S_{ff}(\mathbf{b},\mu,\zeta_{1},\zeta_{2}) = 1 - 2a_{s}\left\{2C_{F}\ln(B\mu^{2}e^{\gamma_{E}})\ln\left(\frac{(\mu_{1}^{+})^{2}(\mu_{2}^{-})^{2}}{\zeta_{1}\zeta_{2}}\right) + C_{A}\left[-\frac{\pi^{2}}{12} + \ln\left(B\mu^{2}e^{\gamma_{E}}\right)\left(\ln\left(-\frac{(\mathbf{v}\cdot\mathbf{b})^{2}}{2\nu_{+}\nu_{-}B}\right) + \frac{1}{2}\ln\left(B\mu^{2}e^{\gamma_{E}}\right)\right)\right]\right\} + \mathcal{O}(a_{s}^{2})$$

Renormalization function for (1a):

•
$$Z_{ff}^{S}(\mathbf{b},\mu,\zeta_{1},\zeta_{2}) = 1 - 2a_{s}\left\{C_{A}\left[\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon}\left(\ln\left(B\mu^{2}e^{\gamma_{E}}\right) + \ln\left(-\frac{(\mathbf{v}\cdot\mathbf{b})^{2}}{2v_{+}v_{-}B}\right)\right)\right] + 2C_{F}\frac{1}{\epsilon}\ln\left(\frac{(p_{1}^{+})^{2}(p_{2}^{-})^{2}}{\zeta_{1}\zeta_{2}}\right)\right\} + \mathcal{O}(a_{s}^{2})$$

Gloria Tejedor García

TMDs definition

Renormalized soft function for (1b):

•
$$S_{fg}(\mathbf{b},\mu,\zeta_{1},\zeta_{2}) = 1 - 2a_{s} \left\{ C_{A} \ln(B\mu^{2}e^{\gamma_{E}}) \left[\ln\left(\frac{v_{+}}{v_{-}}\right) + 2\ln\left(\frac{(p_{2}^{-})^{2}}{\zeta_{2}}\right) \right] + C_{F} \left[-\frac{\pi^{2}}{12} + \ln(B\mu^{2}e^{\gamma_{E}}) \left(2\ln\left(\frac{(p_{1}^{+})^{2}}{\zeta_{1}}\right) + 2\ln\left(-i\frac{\mathbf{v}\cdot\mathbf{b}}{v_{+}\sqrt{2B}}\right) + \frac{1}{2}\ln(B\mu^{2}e^{\gamma_{E}}) \right) \right] \right\} + \mathcal{O}(a_{s}^{2})$$

Renormalization function for (1b):

•
$$Z_{fg}^{S}(\mathbf{b},\mu,\zeta_{1},\zeta_{2}) = 1 - 2a_{s}\left\{C_{A}\frac{1}{\epsilon}\left[\ln\left(\frac{v_{+}}{v_{-}}\right) + 2\ln\left(\frac{(p_{2}^{-})^{2}}{\zeta_{2}}\right)\right] + C_{F}\left[\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon}\left(\ln(B\mu^{2}e^{\gamma_{E}}) + 2\ln\left(\frac{(p_{1}^{+})^{2}}{\zeta_{1}}\right) + 2\ln\left(-i\frac{\mathbf{v}\cdot\mathbf{b}}{v_{+}\sqrt{2B}}\right)\right)\right]\right\} + \mathcal{O}(a_{s}^{2})$$

Gloria Tejedor García

Soft function anomalous dimension

We can write the **perturbative expansion** of the anomalous dimension as:

$$\gamma = \sum_{n=1}^{n} a_s^n \gamma^{[n]}$$

Soft function anomalous dimension

(1a)
$$\longrightarrow \bullet \gamma_{S_{ff}}^{[1]} = -4a_s \left\{ 2C_F \ln\left(\frac{(p_1^+)^2(p_2^-)^2}{\zeta_1\zeta_2}\right) + C_A \left[\ln\left(B\mu^2 e^{\gamma_E}\right) + \ln\left(-\frac{(\mathbf{v}\cdot\mathbf{b})^2}{2v_+v_-B}\right) \right] \right\}$$

(1b)
$$\longrightarrow \bullet \gamma_{S_{fg}}^{[1]} = -4a_s \left\{ C_F \left[\ln(B\mu^2 e^{\gamma_E}) + 2\ln\left(-i\frac{\mathbf{v}\cdot\mathbf{b}}{v_+\sqrt{2B}}\right) + 2\ln\left(\frac{(p_1^+)^2}{\zeta_1}\right) \right] + C_A \left[\ln\left(\frac{v_+}{v_-}\right) + 2\ln\left(\frac{(p_2^-)^2}{\zeta_2}\right) \right] \right\}$$

Soft function study in $pp \rightarrow V + j + X$ processes

Gloria Tejedor García

Contents

NOTATION

FROM QCD TO SCET I

- Quark fields
- Gluon fields
- SCET effective Lagrangian
- Wilson lines
- Fields decoupling in SCET

3) pp ightarrow V + j + X FACTORIZATION

- Factorization Theorem
- Soft function calculation
- TMDs definition
- Soft function anomalous dimension

4 CONCLUSIONS

- For the full calculation, we should also consider:
 - All the TMDs involved in the process \longrightarrow gluon and quark TMDs (polarized/non-polarized up to NNLO and N³LO).
 - Jet structure \longrightarrow Winner-Take-All (WTA) scheme: 4-momentum <u>null mass limit</u> and it points towards the harder particle direction of the pair.
- Our initial solution for the soft function is compatible with Ec. (3.29) obtained in *JOURNAL OF HIGH ENERGY PHYSICS*, Y. CHIEN *ET AL.* [2].
- As in *JOURNAL OF HIGH ENERGY PHYSICS*, Y. CHIEN *ET AL*. [3], the final results have a dependence on the angle $\widehat{\mathbf{v} \cdot \mathbf{b}}$.
- Aim: To estimate the **non-perturbative** effects of QCD in the <u>TMDs factorization</u> formalism.

- Thomas Becher, Alessandro Broggio, and Andrea Ferroglia. Introduction to Soft-Collinear Effective Theory. Vol. 896. 2015. DOI: 10.1007/978-3-319-14848-9. eprint: 1410.1892 (hep-ph). URL: http://arxiv.org/abs/1410.1892.
- Yang-Ting Chien, Rudi Rahn, Ding Yu Shao, Wouter J. Waalewijn, and Bin Wu.
 "Precision Boson-Jet Azimuthal Decorrelation at Hadron Colliders". In: Journal of High Energy Physics 2023.2 (Feb. 2023), p. 256. ISSN: 1029-8479. DOI: 10.1007/JHEP02(2023)256. eprint: 2205.05104. URL: http://arxiv.org/abs/2205.05104.
- Yang-Ting Chien, Ding Yu Shao, and Bin Wu. "Resummation of Boson-Jet Correlation at Hadron Colliders". In: *Journal of High Energy Physics* 2019.11 (Nov. 2019), p. 25. ISSN: 1029-8479. DOI: 10.1007/JHEP11(2019)025. eprint: 1905.01335. URL: http://arxiv.org/abs/1905.01335.

THANK YOU!

Gloria Tejedor García

Soft function study in $pp \rightarrow V + j + X$ processes

June 14th <u>2024</u>

(人間) トイヨト イヨト

34 / 40

э

SCET effective Lagrangian

$$\not\!\!/ \xi = \bar{\xi} \not\!\!/ = 0, \ \not\!\!/ \eta = \bar{\eta} \not\!\!/ = 0, \ \bar{\xi} \not\!\!/ \psi_\perp \xi = 0 \text{ y } \bar{\eta} \not\!\!/ \psi_\perp \eta = 0 \ (\{\not\!\!/ , \not\!\!/ \psi_\perp\} = \{\not\!\!/ , \not\!\!/ \psi_\perp\} = 0)$$

Collinear Lagrangian

Through Euler-Lagrange equations:

$$\eta = -\frac{\hbar}{(\bar{n} \cdot D)} \not{D}_{\perp} \xi ; \qquad \bar{\eta} = -\bar{\xi} \not{D}_{\perp} \frac{\hbar}{(\bar{n} \cdot D)}.$$

$$\mathcal{L}_{c} = \bar{\xi}i(n \cdot D)\hbar\xi + \bar{\xi}i\not{D}_{\perp}\frac{1}{i2(\bar{n} \cdot D)}i\not{D}_{\perp}\hbar\xi$$

Gloria Tejedor García

Finite Wilson line

$$[z, y]_{A} \equiv \mathbf{P} \exp \left[ig \int_{s_{y}}^{s_{z}} ds \frac{dx^{\mu}}{ds} A_{\mu}(x(s)) \right] \text{ with } y \equiv x(s_{y}), \ z \equiv x(s_{z}).$$

Gauge transformation: $V(x) = e^{i\alpha(x)} \Longrightarrow A_{\mu} \to A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{g} \partial_{\mu} \alpha(x)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$z, y]_{A} \rightarrow [z, y]_{A'}$$

$$= exp \left[ig \int_{s_{y}}^{s_{z}} ds \frac{dx^{\mu}}{ds} A_{\mu}(x(s)) + i \int_{s_{y}}^{s_{z}} ds \frac{dx^{\mu}}{ds} \partial_{\mu} \alpha(x(s)) \right]$$

$$= exp \left[ig \int_{s_{y}}^{s_{z}} ds \frac{dx^{\mu}}{ds} A_{\mu}(x(s)) + i\alpha(z) - i\alpha(y) \right]$$

$$= V(z) [z, y]_{A} V^{\dagger}(y)$$

Gloria Tejedor García

Soft function study in $pp \rightarrow V + j + X$ processe

3

イロト イヨト イヨト イヨト

Finite Wilson lines

$$[x+sar{n},x] \equiv \mathbf{P}\exp\left[ig\int\limits_{0}^{s}ds'\ ar{n}\cdot A(x+s'ar{n})
ight]$$

$$[x + s\bar{n}, x] \to V(x + s\bar{n}) [x + s\bar{n}, x] V^{\dagger}(x) \Longrightarrow \underbrace{\bar{\psi}(x + s\bar{n}) [x + s\bar{n}, x] \psi(x)}_{\text{gauge inversant}}$$

Gloria Tejedor García

Soft function study in $pp \rightarrow V + j + X$ processes

June 14th 202<u>4</u>

- 2

イロト イボト イヨト イヨト

38 / 40

$\langle 0 \left| J^{\mu}(x) J^{\nu}(0) \right| p_1 p_2 \rangle \longrightarrow \langle 0 \left| \overline{\psi}_{\overline{n}} \gamma^{\mu} \psi_n(x) \overline{\psi}_n \gamma^{\nu} \psi_{\overline{n}}(0) \right| p_1 p_2 \rangle$

FIERZING: $\langle 0 | \overline{\chi}^a \gamma^{\mu}_{ab} \eta^b(x) \overline{\eta}^c \gamma^{\nu}_{cd} \chi^d(0) | p_1 p_2 \rangle$

If we consider:
$$\gamma^{\mu}_{ab}\gamma^{\nu}_{cd} = \sum_{\Gamma} c_{\Gamma}\gamma_{ad}\gamma_{cb}$$

 $\Longrightarrow \langle 0| \sum_{\Gamma} c_{\Gamma} \left(\overline{\chi}^{a}(x) \gamma^{\mu}_{ad} \chi^{d}(0) \right) \left(\overline{\eta}^{c}(0) \gamma^{\nu}_{cb} \eta^{b}(x) \right) |p_{1}p_{2} \rangle \\ \Longrightarrow \langle 0| \sum_{\Gamma} c_{\Gamma} \left(\overline{\psi}_{\overline{n}}(x) \gamma^{\mu} \psi_{\overline{n}}(0) \right) \left(\overline{\psi}_{n}(0) \gamma^{\nu} \psi_{n}(x) \right) |p_{1}p_{2} \rangle$

Factorization toy model

Gauge transformation:

$$\sum_{\Gamma} c_{\Gamma} \langle 0 | S_{\bar{n}}^{\dagger} S_{n}(x) S_{n}^{\dagger} S_{\bar{n}}(0) | 0 \rangle \times \\ \times \langle 0 | \overline{\xi}_{n}(0) \gamma^{\nu} \xi_{n}(x) | p_{1} \rangle \langle 0 | \overline{\xi}_{\bar{n}}(x) \gamma^{\mu} \xi_{\bar{n}}(0) | p_{2} \rangle$$