

Chiral Phase Transition in Lattice Quantum Chromodynamics Signatures of Chiral Symmetry Restoration

Adel Bensaoula

Supervisor: Dr. Rene Bellwied

Department of Physics University of Houston

June 2024

Motivation

- \bullet Understanding strongly interacting matter at extreme conditions (High- T and High- μ_B) is crucial for mastery over QCD at all regimes.
- Validating theoretical models that describe QCD at high energies.
- \bullet Chiral Symmetry Restoration \rightarrow Experimental confirmation of the Quark-Gluon Plasma.

Overview

1 [Introduction](#page-3-0)

- [Quantum Chromodynamics \(QCD\)](#page-4-0)
- [Overview of Phase Transitions](#page-7-0)
- [The Phases of QCD](#page-10-0)
- [Lattice Gauge Theory and QCD](#page-11-0)
- [The Limits of QCD](#page-20-0)
	- [The Limits of QCD Lagrangian](#page-21-0)
	- \bullet The Z_3 [Symmetry of Pure Gauge QCD](#page-21-0)
	- [The Chiral Phase Transition in the Chiral Limit](#page-21-0)
	- [Key Takeaways of the Chiral Phase Transition](#page-21-0)
- ³ [Chiral Symmetry Observables](#page-28-0) [Experimental Observables \(I\) - \(III\)](#page-29-0)
- ⁴ [Experimental Analysis](#page-41-0)

[Conclusion](#page-50-0)

1. Introduction

Quantum Chromodynamics (QCD)

Going over the fundamentals (Again...)

Quantum Chromodynamics (QCD) is the theory of strongly interacting matter.

[Introduction](#page-3-0) [The Limits of QCD](#page-20-0) [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0)

- \bullet Describes the binding of Quarks mediated by Gluons into bound states \rightarrow **Hadrons** which come in $q\bar{q}$ (Mesons) or qqq (Baryons¹) states.
- Color Charge (QCD) < analogous Electric Charge (QED). However;
	-
	-
	-

Next, A brief overview of Phase Transitions ...

theoretically possible. They may also constitute of a molecular baryon-meson or baryon-baryon

Going over the fundamentals (Again...)

- Quantum Chromodynamics (QCD) is the theory of strongly interacting matter.
- \bullet Describes the binding of Quarks mediated by Gluons into bound states \rightarrow **Hadrons** which come in $q\bar{q}$ (Mesons) or qqq (Baryons¹) states.
- Color Charge (QCD) < analogous Electric Charge (QED). However;
	-
	-
	-

Next, A brief overview of Phase Transitions ...

¹Multi-quark states with > 3 Quarks remain to be experimentally confirmed but are, however, theoretically possible. They may also constitute of a molecular baryon-meson or baryon-baryon state.

Going over the fundamentals (Again...)

- Quantum Chromodynamics (QCD) is the theory of strongly interacting matter.
- \bullet Describes the binding of Quarks mediated by Gluons into bound states \rightarrow **Hadrons** which come in $q\bar{q}$ (Mesons) or qqq (Baryons¹) states.
- Color Charge (QCD) < analogous Electric Charge (QED). However:
	- Three color charges instead of one!
	- Color confinement; Strength rises with distance!
	- Asymptotic Freedom; interaction weakens at High Energies.

Next. A *brief* overview of Phase Transitions ...

¹Multi-quark states with > 3 Quarks remain to be experimentally confirmed but are, however, theoretically possible. They may also constitute of a molecular baryon-meson or baryon-baryon state.

Overview on Phase Transitions

A Phase Transition (PT) is the transformation of a thermodynamic system 2 from one phase to another. Properties of the medium exhibiting a phase transition often change discontinuously as a result of external conditions.

[Introduction](#page-3-0) [The Limits of QCD](#page-20-0) [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0)

- An **Order Parameter** is a physical observable that is able to distinguish between two distinct phases.
- We follow the *Ehrenfest* Phase Transition Classification based on the behavior of the Free Energy as a function of other thermodynamic
	-
	-
	-

²We usually limit ourselves to equilibrium phase transitions by looking at the behavior of the Free Energy, meaning, both phases are in mechanical, thermal and chemical equilibrium.

Overview on Phase Transitions

A Phase Transition (PT) is the transformation of a thermodynamic system 2 from one phase to another. Properties of the medium exhibiting a phase transition often change discontinuously as a result of external conditions.

[Introduction](#page-3-0) [The Limits of QCD](#page-20-0) [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0)

- An Order Parameter is a physical observable that is able to distinguish between two distinct phases.
- We follow the *Ehrenfest* Phase Transition Classification based on the behavior of the Free Energy as a function of other thermodynamic
	-
	-
	-

²We usually limit ourselves to equilibrium phase transitions by looking at the behavior of the Free Energy, meaning, both phases are in mechanical, thermal and chemical equilibrium.

Overview on Phase Transitions

A Phase Transition (PT) is the transformation of a thermodynamic system 2 from one phase to another. Properties of the medium exhibiting a phase transition often change discontinuously as a result of external conditions.

[Introduction](#page-3-0) [The Limits of QCD](#page-20-0) [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0)

- An Order Parameter is a physical observable that is able to distinguish between two distinct phases.
- We follow the *Ehrenfest* Phase Transition Classification based on the behavior of the Free Energy as a function of other thermodynamic variables:
	- First Order Phase Transition; First Derivative discontinuity with respect to a thermodynamic variable.
	- Second Order Phase Transition; Second Detivative divergence and discontinuity and power law behavior of $\frac{|T_c - T|}{T_c}$ at T_c .
	- Analytic Crossover; Smooth change from one phase to another, characterized by a peak in susceptibility.

 2 We usually limit ourselves to equilibrium phase transitions by looking at the behavior of the Free Energy, meaning, both phases are in mechanical, thermal and chemical equilibrium.

QCD Phase Diagram

Figure 1: A schematic QCD phase diagram in the thermodynamic parameter space spanned by the temperature T and baryonic chemical potential μ_B . The corresponding (center-of-mass) collision energy ranges for different accelerator facilities, especially the RHIC beam energy scan program, are indicated in the figure. Figure adapted from [\[Bzd+20\]](#page-55-0)

Lattice Gauge Theory and QCD

- Lattice QCD (LQCD) is a non-perturbative approach to studying strongly interacting matter.
- Quarks are represented by lattice points and Gluons are the links between them!
- The relative *strength* of the links can be adjusted.
- However! $\cot \alpha \left(\frac{L}{a}\right)^4 \frac{1}{a} \frac{1}{m_{\pi}^2 a}$; with $\left(\frac{L}{a}\right)^4$ being the lattice specs and $\frac{1}{a} \frac{1}{m_{\pi}^2 a}$ being the critical slow-down parameter.

Lattice Gauge Theory and QCD

- Lattice QCD (LQCD) is a non-perturbative approach to studying strongly interacting matter.
- Quarks are represented by lattice points and Gluons are the links between them!
- The relative *strength* of the links can be adjusted.
- However! $\cot \alpha \left(\frac{L}{a}\right)^4 \frac{1}{a} \frac{1}{m_{\pi}^2 a}$; with $\left(\frac{L}{a}\right)^4$ being the lattice specs and $\frac{1}{a} \frac{1}{m_{\pi}^2 a}$ being the critical slow-down parameter.

Lattice Gauge Theory and QCD

- Lattice QCD (LQCD) is a non-perturbative approach to studying strongly interacting matter.
- Quarks are represented by lattice points and Gluons are the links between them!
- The relative *strength* of the links can be adjusted.
- However! $\cot \alpha \left(\frac{L}{a}\right)^4 \frac{1}{a} \frac{1}{m_{\pi}^2 a}$; with $\left(\frac{L}{a}\right)^4$ being the lattice specs and $\frac{1}{a} \frac{1}{m_{\pi}^2 a}$ being the critical slow-down parameter.

Lattice Gauge Theory and QCD

- Lattice QCD (LQCD) is a non-perturbative approach to studying strongly interacting matter.
- Quarks are represented by lattice points and Gluons are the links between them!
- The relative *strength* of the links can be adjusted.
- However! $\cot \propto \left(\frac{L}{a}\right)^4 \frac{1}{a} \frac{1}{m_{\pi}^2 a}$; with $\left(\frac{L}{a}\right)^4$ being the lattice specs and $\frac{1}{a} \frac{1}{m_{\pi}^2 a}$ being the critical slow-down parameter.

Thermal LQCD

Temperature evolution ⇐⇒ Time evolution

 $T^{-1} = a_t N_t$

 $\frac{a_{\tau}}{a_{\rm s}} \ll 1$

(Anti-)Periodic boundary conditions on the (Fermionic) Bosonic degrees of freedom.³

•
$$
\beta = \frac{6}{g^2}
$$
 varies T^4 .

 4 Increasing β drives the correlation length to diverge in units of lattice spacing, thus increasing

Thermal LQCD

Temperature evolution ⇐⇒ Time evolution $\bullet T^{-1} = a_t N_t$

 $\frac{a_{\tau}}{a_{\rm s}} \ll 1$

(Anti-)Periodic boundary conditions on the (Fermionic) Bosonic degrees of freedom.³

•
$$
\beta = \frac{6}{g^2}
$$
 varies T^4 .

 4 Increasing β drives the correlation length to diverge in units of lattice spacing, thus increasing

Thermal LQCD

- Temperature evolution ⇐⇒ Time evolution $\bullet T^{-1} = a_t N_t$
- $\frac{a_{\tau}}{a_{\mathsf{s}}} \ll 1$
- (Anti-)Periodic boundary conditions on the (Fermionic) Bosonic degrees of freedom.³

•
$$
\beta = \frac{6}{g^2}
$$
 varies T^4 .

 4 Increasing β drives the correlation length to diverge in units of lattice spacing, thus increasing

Thermal LQCD

- Temperature evolution ⇐⇒ Time evolution $\bullet T^{-1} = a_t N_t$
- $\frac{a_{\tau}}{a_{\mathsf{s}}} \ll 1$
- (Anti-)Periodic boundary conditions on the (Fermionic) Bosonic degrees of freedom.³

•
$$
\beta = \frac{6}{g^2}
$$
 varies T^4 .

³This ensures correct spin statistics.

 4 Increasing β drives the correlation length to diverge in units of lattice spacing, thus increasing

Thermal LQCD

- Temperature evolution ⇐⇒ Time evolution $\bullet T^{-1} = a_t N_t$
- $\frac{a_{\tau}}{a_{\mathsf{s}}} \ll 1$
- (Anti-)Periodic boundary conditions on the (Fermionic) Bosonic degrees of freedom.³

•
$$
\beta = \frac{6}{g^2}
$$
 varies T^4 .

³This ensures correct spin statistics.

 4 Increasing β drives the correlation length to diverge in units of lattice spacing, thus increasing the temperature.

2. The Limits of QCD

Limits of the QCD Lagrangian

What is the Pure Gauge Limit of QCD?

 $m_q \rightarrow \infty$

- Only gluonic degrees of freedom!
- \circ Z₃ Symmetry of QCD; 1st Order PT.
- \circ Polyakov Loop $\langle L(\vec{r})\rangle$; Order Parameter.

 $m_a \rightarrow 0$

- **Chiral Symmetry spontaneously broken.**
- Chiral Condensate $\langle \Psi \bar{\Psi} \rangle$; Order Parameter; 2nd Order PT.

 $m_q \neq 0$; small for u, d, s

-
-
-

Limits of the QCD Lagrangian

What is the Pure Gauge Limit of QCD?

 $m_q \rightarrow \infty$

- Only gluonic degrees of freedom!
- \circ Z₃ Symmetry of QCD; 1st Order PT.
- \circ Polyakov Loop $\langle L(\vec{r})\rangle$; Order Parameter.

What is the Chiral limit of QCD?

 $m_q \rightarrow 0$

- **c** Chiral Symmetry spontaneously broken.
- Chiral Condensate $\langle \Psi \bar{\Psi} \rangle$; Order Parameter; 2nd Order PT.

 $m_a \neq 0$; small for u, d, s

- Chiral Symmetry explicitly broken by finite quark masses.
- \bullet Z_3 Symmetry explicitly broken by presence of quarks.
- **Transition is Analytic Crossover.**

Limits of the QCD Lagrangian

What is the Pure Gauge Limit of QCD?

 $m_q \rightarrow \infty$

- Only gluonic degrees of freedom!
- \circ Z₃ Symmetry of QCD; 1st Order PT.
- \circ Polyakov Loop $\langle L(\vec{r})\rangle$; Order Parameter.

What is the Chiral limit of QCD?

 $m_q \rightarrow 0$

- **c** Chiral Symmetry spontaneously broken.
- Chiral Condensate $\langle \Psi \bar{\Psi} \rangle$; Order Parameter; 2nd Order PT.

Real World!

 $m_a \neq 0$; small for u, d, s

- Chiral Symmetry explicitly broken by finite quark masses.
- \circ Z_3 Symmetry explicitly broken by presence of quarks.
- Transition is Analytic Crossover.

Figure 3: Heavy Quark Anti-Quark Renormalized Polyakov loop as a function of temperature.[\[Kac+02\]](#page-56-0)

Figure 4: Renormalized Polyakov loop as a function of the temperature with Physical Quark Masses.[\[Bor+10\]](#page-54-2)

T [MeV]

Our Focus: The Chiral Phase Transition in the Chiral Limit

$$
m_l \to 0 \qquad \qquad \Rightarrow \qquad \qquad m_l \neq 0
$$

Figure $5:$ Chiral condensate σ as a function of temperature T in the chiral limit ($m_q = 0$, the black curves) and with the physical quark mass ($m_q = 3.22$, the blue curve). The red circles represent the critical point (T_c) of the second order phase transition and the crossover point (\bar{T}_{CD}) , which is identified as the fastest decreasing point of σ , i.e., $d^2 \sigma / d^2 T$ $T = T_{cp}$. Numerically, we get $T_c = 0.163$ GeV and $T_c p = 0.164$ GeV [\[Cao+21\]](#page-55-1)

Figure 6: Renormalized Chiral Condensate $\langle \Psi \Psi \rangle_R$ defined in eq.[\(1\)](#page-25-1)[\[Bor+10\]](#page-54-2)

$$
\langle \Psi \bar{\Psi} \rangle_R = -(\langle \Psi \bar{\Psi} \rangle_{I,T} - \langle \Psi \bar{\Psi} \rangle_{I,0}) \frac{m_I}{X} \quad (1)
$$
\nwith $I = u, d$

The Chiral Susceptibility $\overline{\chi_{\text{WV}}}$

Figure 7: Re-normalized Chiral susceptibility as a function of the temperature normalized with $1/T^4$. The horizontal error bar marks the temperature of the peak in the continuum. The peak position is sensitive to the details of the normalization, which is a manifestation of the broadness of the transition range. [\[Bor+10\]](#page-54-2)

- Defining the Light Quark Susceptibility $\chi_{\Psi \bar{\Psi}}$ in eq. [\(2\)](#page-26-1)[\[Bor+10\]](#page-54-2), we get observe a divergence $+$ Power Law behavior at the Chiral limit indicative of a 2nd order PT.
- In the case of $m_l \neq 0$ This is replaced by an **Analytic Crossover** marked by a peak in the Light Quark Susceptibility χ_{WW} .
- Though Chiral Symmetry is explicitly broken with the physical quark masses, we still expect a *partial* restoration at a high enough energy regime.

3. Chiral Symmetry **Observables**

But First, Resonances as Probes for the Medium

But just what are Resonances?

Unsable excited states characterized by a pole position⁵ in the complex s-plane.

$$
\sqrt{s_R} = M_R - i\frac{\Gamma_R}{2}
$$

- with M_R being the rest mass and $\Gamma_R/2$ being the Lifetime.
- Coupled to multiple decay channels.
- E.g: ∆(1232) Resonance decay channels

$$
\Delta^{++} \rightarrow p + \pi^{+}
$$
\n
$$
\Delta^{+} \rightarrow p + \pi^{0}
$$
\n
$$
\Delta^{0} \rightarrow p + \pi^{-}
$$
\n
$$
\Delta^{0} \rightarrow n + \pi^{0}
$$
\n
$$
\Delta^{-} \rightarrow n + \pi^{-}
$$

⁵Model Independent

- [Introduction](#page-3-0) [The Limits of QCD](#page-20-0) [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0) Experimental Observables (I)
	- Chiral Symmetry implies that every Isospin multiplet has a mass degenerate *parity partner* 6 *.* However, $m_l\neq 0$ explicitly breaks this symmetry thus making them no longer degenerate. E.g:

$$
J^{\pi} = 1^{-} \text{ (vector)} \quad m_{\rho} = 0.77 \text{ GeV}
$$

$$
J^{\pi} = 1^{+} \text{ (axial vector)} \quad m_{a_1} = 1.23 \text{ GeV}
$$

- Experimental Evidence that Chiral Symmetry is not realized at hadronic phase!
- What happens at the Analytic Crossover?

Chiral Symmetry Restoration \Rightarrow Parity Partner Mass Degeneracy⁷

Mass Modification!

 6 State with the same Mass, Quantum Numbers and Opposite Parity. ⁷Parital.

- [Introduction](#page-3-0) [The Limits of QCD](#page-20-0) [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0) Experimental Observables (I)
	- Chiral Symmetry implies that every Isospin multiplet has a mass degenerate *parity partner* 6 *.* However, $m_l\neq 0$ explicitly breaks this symmetry thus making them no longer degenerate. E.g:

$$
J^{\pi} = 1^{-} \text{ (vector)} \quad m_{\rho} = 0.77 \text{ GeV}
$$

$$
J^{\pi} = 1^{+} \text{ (axial vector)} \quad m_{a_1} = 1.23 \text{ GeV}
$$

- Experimental Evidence that Chiral Symmetry is not realized at hadronic phase!
- What happens at the Analytic Crossover?

Chiral Symmetry Restoration \Rightarrow Parity Partner Mass Degeneracy⁷

Mass Modification!

 6 State with the same Mass, Quantum Numbers and Opposite Parity. ⁷Parital.

upper Curve corresponds to a_1 , the middle one is ρ and the lower one is ω . [BR95]

Figure 9: Screening masses, expressed in units of the temperature, as extrapolated to the chiral limit. [\[DK87\]](#page-55-3)

Β

Figure 10: ϕ meson mass dependence on temperature. [\[Bha+97\]](#page-54-3)

Experimental Observables (II)

- Increased Interaction rates: \rightarrow Modification of the spectral width.
	- Expected enhancement in production mechanisms in the presence of the medium.
- Resonance Overlap \rightarrow Increase in the density of states of Resonances.

Width Broadening!

Experimental Observables (II)

- Increased Interaction rates: \rightarrow Modification of the spectral width.
	- Expected enhancement in production mechanisms in the presence of the medium.
- Resonance Overlap \rightarrow Increase in the density of states of Resonances.

Width Broadening!

Figure 11: ϕ meson width dependence on temperature. [\[Bha+97\]](#page-54-3)

Experimental Observables (III)

- Off-mass shell decay \rightarrow Main decay channel rate reduction.
	- . What happens once we're below the Energy Threshold of the main decay channel?

[Introduction](#page-3-0) The Limits of CCD [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0)
Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion

E.g: $m_{\Delta}(\mathcal{T})|_{\mathcal{T}\rightarrow \mathcal{T}_c}\neq m_N+m_{\pi}$

- Decay Channel \rightarrow Secondary decay channel enhancement.
	- Can we disentangle a Temperature dependence in Γ_S/Γ_P due to the presence of the medium?

Branching Ratio Modification!

Experimental Observables (III)

- Off-mass shell decay \rightarrow Main decay channel rate reduction.
	- . What happens once we're below the Energy Threshold of the main decay channel?

[Introduction](#page-3-0) The Limits of CCD [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0)
Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion

E.g:
$$
m_{\Delta}(T)|_{T \to T_c} \neq m_N + m_{\pi}
$$

- Decay Channel \rightarrow Secondary decay channel enhancement.
	- Can we disentangle a Temperature dependence in Γ_S/Γ_P due to the presence of the medium?

Branching Ratio Modification!

Figure 12: Dilepton invariant mass spectra from calculations with free (dotted histogram) and in-medium (solid histogram) vector meson masses. [\[LKB95\]](#page-56-1)

More Observables, Same Signature

Mass Shifting ⇕ Width Broadening ⇕ Branching Ratio Modification

4. Experimental Analysis

Figure 13: ALICE at CERN.

Figure 15: STAR at RHIC.

Figure 14: ALICE Event Display for RUN3 Data.

Figure 16: STAR Event Display for RUN20.

Relativistic Heavy-Ion Collisions

Probing matter at the most extreme conditions!

Figure 17: Evolution of a Relativistic Heavy Ion Collision.

Ready, Set, Measure! Right? Right ... ?

Relativistic Heavy-Ion Collisions

Probing matter at the most extreme conditions!

Figure 17: Evolution of a Relativistic Heavy Ion Collision.

Ready, Set, Measure! Right? Right ...?

The Good, the **Bad** and the Ugly

Surely, it can't be that bad ... Consider the case of the $a_1(1260)$ Meson.

• Two decay channels $\rightarrow \gamma \pi$ and $\rightarrow \rho \pi$.

Width Broadening driven by Chiral Symmetry Restoration?

Harder to distinguish without $\rho - \pi$ correlations ...

Figure 19: Mass distribution of a1 mesons which can be reconstructed in $\gamma\pi$ correlations in nucleus-nucleus and proton-proton collisions at 20 and 30 GeV. [\[VB08\]](#page-56-2)

[Introduction](#page-3-0) [The Limits of QCD](#page-20-0) [Chiral Symmetry Observables](#page-28-0) [Experimental Analysis](#page-41-0) [Conclusion](#page-50-0) [References](#page-54-0)
Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion

The Good, the **Bad** and the Ugly

Surely, it can't be THAT Ugly ... Consider the case of the $\phi(1020)$ Meson.

- Abundant Production at different energies!
- A **hadronic** decay \rightarrow K^+K^- and a leptonic decay \rightarrow e^+e^- .
- Noticable deviation in branching ratio due to Chiral Symmetry Restoration?

May be inconclusive since the ϕ (1020) greatly outlives the QGP ...

Figure 20: Diagram showcasing the decay of the ϕ through the evolution of the QGP.

Is there even hope for our approach at this point? Maybe ...

Figure 21: Temperature dependence of the octet ground state masses. [\[Aar+19\]](#page-54-4)

Figure 22: Temperature dependence of the decuplet ground state masses. [\[Aar+19\]](#page-54-4)

 $S =$

 $S = -1$

150

100

- Starting with the Positive Chiral Partner $\Xi(1530)$
	- $M_{\equiv (1530)^0} = 1531.6 \pm 0.4$ MeV $M_{\equiv (1530)^-} = 1534.4 \pm 1.1$ MeV
	- $\bullet \tau \sim 20$ fm/c
	- Decay Modes: $\Xi \pi$ and $\Xi \gamma$
- Now, for the **Negative** Chiral Partner $\Xi(1820)$
	- $M_{\Xi(1820)} = 1823 \pm 5MeV$
	- $\bullet~\tau \sim 10~{\rm fm/c}$
	- Measured Decay Modes: $\Lambda \bar{K}$, Σ \bar{K} .
	- Not much is known about the $\Xi(1820)$...

Figure 23: Invariant mass plot produced through background subtraction from \sim 400 million events (collisions).

5. Conclusion

Conclusion

- \bullet The Chiral Phase transition is a model independent PT in the Low μ_B regime.
	- \rightarrow Rich phenomenon with many experimental observables, some mentioned in previous talk(s).
	- \rightarrow Key in understanding the nature of confinement in the energy regime.
	- $\bullet \rightarrow$ Direct observation of dynamical mass generation.
- Modification in the Resonance Mass Spectrum *smoking gun* Signature of this PT.
- **Strong** evidence for the existence and production of the Quark-Gluon Plasma!
- **Most important aspect ...** it would be pretty cool :)

Conclusion

- \bullet The Chiral Phase transition is a model independent PT in the Low μ_B regime.
	- \rightarrow Rich phenomenon with many experimental observables, some mentioned in previous talk(s).
	- \rightarrow Key in understanding the nature of confinement in the energy regime.
	- $\bullet \rightarrow$ Direct observation of dynamical mass generation.
- Modification in the Resonance Mass Spectrum *smoking gun* Signature of this PT.
- **Strong** evidence for the existence and production of the Quark-Gluon Plasma!
- Most important aspect ... it would be pretty cool :)

Thank You

References I

- [Aar+19] Gert Aarts et al. "Hyperons in thermal QCD: A lattice view". In: Phys. Rev. D 99 (7 Apr. 2019), p. 074503. DOI: [10.1103/PhysRevD.99.074503](https://doi.org/10.1103/PhysRevD.99.074503). url: <https://link.aps.org/doi/10.1103/PhysRevD.99.074503>.
- [Bha+97] Abhijit Bhattacharyya et al. "In-medium effects on the ϕ meson". In: Phys. Rev. C 55 (3 Mar. 1997), pp. 1463-1466. DOI: [10.1103/PhysRevC.55.1463](https://doi.org/10.1103/PhysRevC.55.1463). url: <https://link.aps.org/doi/10.1103/PhysRevC.55.1463>.
- $[Bi + 20]$ Bi, Yujiang et al. "Lattice QCD GPU Inverters on ROCm Platform". In: EPJ Web Conf. 245 (2020), p. 09008. DOI: [10.1051/epjconf/202024509008](https://doi.org/10.1051/epjconf/202024509008). url: <https://doi.org/10.1051/epjconf/202024509008>.
- [Bor+10] Szabolcs Borsányi et al. "Is there still any T_c mystery in lattice QCD? Results with physical masses in the continuum limit III". In: Journal of High Energy Physics 2010.9 (Sept. 2010). ISSN: 1029-8479. doi: [10.1007/jhep09\(2010\)073](https://doi.org/10.1007/jhep09(2010)073). URL: [http://dx.doi.org/10.1007/JHEP09\(2010\)073](http://dx.doi.org/10.1007/JHEP09(2010)073).

References II

[BR95] A Bhattacharyya and S Raha. "Temperature dependence of hadron masses: I. Results from an extended linear sigma model". In: Journal of Physics G: Nuclear and Particle Physics 21.6 (June 1995), p. 741. DOI: [10.1088/0954-3899/21/6/004](https://doi.org/10.1088/0954-3899/21/6/004). URL: <https://dx.doi.org/10.1088/0954-3899/21/6/004>. [Bzd+20] Adam Bzdak et al. "Mapping the phases of quantum chromodynamics with beam energy scan". In: Physics Reports 853 (Apr. 2020), pp. 1-87. ISSN: 0370-1573. DOI: [10.1016/j.physrep.2020.01.005](https://doi.org/10.1016/j.physrep.2020.01.005). url: <http://dx.doi.org/10.1016/j.physrep.2020.01.005>. [Cao+21] Xuanmin Cao et al. "Thermal properties of light mesons from holography". In: Journal of High Energy Physics 2021.8 (Aug.

2021). ISSN: 1029-8479. DOI: [10.1007/jhep08\(2021\)005](https://doi.org/10.1007/jhep08(2021)005). URL: [http://dx.doi.org/10.1007/JHEP08\(2021\)005](http://dx.doi.org/10.1007/JHEP08(2021)005).

[DK87] Carleton E. Detar and John B. Kogut. "Measuring the Hadronic Spectrum of the Quark Plasma". In: Phys. Rev. D 36 (1987), p. 2828. DOI: [10.1103/PhysRevD.36.2828](https://doi.org/10.1103/PhysRevD.36.2828).

References III

[Kac+02] O Kaczmarek et al. "Heavy quark–antiquark free energy and the renormalized Polyakov loop". In: Physics Letters B 543.1–2 (Sept. 2002), pp. 41–47. ISSN: 0370-2693. DOI: [10.1016/s0370-2693\(02\)02415-2](https://doi.org/10.1016/s0370-2693(02)02415-2). url: [http://dx.doi.org/10.1016/S0370-2693\(02\)02415-2](http://dx.doi.org/10.1016/S0370-2693(02)02415-2).

- [LKB95] G. Q. Li, C. M. Ko, and G. E. Brown. "Enhancement of Low-Mass Dileptons in Heavy Ion Collisions". In: Phys. Rev. Lett. 75 (22 Nov. 1995), pp. 4007-4010. DOI: [10.1103/PhysRevLett.75.4007](https://doi.org/10.1103/PhysRevLett.75.4007). URL: <https://link.aps.org/doi/10.1103/PhysRevLett.75.4007>.
- [VB08] Sascha Vogel and Marcus Bleicher. " a_1 meson being a difficult messenger for the restoration of chiral symmetry". In: Physical Review C 78.6 (Dec. 2008). ISSN: 1089-490X. DOI: [10.1103/physrevc.78.064910](https://doi.org/10.1103/physrevc.78.064910). url: <http://dx.doi.org/10.1103/PhysRevC.78.064910>.