Heavy Ion Collisions and Elliptic Flow v_2 in QGP HUGS 2024 Summer School Final Presentation

Sabrina Hernandez

Outline

- 1. Heavy Ion Collisions
 - What they are and why we study them
 - Quark-Gluon Plasma
- 2. Anisotropic Flow
 - Definition
 - Elliptic flow

2

Heavy Ion Collisions

What are heavy ion collisions?

- Collisions of two large, Lorentz contracted, nuclei (typically Pb or Au) with each other at very high relative velocities (total collision energy)
- The impact parameter (b) determines the centrality of the collision
- The energy density in heavy-ion collisions is extremely high (> 12 GeV/fm³), creating conditions where quarks and gluons are deconfined and do not form individual hadrons

Heavy Ion Collisions

Why do we study them?

We want to know: What happens to matter at extreme temperatures and densities?

- QCD in Cosmology: Recreate droplets of matter that filled the universe microseconds after the Big Bang! Understand the core of a neutron star!
- Phase diagram of QCD
- Understand the properties of Quark Gluon Plasma (QGP)

Quark Gluon Plasma (QGP)

Lattice QCD calculations show a rapid increase in energy density around T = 190 MeV, indicating the transition to a **deconfined state**

QGP behaves like an almost **ideal fluid** with very low $\frac{\eta}{-} \approx \frac{\hbar}{-}$ viscosity $4\pi k_{R}$

The low viscosity and strong coupling lead to hydrodynamic flow, making QGP a nearly perfect liquid

Sabrina Hernandez - Heavy Ion Collisions and v_2 in QGP

arXiv:1102.3010v2

Heavy Ion Collisions Evolution **Freeze-out** Hadronisation **QGP** formation **Initial Stages** g 70000000000 b Pre-equilibrium Viscous hydrodynamics Hadronic rescattering •••••••••••••••••••• ~10¹⁵ fm/*c* ~10 fm/*c*

6

ALICE Detector

The detector covers full azimuth and the psuedorapidity region $\eta < 0.9$

 $\eta = -\ln[\tan \theta/2]$

Key Features

Time Projection Chamber (TPC): tracking and particle identification

Zero Degree Calorimeter (ZDC): detects spectator particles

VO, FTO: determines particle centrality and multiplicity

Sabrina Hernandez - Heavy Ion Collisions and v_2 in QGP

The highest center of mass energy per nucleon pair ($\sqrt{s_{NN}}$) achieved has been 5.36 TeV in Pb-Pb

1	ACORDE ALICE Cosmic Rays Detector
2	AD ALICE Diffractive Detector
3	DCal Di-jet Calorimeter
4	EMCal Electromagnetic Calorimeter
5	HMPID High Momentum Particle Identification Detector
6	ITS-IB Inner Tracking System - Inner Bar
7	ITS-OB Inner Tracking System - Outer Ba
8	MCH Muon Tracking Chambers
9	MFT Muon Forward Tracker
10	MID Muon Identifier
11	PHOS / CPV Photon Spectrometer
12	TOF Time Of Flight
13	TO+A Tzero + A
14	T0+C Tzero + C
15	TPC Time Projection Chamber
16	TRD Transition Radiation Detector
17	V0+ Vzero + Detector
18	ZDC Zero Degree Calorimeter

Anisotropic Flow in Heavy Ion Collisions

Anisotropic flow is the collective expansion of QGP created during the collision

Result of a directional dependence to these pressure gradients. This occurs if spatial anisotropies in the initial state, which may arise if the collision zone is almond shaped (at b > 0fm)

Why do we care about anisotropic flow?

- It is a physical observable that provides information on the equation of state and transport properties of QGP!
- Flow is extremely sensitive to the early stages of the collision (at this stage, QGP is the main player)

Sabrina Hernandez - Heavy Ion Collisions and v_2 in QGP

Are we sure flow even exists?

- Yes! Azimuthal anisotropy in production of particles is the clearest signature of collective flow
- Caused by initial asymmetries in the collision geometry

Anisotropic Flow in Heavy Ion Collisions

To define flow, we can begin by expanding a Fourier series of the particle azimuthal distribution

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} + \frac{d^{2}N}{p_{T}dp_{T}dy}(1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\phi - \Psi_{RP})))$$

Event anisotropy is characterized by the coefficients: $v_n = \langle cos[n(\phi_i - \Psi_{RP})] \rangle$

9

Experimental Methods How do we measure flow?

Event Plane Method

Estimates the azimuthal angle of the reaction plane from observed event plane angle

$$Q_{n,x} = \sum_{i} w_i cos(n\phi_i)$$

 $\Psi_n = arctar$

Two Particle Correlations

Estimates anisotropic flow using two observed particle azimuthal correlations

$$\langle cos(n(\phi_1 - \phi_2)) \rangle = \langle e^{in(\phi_1 - \phi_2)} \rangle = \langle v_n^2 \rangle + \delta_n$$

$$Q_{n,y} = \sum_{i} w_{i} sin(n\phi_{i})$$

$$n2(Q_{n,y}/Q_{n,x})/n$$

Experimental Methods How do we measure flow?

Event Plane Method

Estimates the azimuthal angle of the reaction plane from observed event plane angle

$$Q_{n,x} = \sum_{i} w_i cos(n\phi_i)$$

 $\Psi_n = arctar$

Two Particle Correlations

Estimates anisotropic flow using two observed particle azimuthal correlations

$$\langle cos(n(\phi_1 - \phi_2)) \rangle = \langle e^{in(\phi_1 - \phi_2)} \rangle = \langle v_n^2 \rangle + \delta_n$$

Sabrina Hernandez - Heavy Ion Collisions and v_2 in QGP

$$Q_{n,y} = \sum_{i} w_{i} sin(n\phi_{i})$$

$$n2(Q_{n,y}/Q_{n,x})/n$$
Difficult to estimate this angle experimentally

11

Published Results ALICE Pb – Pb $\sqrt{s_{NN}} = 2.76$ TeV, STAR Au – Au $\sqrt{s_{NN}} = 200$ GeV

arXiv:1011.3914v3

Published Results

Comparing to models, we see evidence for strongly interacting matter that behaves like a perfect liquid

Summary and Outlook

- Elliptic flow has shown to be a good probe for understanding QGP: its evolution and medium properties
- ALICE is currently planning to run oxygen-oxygen collisions in 2025
 - Interesting flow can be observed in small systems!
- Measuring v2 flow with spectator particles to eliminate non-flow effects
- Measuring the neutron skin
 - Creating a model to relate v2 to the neutron skin
 - Understand the structure of neutron stars

Thank you!

1	5

Evolution of interaction (elliptic flow)

The colored contours indicate energy density profile Goes from an almond shaped region -> nearly symmetric

17

Measuring Elliptic Flow using Spectators

- Spectators are particles that do not participate in the collision
- far forward detector, the ZDC

• The direction that the spectators are deflected are strongly correlated to the reaction plane

• We use the scalar product (mixed harmonics) method when calculating elliptic flow with a

18

Measuring Elliptic Flow using Spectators

$$v_2 \{\Psi_{\rm SP}\} = \frac{2}{3} \left(\frac{\langle x_2^T x_1^A x_1^C \rangle}{\langle x_1^A x_1^C \rangle} - \frac{\langle x_2^A x_2^C \rangle}{\langle x_1^A x_1^C \rangle} \right)$$

 $q_n^K = x_n^K + iy_n^K = \sum_{j \in K} (w_j)^p e^{in\varphi_j} / \sum_{j \in K} (w_j)^p$

 $\frac{\langle x_2^T y_1^A y_1^C \rangle}{\langle y_1^A y_1^C \rangle} + \sqrt{\frac{\langle y_2^T x_1^A y_1^C \rangle \langle y_2^T y_1^A x_1^C \rangle}{\langle x_1^A x_1^C \rangle \langle y_1^A y_1^C \rangle}} \right)$

Zero Degree Calorimeters (ZDC)

20