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The Big-Bang

1
1Denis Perret-Gallix. In: vol. 454. 1. 2013, p. 012051.
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QCD phase digaram

2
2Ani Aprahamian et al. “Reaching for the horizon: The 2015 long range plan for

nuclear science”. In: Reaching for the Horizon (2015).
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Theoretical Approaches

Lattice QCD simulations: It is a non-perturbative application of
field theory based on the Feynman path integral technique

MIT bag model: Hadrons are considered to be composed of weakly
interacting quarks confined within a finite region referred to as the
”bag.”

Nambu Jona Lasinio (NJL) and Polyakov NJL (PNJL) model:
focusing on the interaction between quarks and anti-quarks through a
four-point interaction term in the Lagrangian density.

Chiral perturbation theory: Includes the expansion in power of
momentum and quark masses.

AND Many More.......
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Polyakov Quark Meson model

Quark meson model is an effective approach to studying the strong
interactions between mesons and quarks.

The total Lagrangian of the model for Nf flavors is given by3

L = Ψ̄iγµ∂µΨ + Tr
(
∂µϕ

†∂µϕ
)
−m2Tr

(
ϕ†ϕ

)
− λ1

[
Tr
(
ϕ†ϕ

)]2
−

λ2

[
Tr
(
ϕ†ϕ

)2]
+ c

(
det(ϕ) + det

(
ϕ†
))

+ Tr
[
H
(
ϕ + ϕ†

)]
+Lqm −

1

4
Tr (VµνV

µν) +
m2

1

2
VaµV

a
µ .

3Thomas Beisitzer, Rainer Stiele, and Jürgen Schaffner-Bielich. In: Phys. Rev. D 90
(Oct. 2014), p. 085001.
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Polyakov Quark Meson model

The m∗f represents the effective mass of constituent quarks given by

m∗u =
gs
2
σu, m∗d =

gs
2
σd and m∗s =

gs√
2
σs . (1)

The effective chemical potential of the quarks is modified as a
consequence of vector-meson interactions and is defined in terms of
quark chemical potential, µq, isospin chemical potential, µI and
strangeness chemical potential, µS as

µ∗u = µq + µI − gωuω − gρuρ
µ∗d = µq − µI − gωdω + gρdρ
µ∗s = µq − µS − gφsφ.

(2)
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Polyakov Quark Meson model

Polyakov loop
Φ(x̃) = (TrcL)/NC,

and it’s conjugate
Φ̄(x̃) = (TrcL

†)/NC.

In the current work, we use the polynomial form of the Polyakov loop
defined as4

Upoly (Φ, Φ̄)

T 4
= −b2(T )

2
Φ̄Φ− b3

6

(
Φ3 + Φ̄3

)
+

b4
4

(Φ̄Φ)2,

and the temperature-dependent coefficient b2 defined as

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

.

4Ana Gabriela Grunfeld and G Lugones. In: The European Physical Journal C 78
(2018), p. 640.
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Finite Volume and Anisotropic momentum distribution

A lower momentum cutoff, denoted as pmin [MeV], equal to π/R
[MeV], where R signifies the length of a cubic volume (designated as
Λ) is introduced.

In the context of anisotropic quark matter, the modification of
quasiparticle dispersion relations aligns with the anisotropic
momentum distribution. In this case, the nontrivial dispersion relation
for effective mass m∗f is characterized by

E
∗(aniso)
f =

√
p2 + ξ(p.n̂)2 + m∗2f . (3)
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Results
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Results
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Conclusion

The effects of strangeness chemical potential, anisotropic momentum
distribution, and finite system size have been investigated.

The susceptibilities of conserved charges are enhanced in the
transition region.

In future work, susceptibilities can be calculated at finite chemical
potential values and compared with STAR data.

The model can be further improved by using the Functional
Renormalization Approach (FRG).
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