THERMODYNAMICS OF FINITE VOLUME QUARK MATTER IN ANISOTROPIC MOMENTUM DISTRIBUTION

Nisha Chahal (Supervised by Dr. Suneel Dutt and Dr. Arvind Kumar)

A STATE OF CONTRACT OF CONTRAC

DR. B. R. AMBEDKAR NATIONAL INSTITUTE OF TECHNOLOGY, INDIA THE 39th ANNUAL HAMPTON UNIVERSITY GRADUATE PROGRAM AT JEFFERSON LAB

OUTLINE

In this presentation, we are going to discuss about,

Introduction

- The Big-Bang
- QCD phase diagram
- Theoretical Approaches

Polyakov quark meson model

- Lagrangian density
- Thermodynamic potential
- Polyakov loop

• What do we need to study and why?

- Finite volume effects
- Anisotropic momentum distribution
- Results

Conclusion

Nisha Chahal (NITJ)

QUARK MATTER

June 13, 2024 3 / 16

QCD phase digaram

Nisha Chahal (NITJ)

QUARK MATTER

Theoretical Approaches

- Lattice QCD simulations: It is a non-perturbative application of field theory based on the Feynman path integral technique
- **MIT bag model**: Hadrons are considered to be composed of weakly interacting quarks confined within a finite region referred to as the "bag."
- Nambu Jona Lasinio (NJL) and Polyakov NJL (PNJL) model: focusing on the interaction between quarks and anti-quarks through a four-point interaction term in the Lagrangian density.
- Chiral perturbation theory: Includes the expansion in power of momentum and quark masses.

AND Many More.....

- Quark meson model is an effective approach to studying the strong interactions between mesons and quarks.
- The total Lagrangian of the model for N_f flavors is given by³

$$\begin{split} \mathcal{L} &= \bar{\Psi} i \gamma^{\mu} \partial_{\mu} \Psi + \mathrm{Tr} \left(\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi \right) - m^{2} \mathrm{Tr} \left(\phi^{\dagger} \phi \right) - \lambda_{1} \left[\mathrm{Tr} \left(\phi^{\dagger} \phi \right) \right]^{2} - \\ \lambda_{2} \left[\mathcal{T} r \left(\phi^{\dagger} \phi \right)^{2} \right] + c \left(\mathrm{det}(\phi) + \mathrm{det} \left(\phi^{\dagger} \right) \right) + \mathrm{Tr} \left[\mathcal{H} \left(\phi + \phi^{\dagger} \right) \right] \\ &+ \mathcal{L}_{qm} - \frac{1}{4} \mathrm{Tr} \left(V_{\mu\nu} V^{\mu\nu} \right) + \frac{m_{1}^{2}}{2} V_{a\mu} V_{\mu}^{a}. \end{split}$$

³Thomas Beisitzer, Rainer Stiele, and Jürgen Schaffner-Bielich. In: *Phys. Rev. D* 90 (Oct. 2014), p. 085001. (Oct. 2014), p. 085001.

Nisha Chahal (NITJ)

QUARK MATTER

• The m_f^* represents the effective mass of constituent quarks given by

$$m_u^* = \frac{g_s}{2}\sigma_u, \quad m_d^* = \frac{g_s}{2}\sigma_d \quad \text{and} \quad m_s^* = \frac{g_s}{\sqrt{2}}\sigma_s.$$
 (1)

• The effective chemical potential of the quarks is modified as a consequence of vector-meson interactions and is defined in terms of quark chemical potential, μ_q , isospin chemical potential, μ_I and strangeness chemical potential, μ_S as

$$\mu_{u}^{*} = \mu_{q} + \mu_{I} - g_{\omega u}\omega - g_{\rho u}\rho$$

$$\mu_{d}^{*} = \mu_{q} - \mu_{I} - g_{\omega d}\omega + g_{\rho d}\rho$$

$$\mu_{s}^{*} = \mu_{q} - \mu_{S} - g_{\phi s}\phi.$$
(2)

Polyakov Quark Meson model

Polyakov loop

$$\Phi(\tilde{\mathbf{x}}) = (\mathrm{Tr}_{\mathrm{c}} \mathbf{L}) / \mathrm{N}_{\mathrm{C}},$$

and it's conjugate

$$\bar{\Phi}(\tilde{\mathbf{x}}) = (\mathrm{Tr}_{\mathrm{c}}\mathrm{L}^{\dagger})/\mathrm{N}_{\mathrm{C}}.$$

 In the current work, we use the polynomial form of the Polyakov loop defined as⁴

$$rac{\mathcal{U}_{\mathsf{poly}}\left(\Phi,ar{\Phi}
ight)}{\mathcal{T}^4} = -rac{b_2(\mathcal{T})}{2}ar{\Phi}\Phi - rac{b_3}{6}\left(\Phi^3+ar{\Phi}^3
ight) + rac{b_4}{4}(ar{\Phi}\Phi)^2,$$

and the temperature-dependent coefficient b_2 defined as

$$\underline{b_2(T) = a_0 + a_1}\left(\frac{T_0}{T}\right) + a_2\left(\frac{T_0}{T}\right)^2 + a_3\left(\frac{T_0}{T}\right)^3.$$

⁴Ana Gabriela Grunfeld and G Lugones. In: *The European Physical Journal C* 78 (2018). p. 640. Nisha Chahal (NITJ) QUARK MATTER June 13, 2024 8/16

Finite Volume and Anisotropic momentum distribution

- A lower momentum cutoff, denoted as p_{min} [MeV], equal to π/R [MeV], where R signifies the length of a cubic volume (designated as Λ) is introduced.
- In the context of anisotropic quark matter, the modification of quasiparticle dispersion relations aligns with the anisotropic momentum distribution. In this case, the nontrivial dispersion relation for effective mass m_f^* is characterized by

$$\mathsf{E}_{f}^{*(aniso)} = \sqrt{p^{2} + \xi(p.\hat{n})^{2} + m_{f}^{*2}}.$$
 (3)

Results

Nisha Chahal (NITJ)

QUARK MATTER

June 13, 2024 10 / 16

Nisha Chahal (NITJ)

QUARK MATTER

June 13, 2024 11 / 16

3

-

<ロト < 団ト < 団ト <

Results

Nisha Chahal (NITJ)

QUARK MATTER

June 13, 2024 12 / 16

Results

Nisha Chahal (NITJ)

QUARK MATTER

June 13, 2024 13 / 16

June 13, 2024

- The effects of strangeness chemical potential, anisotropic momentum distribution, and finite system size have been investigated.
- The susceptibilities of conserved charges are enhanced in the transition region.
- In future work, susceptibilities can be calculated at finite chemical potential values and compared with STAR data.
- The model can be further improved by using the Functional Renormalization Approach (FRG).

Nisha Chahal (NITJ)

QUARK MATTER

June 13, 2024 16 / 16

< □ > < 同 > < 回