X17 searches with deuteron photodisintegration

Cornelis J.G. Mommers, Group Marc Vanderhaeghen,

University of Mainz

Phys. Rev. D 109, 095010 (10 May 2024)

 $p + A \rightarrow N^* \rightarrow N + e^+e^-$

Phys. Rev. D 109, 095010, Cornelis J.G. Mommers, Group Marc Vanderhaeghen, University of Mainz 2

 $p + A \rightarrow N^* \rightarrow N + e^+e^-$

 $p + A \rightarrow N^* \rightarrow N + e^+e^-$

p + A → N* → N + e⁺e⁻

 $p + A \rightarrow N^* \rightarrow N + e^+e^-$

X17, an anomalous signal?

X17, an anomalous signal?

Some key observations

- Parity analysis: X17 is
 - a vector or
 - an axial-vector particle or
 - does not have definite parity at all

Some key observations

- Parity analysis: X17 is
 - a vector or
 - an axial-vector particle or
 - does not have definite parity at all
- X17 couples (at least) to protons, neutrons and electrons

Some key observations

- Parity analysis: X17 is
 - a vector or
 - an axial-vector particle or
 - does not have definite parity at all
- X17 couples (at least) to protons, neutrons and electrons
- Existing constraints from NA48/2, $\pi^0 \rightarrow \gamma (X \rightarrow e^+ e^-)$ imply a vector X17 couples weakly to protons ("protophobia")

A global search

MAGIX@MESA

 MESA is a linear accelerator under construction in Mainz

MAGIX@MESA

- MESA is a linear accelerator under construction in Mainz
- Low energy, high intensity electron beam + gas jet target
 - E ~ 105 MeV
 - L~10³⁵ cm⁻²s⁻¹

MAGIX@MESA

- MESA is a linear accelerator under construction in Mainz
- Low energy, high intensity electron beam + gas jet target
 - E ~ 105 MeV
 - L~10³⁵ cm⁻²s⁻¹
- MAGIX is a pair of multipurpose spectrometers, expected to measure m_{ee} with precision of >0.1 MeV

Phys. Rev. D 109, 095010, Cornelis J.G. Mommers, Group Marc Vanderhaeghen, University of Mainz

Phys. Rev. D 109, 095010, Cornelis J.G. Mommers, Group Marc Vanderhaeghen, University of Mainz

• Consider neutron bound in deuteron, $\gamma d \rightarrow e^+ e^- pn$

- Consider neutron bound in deuteron, $\gamma d \rightarrow e^+ e^- pn$
- Pick kinematics where neutron is "quasi-free"

- Consider neutron bound in deuteron, $\gamma d \rightarrow e^+ e^- pn$
- Pick kinematics where neutron is "quasi-free"
- Work within plane-wave impulse approximation, proton contributions negligible

- Consider neutron bound in deuteron, $\gamma d \rightarrow e^+ e^- pn$
- Pick kinematics where neutron is "quasi-free"
- Work within plane-wave impulse approximation, proton contributions negligible
- Like probing $\gamma n \rightarrow e^+ e^- n$ by proxy!

- Consider neutron bound in deuteron, $\gamma d \rightarrow e^+ e^- pn$
- Pick kinematics where neutron is "quasi-free"
- Work within plane-wave impulse approximation, proton contributions negligible
- Like probing $\gamma n \rightarrow e^+ e^- n$ by proxy!
- MAMI@Mainz has measured
 γd → γpn already Eur.Phys.J.A16:259-273,2003

What to measure?

What to measure?

Bin cross section in
 e⁺e⁻ invariant-mass bins

What to measure?

e⁺e⁻ invariant mass

Bin cross section in
 e⁺e⁻ invariant-mass bins

- Either:
 - see signal or

- Either:
 - see signal or

- Either:
 - see signal or
 - exclude particle

- Either:
 - see signal or
 - exclude particle
- If we see nothing, what is the smallest coupling we can exclude?

$$|g_n| = \left(\frac{\Delta \sigma_{\text{QED}}}{\Delta \sigma_X|_{g_n=1}} \frac{n_\sigma}{\sqrt{L \times \Delta \sigma_{\text{QED}}}}\right)^{1/2}$$

Compute projections reach for different detector settings

Projections for the reach

Projections for the reach

Projections for the reach

 Constraints for scalar and vector would (probably) not be competitive

- Constraints for scalar and vector would (probably) not be competitive
- Axial vector and pseudoscalar constraints competitive

• Research is shifting to light dark matter

- Research is shifting to light dark matter
- X17 is a hypothetical particle conjectured by the ATOMKI group

- Research is shifting to light dark matter
- X17 is a hypothetical particle conjectured by the ATOMKI group
- There is a lot of interest in X17. It has even launched a global research program

- Research is shifting to light dark matter
- X17 is a hypothetical particle conjectured by the ATOMKI group
- There is a lot of interest in X17. It has even launched a global research program
- MAGIX@MESA could contribute with a unique experiment!

- Research is shifting to light dark matter
- X17 is a hypothetical particle conjectured by the ATOMKI group
- There is a lot of interest in X17. It has even launched a global research program
- MAGIX@MESA could contribute with a unique experiment!
- Theoretical investigations well underway

- Research is shifting to light dark matter
- X17 is a hypothetical particle conjectured by the ATOMKI group
- There is a lot of interest in X17. It has even launched a global research program
- MAGIX@MESA could contribute with a unique experiment!
- Theoretical investigations well underway
- Next steps: polarizabilities and higher-order corrections

- Research is shifting to light dark matter
- X17 is a hypothetical particle conjectured by the ATOMKI group
- There is a lot of interest in X17. It has even launched a global research program
- MAGIX@MESA could contribute with a unique experiment!
- Theoretical investigations well underway
- Next steps: polarizabilities and higher-order corrections
- Many details left out, see paper!

Thank you for your attention! Questions?

X17 searches with deuteron photodisintegration Cornelis J.G. Mommers, Group Marc Vanderhaeghen, University of Mainz Phys. Rev. D 109, 095010 (10 May 2024)

(some) other accelerator experiments

• JLAB, DarkLight: (A, Z) $\rightarrow \gamma^*$ (A, Z) to $\gamma^* e^- \rightarrow e^+ e^- e^-$

arXiv:2301.08768 [nucl-ex], doi.org/10.1088/1742-6596/2391/1/012010

PADME: e⁺e⁻ → X17 → e⁺e⁻

arXiv:2209.09261 [hep-ph]

(some) other nuclear experiments

- ATOMKI: ⁷Li(*p*, X17)⁸Be, ³H(*p*, *e*⁺*e*⁻)⁴He, ¹¹B(*p*, *e*⁺*e*⁻)¹²C (for Refs. see previous slides)
- VNU: ⁷Li(*p*, X17)⁸Be arXiv:2401.11676 [nucl-ex]
- CCPAC: ⁷Li(*p*, X17)⁸Be, ⁷Li(³He, X17)¹⁰Be arXiv:2211.11900 [physics.ins-det]
- MEG-II: ⁷Li(*p*, X17)⁸Be doi.org/10.22323/1.402.0120
- NEW JEDI: ⁷Li(*p*, X17)⁸Be, ³H(*p*, *e*⁺*e*⁻)⁴He doi.org/10.1051/epjconf/202327501012
- n_TOF: ³H(*n*, *e*⁺*e*⁻)⁴He doi.org/10.1051/epjconf/202327913007
- CTU Prague: ⁷Li(p, X17)⁸Be doi.org/10.1016/j.nima.2022.167858

Table ATOMKI decays

State (MeV)	Transition	(J^P)
${}^{8}\text{Be}(18.15)$	$1^+ \rightarrow 0^+$	(M1, isoscalar)
$^{8}\text{Be}(17.64)$	$1^+ \rightarrow 0^+$	(M1, isovector)
$^{4}\text{He}(21.01)$	$0^- ightarrow 0^+$	(M0)
${}^{4}\text{He}(20.21)$	$0^+ \rightarrow 0^+$	(E0)
$^{12}C(17.23)$	$1^- \rightarrow 0^+$	(E1, isovector)

m_X (MeV)	Γ_X (eV)	B
$16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst})$	$1.1(2) \times 10^{-5}$	5.8×10^{-6}
17.01(16)	$1.2(2) \times 10^{-5}$	$6(1) \times 10^{-6}$
$16.94 \pm 0.12(\text{stat}) \pm 0.21(\text{syst})$		
$16.84 \pm 0.16(\text{stat}) \pm 0.20(\text{syst})$	3.9×10^{-5}	$1.2(4) \times 10^{-1}$
$17.03 \pm 0.11(\text{stat}) \pm 0.20(\text{syst})$	$1.6(1) \times 10^{-4}$	$3.6(3) \times 10^{-6}$
	$\begin{array}{l} m_X \ (\text{MeV}) \\ 16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst}) \\ 17.01(16) \\ 16.94 \pm 0.12(\text{stat}) \pm 0.21(\text{syst}) \\ 16.84 \pm 0.16(\text{stat}) \pm 0.20(\text{syst}) \\ 17.03 \pm 0.11(\text{stat}) \pm 0.20(\text{syst}) \end{array}$	m_X (MeV) Γ_X (eV)16.70 \pm 0.35(stat) \pm 0.5(syst) $1.1(2) \times 10^{-5}$ 17.01(16) $1.2(2) \times 10^{-5}$ 16.94 \pm 0.12(stat) \pm 0.21(syst) $16.84 \pm 0.16(stat) \pm 0.20(syst)$ 3.9 $\times 10^{-5}$ 17.03 \pm 0.11(stat) \pm 0.20(syst) $1.6(1) \times 10^{-4}$

• Assume definite parity (\mathcal{I})

- Assume definite parity (\mathcal{I}^{P})
- Example: ⁸Be(18.15), 1⁺

- Assume definite parity ($\mathcal{I}^{\mathcal{P}}$)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$
$$\mathbf{1} = \mathbf{S}_X + \mathbf{0} + \mathbf{L} \qquad +1 = P_X \times (+1) \times (-1)^L$$

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$
$$\mathbf{1} = \mathbf{S}_X + \mathbf{0} + \mathbf{L} \qquad +1 = P_X \times (+1) \times (-1)^L$$
$$\mathbf{S}_X = \mathbf{0} \implies |L - 1| \le 0 \le L + 1 \implies L = 1$$

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$
$$\mathbf{1} = \mathbf{S}_X + \mathbf{0} + \mathbf{L} \qquad +1 = P_X \times (+1) \times (-1)^L$$

$\mathbf{S}_X = \mathbf{0} \implies |L - 1| \le 0 \le L + 1 \implies L = 1$ $\mathbf{S}_X = \mathbf{1} \implies |L - 1| \le 1 \le L + 1 \implies L = 0, 1, 2$

- Assume definite parity (JP)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$
$$\mathbf{1} = \mathbf{S}_X + \mathbf{0} + \mathbf{L} \qquad +1 = P_X \times (+1) \times (-1)^L$$

$\mathbf{S}_X = \mathbf{0} \implies |L - 1| \le 0 \le L + 1 \implies L = 1$ $\mathbf{S}_X = \mathbf{1} \implies |L - 1| \le 1 \le L + 1 \implies L = 0, 1, 2$

 $J^P = 0^-, 1^+, 1^-$

• Assume definite parity ($\mathcal{I}^{\mathcal{P}}$)

• Assume definite parity (JP)

State (MeV)	Scalar (0+)	Pseudoscalar (0 ⁻)	Vector (1 ⁻)	Axial vector (1+)
⁸ Be(18.15), 1 ⁺		\checkmark	\checkmark	\checkmark
⁸ Be(17.64), 1 ⁺		\checkmark	\checkmark	\checkmark
⁴ He(21.01), 0 ⁻		\checkmark		\checkmark
⁴ He(20.21), 0 ⁺	\checkmark		\checkmark	
¹² C(17.23), 1⁻	\checkmark		\checkmark	\checkmark

Deriving limits on couplings (P)

 $\mathcal{L}_{0^{-}} = i\bar{N}\gamma_5 \left(g_{XNN}^{(0)} + g_{XNN}^{(1)}\tau^3\right)NX$

• SINDRUM: $|g_{XNN}^{(1)}| \lesssim 0.6 \times 10^{-3}$ (Phys. Lett. B 175, 101 (1986))

• Multipole:
$$\frac{\Gamma_X^{^{8}\text{Be}}}{\Gamma_\gamma^{\text{M1}}} = \frac{1}{2\pi\alpha} \left(\frac{g_{XNN}^{(0)}\cos\theta_{1^+} - g_{XNN}^{(1)}\sin\theta_{1^+}}}{[\mu^{(0)} - \eta^{(0)}]\cos\theta_{1^+} - [\mu^{(1)} - \eta^{(1)}]\sin\theta_{1^+}} \right)^2 \left(\frac{k_X}{k_\gamma}\right)^3$$

Deriving limits on couplings (V)

$$\mathcal{L}_{\rm V} = -eX_{\mu} \sum_{N=p,n} \varepsilon_N \bar{N} \gamma^{\mu} N$$

• NA48/2:
$$|\varepsilon_p| \lesssim \frac{(0.8 - 1.2) \times 10^{-3}}{\sqrt{\mathcal{B}(X \to e^+e^-)}}$$
 (Phys. Lett. B 746, 178 (2015))

• **Multipole:** $\frac{\Gamma_X^{^8\text{Be}}}{\Gamma_\gamma^{\text{M1}}} = \frac{|(\varepsilon_p + \varepsilon_n)\cos\theta_{1^+}M1_{1,T=0} + (\varepsilon_p - \varepsilon_n)(-\sin\theta_{1^+}M1_{1,T=1} + \cos\theta_{1^+}\kappa M1_{1,T=1})|^2}{|\cos\theta_{1^+}M1_{1,T=0} - \sin\theta_{1^+}M1_{1,T=1} + \cos\theta_{1^+}\kappa M1_{1,T=1}|^2} \left(\frac{k_X}{k_\gamma}\right)^3$

$$\frac{\Gamma_{X,V}^{^{12}\mathrm{C}(17.23)}}{\Gamma_{\gamma}^{\mathrm{E1}}} = \frac{k}{\Delta E} \left(1 + \frac{m_X^2}{2\Delta E^2}\right) |\varepsilon_p - \varepsilon_n|^2$$

Deriving limits on couplings (A)

$$\mathcal{L}_{\mathcal{A}} = -X_{\mu} \sum_{N=p,n} a_N \bar{N} \gamma^{\mu} \gamma_5 N$$

• Matrix elements from Phys. Rev. D 95, 115024

• Multipole:
$$\frac{\Gamma_{X,A}^{^{8}\text{Be}(18.15)}}{\Gamma_{\gamma}^{\text{M1}}} = \frac{1}{\Gamma_{\gamma}(^{8}\text{Be}(18.15))} \frac{k_{X}}{18\pi} \left[2 + \left(\frac{\Delta E}{m_{X}}\right)^{2}\right] |\langle f||a_{p}\hat{\sigma}_{M}^{(p)} + a_{n}\hat{\sigma}_{M}^{(n)}||i_{*}\rangle|^{2}$$
Diagrams in detail (QED)

Figure 2: The direct and crossed diagram for the BH process.

Figure 1: The direct and crossed diagram for the Born process.

Figure 3: The diagram for the pion-pole amplitude.

Diagrams in detail (signal)

Deuteron wave function

• Use CD-Bonn wave function in momentum space (10.1103/PhysRevC.63.024001)

$$\tilde{\Psi}_{d}^{M_{d}}(\boldsymbol{p}) = \frac{(2\pi)^{3/2}}{\sqrt{4\pi}} \left[\psi_{0}(p) - \frac{1}{\sqrt{8}} \psi_{2}(p) S_{12}(\hat{\boldsymbol{p}}) \right] \chi_{1}^{M_{d}}$$

PWIA

$$\begin{split} \mathcal{M}_{1A}^{\text{lab}}(d\gamma \to e^+e^-pn) &= \frac{(2\pi)^{3/2}(2m_d)^{1/2}}{\sqrt{2}} \\ &\times \bigg\{ \left(\frac{E_{pn}^{(n)}}{E_{pn}^{(p)}} \right)^{1/2} \bigg[\mathcal{M} \left(\gamma(\mathbf{q},\lambda) \, p(-\mathbf{p}_n, m_d - s_n) \to e^-(\mathbf{p}_-, s_-) \, e^+(\mathbf{p}_+, s_+) \, p(\mathbf{p}_p, s_p) \right. \\ &\times \frac{1}{\sqrt{4\pi}} \psi_0(p_n) \, \langle \frac{1}{2} \, \frac{1}{2} \, ; \, m_d - s_n \, s_n \, | \, 1m_d \rangle \\ &- \sum_{m_s=-1}^{+1} \mathcal{M} \left(\gamma(\mathbf{q},\lambda) \, p(-\mathbf{p}_n, m_s - s_n) \to e^-(\mathbf{p}_-, s_-) \, e^+(\mathbf{p}_+, s_+) \, p(\mathbf{p}_p, s_p) \right) \\ &\times Y_2^{m_d - m_s}(-\hat{\mathbf{p}}_n) \psi_2(p_n) \, \langle 2\, 1 \, ; \, m_d - m_s \, m_s \, | \, 1m_d \rangle \, \langle \frac{1}{2} \, \frac{1}{2} \, ; \, m_s - s_n \, s_n \, | \, 1m_s \rangle \bigg] \\ &+ \left(\frac{E_{pp}^{(p)}}{E_{pp}^{(n)}} \right)^{1/2} \bigg[\mathcal{M} \left(\gamma(\mathbf{q},\lambda) \, n(-\mathbf{p}_p, m_d - s_p) \to e^-(\mathbf{p}_-, s_-) \, e^+(\mathbf{p}_+, s_+) \, n(\mathbf{p}_n, s_n) \right) \\ &\times \frac{1}{\sqrt{4\pi}} \psi_0(p_p) \, \langle \frac{1}{2} \, \frac{1}{2} \, ; \, s_p \, m_d - s_p \, | \, 1m_d \rangle \\ &- \sum_{m_s=-1}^{+1} \mathcal{M} \left(\gamma(\mathbf{q},\lambda) \, n(-\mathbf{p}_p, m_s - s_p) \to e^-(\mathbf{p}_-, s_-) \, e^+(\mathbf{p}_+, s_+) \, n(\mathbf{p}_n, s_n) \right) \\ &\times Y_2^{m_d - m_s}(\hat{\mathbf{p}}_p) \psi_2(p_p) \, \langle 2\, 1 \, ; \, m_d - m_s \, m_s \, | \, 1m_d \rangle \, \langle \frac{1}{2} \, \frac{1}{2} \, ; \, s_p \, m_s - s_p \, | \, 1m_s \rangle \bigg] \bigg\}. \end{split}$$

Averaging the signal

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\boldsymbol{p}_+|\,\mathrm{d}|\boldsymbol{p}_-|\,\mathrm{d}\Omega_n\,\mathrm{d}\Omega_-\,\mathrm{d}\Omega_+} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

We have

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\bigg|_{\mathrm{measured}} = \frac{1}{\delta m_X} \int_{m_X - \delta m_X/2}^{m_X + \delta m_X/2} \mathrm{d}\sqrt{q'^2} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

Averaging the signal

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\boldsymbol{p}_+|\,\mathrm{d}|\boldsymbol{p}_-|\,\mathrm{d}\Omega_n\,\mathrm{d}\Omega_-\,\mathrm{d}\Omega_+} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

We have

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \right|_{\mathrm{measured}} = \frac{1}{\delta m_X} \int_{m_X - \delta m_X/2}^{m_X + \delta m_X/2} \mathrm{d}\sqrt{q'^2} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}$$

$$\frac{1}{q'^2} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\right) \frac{\left[\left(q'^2 - m_X^2\right)^2 + \left(m_X\Gamma_X\right)^2\right]}{g_{Xee}^2} \approx \text{ constant between } \left[m_X - \frac{\delta m_X}{2}, m_X + \frac{\delta m_X}{2}\right]$$

Averaging the signal

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\boldsymbol{p}_+|\,\mathrm{d}|\boldsymbol{p}_-|\,\mathrm{d}\Omega_n\,\mathrm{d}\Omega_-\,\mathrm{d}\Omega_+} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

We have

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \right|_{\mathrm{measured}} = \frac{1}{\delta m_X} \int_{m_X - \delta m_X/2}^{m_X + \delta m_X/2} \mathrm{d}\sqrt{q'^2} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

$$\frac{1}{q'^2} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\right) \frac{\left[\left(q'^2 - m_X^2\right)^2 + \left(m_X\Gamma_X\right)^2\right]}{g_{Xee}^2} \approx \text{ constant between } \left[m_X - \frac{\delta m_X}{2}, m_X + \frac{\delta m_X}{2}\right]$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \bigg|_{\mathrm{measured}} \approx \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \right) \bigg|_{q'^2 = m_X^2, \ \varepsilon_e^2 = 1, \ \Gamma_X = 1} \frac{1}{\delta m_X} \frac{6\pi^2}{e^2 m_X} \left(1 + \frac{2m_e^2}{m_X^2} \right)^{-1} \left(1 - \frac{4m_e^2}{m_X^2} \right)^{-1/2} \mathcal{B}(a \to e^+ e^-),$$

Verifying the QED background (I)

Verifying the QED background (II)

Results

Results

Results

