University of Massachusetts Charged Pion Amherst Polarizability in Hall D

Albert Fabrizi HUGS 2024 Student Seminar

- Theory Background for χPT
- Polarizability
- Hall D CPP Experiment Setup
- Analyzing Muon Tracks
- Developing π/μ neural net

Albert Fabrizi

Overview

HUGS: CPP Analysis

Chiral Lagrangian

- perturbation techniques
- In this regime we desire a theory that explains Hadron interactions

•
$$\mathscr{L}_2 = \frac{F_\pi^2}{4} Tr(\partial_\mu U \partial^\mu U^\dagger) + \frac{m_\pi^2}{4} F_\pi^2 Tr(U+U^\dagger)$$

 $F_\pi = 93 MeV$

Albert Fabrizi

• Chiral Perturbation Theory (χPT) acts as an effective field theory for low energy QCD in the regime where the strong coupling does not allow

HUGS: CPP Analysis

Higher than Tree Level

- Going above tree level (one loop and beyond) brings about issues in the forms of divergences.
- Weinberg posited that these divergences can be absorbed in to phenomenological constants, much like QED.
- This gave rise to the Gasser-Leutwyler Lagrangian

Albert Fabrizi

Gasser-Leutwyler

$$\mathcal{L}_{4} = \sum_{i=1}^{10} L_{i}\mathcal{O}_{i} = L_{1} \left[\operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger}) \right]^{2} + L_{2}\operatorname{tr}(D_{\mu}UD_{\nu}U^{\dagger}) \cdot \operatorname{tr}(D^{\mu}U^{\mu}U^{\dagger}) + L_{3}\operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger}D_{\nu}UD^{\nu}U^{\dagger}) + L_{4}\operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger})\operatorname{tr}(\chi U^{\dagger} + U\chi^{\dagger}) + L_{5}\operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger}(\chi U^{\dagger} + U\chi^{\dagger})) + L_{6} \left[\operatorname{tr}(\chi U^{\dagger} + U\chi^{\dagger}) \right]^{2} + L_{7} \left[\operatorname{tr}(\chi^{\dagger}U - U\chi^{\dagger}) \right]^{2} + L_{8}\operatorname{tr}(\chi U^{\dagger}\chi U^{\dagger} + U\chi^{\dagger}U\chi^{\dagger}) + iL_{9}\operatorname{tr}(F_{\mu\nu}^{L}D^{\mu}UD^{\nu}U^{\dagger} + F_{\mu\nu}^{R}D^{\mu}U^{\dagger}D^{\nu}U) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}UF^{R\mu\nu}U^{R\mu\nu}U^{\ell}) + iL_{9}\operatorname{tr}(F_{\mu\nu}^{L}D^{\mu}UD^{\nu}U^{\dagger} + F_{\mu\nu}^{R}D^{\mu}U^{\dagger}D^{\nu}U) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}UF^{R\mu\nu}U^{R\mu\nu}U^{\ell}) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}UF^{R\mu\nu}U^{R\mu\nu}U^{\ell}) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}UF^{R\mu\nu}U^{R\mu\nu}U^{\ell}) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}UF^{R\mu\nu}U^{\ell}) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}U^{\ell}U^{\ell}) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}U^{\ell}U^{\ell}) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}U^{\ell}U^{\ell}) + L_{10}\operatorname{tr}(F_{\mu\nu}^{L}U^{\ell}) + L_{10}\operatorname{tr}($$

HUGS: CPP Analysis

6/6/24

4

Gasser-Leutwyler Lagrangian

- The values of the L_i^r coefficients were found through experiment.
- At the one-loop level, this theory is perfectly valid for our low energy levels (hadronic interactions)
- For higher order corrections the \mathscr{L}_6 Lagrangian can be used to absorb higher divergences.

Albert Fabrizi

$$\begin{aligned} \mathcal{L}_{4} &= \sum_{i=1}^{10} L_{i} \mathcal{O}_{i} = L_{1} \left[\operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger}) \right]^{2} + L_{2} \operatorname{tr}(D_{\mu}UD_{\nu}U^{\dagger}) \cdot \operatorname{tr}(D^{\mu}UD^{\nu}U^{\dagger}) \\ &+ L_{3} \operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger}D_{\nu}UD^{\nu}U^{\dagger}) + L_{4} \operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger}) \operatorname{tr}(\chi U^{\dagger} + U\chi^{\dagger}) \\ &+ L_{5} \operatorname{tr}(D_{\mu}UD^{\mu}U^{\dagger}(\chi U^{\dagger} + U\chi^{\dagger})) + L_{6} \left[\operatorname{tr}(\chi U^{\dagger} + U\chi^{\dagger}) \right]^{2} \\ &+ L_{7} \left[\operatorname{tr}(\chi^{\dagger}U - U\chi^{\dagger}) \right]^{2} + L_{8} \operatorname{tr}(\chi U^{\dagger}\chi U^{\dagger} + U\chi^{\dagger}U\chi^{\dagger}) \\ &+ iL_{9} \operatorname{tr}(F_{\mu\nu}^{L}D^{\mu}UD^{\nu}U^{\dagger} + F_{\mu\nu}^{R}D^{\mu}U^{\dagger}D^{\nu}U) + L_{10} \operatorname{tr}(F_{\mu\nu}^{L}UF^{R\mu\nu}U^{\dagger}) \end{aligned}$$

$$L_i^r = L_i - \frac{\gamma_i}{32\pi^2} \left[-\frac{2}{\epsilon} - \ln(4\pi) + \gamma - 1 \right]$$

Coefficient	Value	Origin
L_1^r	0.65 ± 0.28	$\pi\pi$ scattering
L_2^r	1.89 ± 0.26	and
L_3^r	-3.06 ± 0.92	$K_{\ell 4} \operatorname{decay}$
L_5^r	2.3 ± 0.2	F_K/F_π
L_9^r	7.1 ± 0.3	π charge radius
L^r_{10}	-5.6 ± 0.3	$\pi ightarrow e u \gamma$

HUGS: CPP Analysis

Predicted Quantities

- The Lagrangian, or more importantly the constants gave rise to predictions of different quantities
- One from the Chiral-even terms of the Lagrangian give Charged Pion Polarizability. Which there has been some agreement with experiment

Albert Fabrizi

HUGS: CPP Analysis

What is Polarizability? **Ē**=0 Ē>0

Hadron surrounded by **Pion Cloud**

Electric Polarizability = $\alpha \approx 10^{-4} \times$ **Volume** Magnetic Polarizability $= \beta \approx 10^{-4} \times \text{Volume}$

$$\frac{d^2\sigma_{primakoff}}{d\Omega dM} = \frac{2\alpha Z^2}{\pi^2} \frac{E_{\gamma}^4 \beta^2}{M} \frac{\sin^2\theta}{Q^4} \left| F(Q^2) \right|^2 \left(\frac{1}{2} \left(\frac{1}{2} \frac{1}$$

Albert Fabrizi

Hadron surrounded by displaced Pion Cloud

 $\left(1 + P_{\gamma} \cos \varphi_{\pi\pi}\right) \sigma(\gamma\gamma \to \pi\pi)$

HUGS: CPP Analysis

- 8 Chambers built at UMASS, 6 used in CPP
- Each MWPC has 144 channels (sense wires)
- 90% Ar + 10% CO_2 gas mixture
- Ran at 1780V
- 4 Scintillators (CTOF) placed downstream of final chamber

Albert Fabrizi

Muon Detector

Scintillators for cross checks

Wire Chambers

Albert Fabrizi

Muon Detector

Chambers installed with Iron Absorbers

HUGS: CPP Analysis

$^{T}\mu^{T}$ Pairs Candidates

CTOF

- Pulse Height Cuts
- 2D Pulse Height Band Cuts
- TOF Trigger only
- Hits are calibrated through CTOFHit_factory **Charged Track**
- At least 1 charged track pointing to a paddle with a good hit in CTOF
- Charged Track matched to hit in TOF
- No minimum momentum requirement on track

Albert Fabrizi

All Hits in Chamber 5 (vertical wires) that Satisfy Analysis Requirements

HUGS: CPP Analysis

6/6/24

11

MWPC Track Matching Resolution Chamber 2

from Ilya) plotted

Albert Fabrizi

- Charged tracks from the FDCs are extrapolated to each MWPC layer.
- The track is matched to
 - hits in 5 chambers (a hit and track position
 - required to be within 2σ , σ
- Then the distance from the projected track to the closest chamber hit is

HUGS: CPP Analysis

Inefficiency Plots for MWPCs

Albert Fabrizi

HUGS: CPP Analysis

- Testing FMWPC digi-hit cuts for each chamber
- Value for cut chosen at tightest cut with lowest inefficiency.
 - All chambers with selected cuts (red arrows) shown with efficiency above 99.8%
- Chamber efficiency tests in the EEL showed chamber efficiency of 99.7%

Modifications to CPP/NPP REST files for neural nets

DCPPEpEm_factory (μ/π and e/π neural net inferences for CPP) has been modified to work on REST files

default.

Additional FCAL quantities required by μ/π neural net can be added optionally to REST: PPID:ADD_FCAL_DATA_FOR_CPP 1

MLP Response refers to the model giving a "score" to the particle whether it is closed to signal or background. We place a cut on the Test on 1 evio file converted to REST: response for the seperation.

Albert Fabrizi

https://github.com/JeffersonLab/halld_recon/tree/AddFmwpcMatches

All FMWPC quantities needed for the CPP μ/π neural net have been added to the REST file structure for CPP/NPP run period by

HUGS: CPP Analysis

Summary and Plans

- High purity muon skims: /lustre19/expphy/cache/halld/home/alfab/ muon_skims_ver3_apr5/ (through CTOF analysis)
- CTOF calibrations complete, BCAL position fixed energy calibrations in progress.
- FCAL calibrations updated, energy linearity function updated
- π/μ neural net refining and testing for real data
- The muon skims will be used to test neural net response for muons
- $\pi^+\pi^-$ with invariant mass near ρ^0 peak to test response for pions

Albert Fabrizi

Albert Fabrizi

Questions

HUGS: CPP Analysis

Works Cited

- <u>scholarworks.umass.edu/physics_faculty_pubs/310</u>
- D-55099 Mainz, Germany. MKPH-T-02-09, July 23, 2002. Email:
- $\pi + \pi -$ Reaction." Jefferson Lab PAC40 Proposal.

Albert Fabrizi

 Holstein, BR, "A brief introduction to chiral perturbation theory" (2000). CZECHOSLOVAK JOURNAL OF PHYSICS. 310. Retrieved from https://

 Scherer, Stefan. "Introduction to Chiral Perturbation Theory." Institut f
ür Kernphysik, Johannes Gutenberg-Universität Mainz, J. J. Becher Weg 45, 1scherer@kph.uni-mainz.de. Website: <u>http://www.kph.uni-mainz.de/T/</u>

• Miskimen, R. et al "Measuring the Charged Pion Polarizability in the $\gamma\gamma \rightarrow$

HUGS: CPP Analysis

17