Reconstructing PDFs from LQCD data: GP and INN

HUGS 2024

Yamil Cahuana Medrano

Motivation **PDF ↔ LQCD**

My Introduction to LQCD... and PDFs

$$\mathscr{L}_{QCD} = -\frac{1}{4} F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} + \bar{\psi}_i (i\mathcal{D} - m_i) \psi_i$$

Lattice spacing

arXiv:1711.07916v3

PDFs on Euclidean Lattice Pseudo-PDFs, loffe-time

Lattice QCD prevents calculations of matrix elements on the light cone.

Lorentz decomposition $M^{\alpha}(p)$

Fix the vectors in the light cone coordinates to get the pseudo ITD

$$\begin{aligned} & \text{Pseudo-ITD} \\ & (z, z) = \langle p | \bar{\psi}(z) \gamma^{\alpha} U(z; 0) \psi(0) | p \rangle = p^{\alpha} \mathcal{M}(\nu, z^{2}) + z^{\alpha} \mathcal{N}(\nu, z^{2}) \\ & \alpha = + \quad z_{\alpha} = (0, z^{-}, 0_{T}) \quad p_{\alpha} = (p^{+}, \frac{m^{2}}{2p^{+}}, 0_{T}) \\ & \mathcal{M}(-p_{+}z_{-}, 0) = \int_{-1}^{1} dx f(x) e^{-ixp_{+}z_{-}} \\ \end{aligned}$$

pseudo-PDF) and extrapolated to $z^2 \rightarrow 0$

$$\alpha = 0$$
 $z_{\alpha} = (0, 0, 0, z_3)$ $p_{\alpha} = (p_0, 0, 0, p_3)$ M

Reduced pseudo ITD, to avoid UV divergences

$$\mathfrak{M}(\nu,\mu^2) = \frac{\mathscr{M}(\nu,z^2)}{\mathscr{M}(0,z^2)} = \int_0^1 \cos(\nu x) P(x,z^2)$$

X. Ji, Phys. Rev. Lett. 110, 262002 (2013). A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

• On lattice, the reduced pseudo-ITD can be extracted (Fourier-transform of the

$$f(\nu, z^2) = \int_{-1}^{1} dx P(x, z^2) e^{-ix\nu}$$

Inverse problem if we want to determine $P(x, z^2)$

General description of the (my) problem Lattice Data (ν) \leftrightarrow PDF (χ)

• Fortunately, I have an operator that relates 2 different spaces:

$$\mathcal{M}(\nu) = \mathcal{L}_{\nu} \mathcal{P}(x), \quad \text{where} \quad \mathcal{L}_{\nu} = \int_{0}^{1} dx \cos(\nu x) \, () \, .$$

• Can we determine \mathcal{L}_{ν}^{-1} ? if not you have a inverse problem.

$$\mathfrak{M}_l = \Sigma_{lk}^{\perp} P_k$$

Machine Learning of Nonlinear Partial Differential Equations arXiv: 1708.00588

But if I have 12 data points in M Can I only infer 12 data points of P(x)?

(Invertible) Neural Networks

I will focus on a brief description of these 3 main components

(Invertible) Neural Networks A brief introduction to NN and INN and MMD...in 2 min

• Can I create an invertible mapping?

How can we define a INN?

Data + Affine Couplings (Invertible Mappings)

+ Activation functions + hyperparameters

ReLu

hidden layers

+ Loss Function + Optimizer = INN Adam

I will try to describe these 3 main components

[arXiv:1605.08803] **Density estimation using Real NVP**

$$v_1 = u_1 \odot e^{s_2(u_2)} + t_2(u_2) \qquad u_1 = e^{-s_2(u_2)} \odot (v_1 - t_2) \\ v_2 = u_2 \odot e^{s_1(v_1)} + t_1(v_1) \qquad u_2 = e^{-s_1(v_1)} \odot (v_2 - t_1) \\ \text{Forward process} \qquad \text{Backward process}$$

 $x \odot y = (x_1 \cdot y_1, x_2 \cdot y_2)$

$_{2}(u_{2}))$ $(v_1))$

(Invertible) Neural Networks A brief introduction to NN and INN and MMD...in 3 min

- Maximum Mean Discrepancy
- Any supervised loss

How can we define a INN?

Data + Affine Couplings (Invertible Mappings)

+ Activation functions + hyperparameters ReLu # hidden layers

+ Loss Function + Optimizer = INN Adam

I will try to describe these 3 main components

 $L_{MMD}(x)$

[arXiv:1605.08803] **Density estimation using Real NVP**

 $\mathscr{L}_{Total} = aL_1 + bL_{MMD}(input) + cL_{MMD}(output)$

$$k(x,y) = \frac{1}{n(n-1)} \sum_{i \neq j} k(x_i, x_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(y_i, y_j) - \frac{2}{n^2} \sum_{i,j} k(y_i, y_j) - \frac{2}{n^2}$$

MMD help us to preserve statistics

This loss helps with the regression process

$$L_1(x, y) = |x - y|$$

Kernel k(x, y) = -

Data (Continuous functions in x) How can I generate an significant amount of data?

 $\alpha = 0.7$ $\beta = 3$

INNs architecture

Loss functions

$$, y_j) - \frac{2}{n^2} \sum_{i,j} k(x_i, y_j)$$

Results **Test data**

• Data generated by other sampling process.

 $\alpha = 0.7$ $\beta = 3$

Results Mock data

Results Mock data

• Still working on it...

$$\alpha = -0.3$$
 $\beta = 3$

		• • •
i		
-		
1		
_		
İ		
ĺ		
- 1		
i		
_		
-		• • •
į		
		•••
ĺ		
		•••
_		
, '	~	
L.	0	

Gaussian process definitions Stochastic Process

Rammunsen's book

Try to imagine an infinite dimensional gaussian distribution

 $\overrightarrow{\mu}, \sigma_{ij}$

Bayes theorem Lattice Data (ν) \leftrightarrow PDF (χ)

• Naively one may be tempted to write:

$P(\mathcal{M}(\nu)|\{\mathcal{M}^l\},\theta,\mathcal{H}_i) = \frac{P(\{\mathcal{M}^l\}|\mathcal{M}(\nu),\theta,\mathcal{H}_i)P(\mathcal{M}(\nu)|\theta,\mathcal{H}_i)}{P(\{\mathcal{M}^l\}|\theta,\mathcal{H}_i)}$

0.4

0.6

0.0

0.0

0.2

0.8

Machine Learning of Nonlinear Partial Differential Equations arXiv: 1708.00588

$P(\{\mathcal{M}^l\}|\mathcal{P}(x), heta,\mathcal{H}_i)P(\mathcal{P}(x)| heta,\mathcal{H}_i)$ $P(\{\mathcal{M}^l\}| heta,\mathcal{H}_i)$ Likelihood 1.0 0.8 0.6 $\mathcal{M}(\nu)$ 0.4 0.2 0.0 12 10 0 2 8 4

The most important slide of my life... Normal distribution

• Functional dependence on x

• Do you know this trick?

$$\frac{\partial \log(f)}{\partial x} = 0 \implies -\frac{1}{2} \frac{2(x-\mu)}{\sigma^2} = 0 \implies x = \mu$$

 $\partial^2 \log$

 ∂^2 .

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

$$\frac{g(f)}{x}\Big|_{x=\mu} = \sigma^{-2}$$

Generalize our results to GP How my prior and likelihood looks like? Prior

$$e^{S_{prior}(\mathcal{P})} = P(\mathcal{P}(x)|\theta) = N_{prior}e^{-\frac{1}{2}\int_{0}^{1}dxdx'[\mathcal{P}(x)-\mathcal{P}_{d}(x)]K^{-1}(x,x')[\mathcal{P}(x')-\mathcal{P}_{d}(x')]}$$
$$P_{constraint} = e^{-\frac{1}{2\lambda}\left(\int_{0}^{1}dx\mathcal{P}(x)-1\right)^{2}-\frac{1}{2\lambda_{c}}\left(\int_{0}^{1}dx\mathcal{P}(x)\delta(1-x)\right)^{2}}.$$

Likelihood

$$e^{S_l(\mathcal{P})} = P(\{\mathcal{M}^l\} | \mathcal{P}(x), \theta, \mathcal{H}_i) = N_{likelihood} e^{-\frac{1}{2}[\mathcal{M}_i - \mathcal{L}_\nu \mathcal{P}(x)]C_{ij}^{-1}[\mathcal{M}_j - \int_0^1 dx \cos(\nu_j x)\mathcal{P}(x')]}$$

My job now is to calculate the posterior

$$\frac{\delta \log \left(P(\mathcal{P}(x) | \{\mathcal{M}^l\}, \theta, \mathcal{H}_i) \right)}{\delta \mathcal{P}(x)} = 0 \implies \text{defines} \quad \bar{\mathcal{P}}(x)$$

$$\text{d} \quad K_{post}^{-1}(x, x') = \frac{\delta^2 \log \left(P(\mathcal{P}(x) | \{\mathcal{M}^l\}, \theta, \mathcal{H}_i) \right)}{\delta \mathcal{P}(x) \mathcal{P}(x')} \Big|_{\mathcal{P}(x) = \bar{\mathcal{P}}(x)}$$

and

Reconstructing parton distribution functions from loffe time data: from Bayesian methods to neural networks, 10.1007/jhep04(2019)057

Levels of inference in GP How can we determine the hyperparameters?

1st level (continuous variables P(x) and K(x.x')).

$$P(\mathcal{P}(x)|\{\mathcal{M}^l\},\theta,\mathcal{H}_i) = \frac{P(\{\mathcal{M}^l\}|\mathcal{P}(x),\theta,\mathcal{H}_i)P(\mathcal{P}(x)|\theta,\mathcal{H}_i)}{P(\{\mathcal{M}^l\}|\theta,\mathcal{H}_i)}$$

 2nd Level (Hyperparameters) basically how I control the parameters of the first level.

$$P(\theta|\{\mathcal{M}^l\},\mathcal{H}_i) = \frac{P(\{\mathcal{M}^l\}|\theta,\mathcal{H}_i)P(\theta|\mathcal{H}_i)}{P(\{\mathcal{M}^l\}|\mathcal{H}_i)}$$

The 3rd level is used to evaluate the models and its performance.

Rammunsen's book

Future work Ways to improve this work...

- Sample hyper-parameters instead of minimize the negative log marginal likelihood
- Explore the posibility of use Hierarchical Models in the implementation and Pymc
- Include the evolution of z, which follow a similar evolution to the DGLAP equation.
- Extend this work to GPDs!!

References **Papers and Books**

- Learning of Nonlinear Partial Differential Equations". In: CoRR abs/
- Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. "Machine
- Press, 2006, pp. I– XVIII, 1–248. isbn: 026218253X.

• Maziar Raissi and George E. Karniadakis. "Hidden Physics Models: Machine 1708.00588 (2017). arXiv: 1708.00588. url: http://arxiv.org/abs/1708.00588.

learning of linear differential equations using Gaussian processes". In: Journal of Computational Physics 348 (Nov. 2017), pp. 683–693. issn: 0021-9991. doi: 10.1016/j.jcp.2017.07.050. url: http://dx.doi.org/10.1016/j.jcp.2017.07.050.

 Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for ma- chine learning. Adaptive computation and machine learning. MIT

References **Papers**

- white paper. USA. <u>https://doi.org/10.1016/j.ppnp.2018.01.007</u>
- doi.org/10.1007%2Fjhep04%282019%29057.
- Networks". In: (2019). arXiv: 1808.04730 [cs.LG].

• Lin, Huey-Wen, Nocera, Emanuele R., Olness, Fred, Orginos, Kostas, Rojo, Juan, et. al. Parton distributions and lattice QCD calculations: A community

 Joseph Karpie et al. "Reconstructing parton distribution functions from loffe time data: from Bayesian methods to neural networks". In: Journal of High Energy Physics 2019.4 (Apr. 2019). doi: 10.1007/jhep04(2019)057. url: https://

Lynton Ardizzone et al. "Analyzing Inverse Problems with Invertible Neural

Generalize our results to GP Posterior

My job now is to calculate the posterior

$$\frac{\delta S_{post}}{\delta \mathcal{P}(x)} = \left(\mathcal{P} - \mathcal{P}_d\right) K^{-1}(x) + \frac{\mathcal{I}(x)(\mathcal{I} \circ \mathcal{P} - \mathcal{P}_d)}{\lambda}$$
$$\frac{\delta^2 S_{post}}{\delta \mathcal{P}(x)\delta \mathcal{P}(x)}\Big|_{\mathcal{P} = \bar{\mathcal{P}}} = K^{-1}(x, x') + \frac{\mathcal{I}(x)\mathcal{I}}{\lambda}$$

After a lot of algebra...

Generalize our results to GP Posterior

After a lot of algebra...

$$P(\mathcal{P}(x)|\{\mathcal{M}^{l}\},\theta,\mathcal{H}_{i}) = \frac{e^{-\left\{\frac{1}{2}S_{post}\left(\bar{\mathcal{P}}(x)\right) + \frac{1}{2}\int_{0}^{1}dx'\left(\mathcal{P}(x) - \bar{\mathcal{P}}(x)\right)\frac{\delta^{2}S_{post}}{\delta\mathcal{P}(x)\delta\mathcal{P}(x')}\left|\left(\mathcal{P}(x') - \bar{\mathcal{P}}(x')\right)\right\}}}{P\left(\{\mathcal{M}_{i}\}|\theta,\mathcal{H}_{i}\right)}$$
$$= \frac{e^{-\frac{1}{2}\left(\mathcal{P}(x) - \bar{\mathcal{P}}(x)\right)K_{post}^{-1}(x,x')\left(\mathcal{P}(x') - \bar{\mathcal{P}}(x')\right) + S_{prior}(\bar{\mathcal{P}}) + S_{l}(\bar{\mathcal{P}})}}{P\left(\{\mathcal{M}_{i}\}|\theta,\mathcal{H}_{i}\right)} \qquad (4)$$

Where $\bar{\mathcal{P}}(x) = \mathcal{P}_d(x) - (K_{post} \circ B_i^{\perp})(x)C_{ij}^{-1}\left(\mathcal{M}_j - B_j \circ \mathcal{P}_d\right)$

Reconstructing parton distribution functions from loffe time data: from Bayesian methods to neural networks, 10.1007/jhep04(2019)057

Levels of inference Lattice Data (ν) \leftrightarrow PDF (χ)

$$P(heta|\{\mathcal{M}^l\},\mathcal{H}_i) = rac{P(\{\mathcal{M}^l\}| heta,P)}{P(\{\mathcal{N}^l\})}$$

$$\bar{\mathcal{P}}(x) = \mathcal{P}_d(x) - (K_{post} \circ B_i^{\perp})(x)C_{ij}^{-1}\left(\mathcal{M}_j - B_j \circ \mathcal{P}_d\right)$$
$$S_{Evidence} = \frac{1}{2}(\mathcal{M}_i - B_i \circ \mathcal{P}_d)\bar{C}_{ij}^{-1}(\mathcal{M}_i - B_i \circ \mathcal{P}_d) + \frac{1}{2}\log\det\left(\bar{C}_{ij}\right)$$

7

$P(\mathcal{P}(x)|\{\mathcal{M}^l\},\theta,\mathcal{H}_i) = \frac{P(\{\mathcal{M}^l\}|\mathcal{P}(x),\theta,\mathcal{H}_i)P(\mathcal{P}(x)|\theta,\mathcal{H}_i)}{P(\{\mathcal{M}^l\}|\theta,\mathcal{H}_i)}$

 $rac{\mathcal{H}_i)P(heta|\mathcal{H}_i)}{\mathcal{A}^l\}|\mathcal{H}_i)$

Final Result Lattice Data (ν) \leftrightarrow PDF (χ) $S_{Evidence} = \frac{1}{2} (\mathcal{M}_i - B_i \circ \mathcal{P}_d) \bar{C}_{ij}^{-1} (\mathcal{M}_i - B_i \circ \mathcal{P}_d) + \frac{1}{2} \log \det \left(\bar{C}_{ij} \right)$ Lets visualize

Evidence Lattice Data (ν) \leftrightarrow PDF (χ) $S_{Evidence} = \frac{1}{2} (\mathcal{M}_i - B_i \circ \mathcal{P}_d) \bar{C}_{ij}^{-1} (\mathcal{M}_i - B_i \circ \mathcal{P}_d) + \frac{1}{2} \log \det \left(\bar{C}_{ij} \right)$ Lets visualize

Parton distribution functions (PDFs) A brief history of time blah...

• How can we describe proton's structure?

$$\sigma(e^-P^+ \to e^-X) = \sum_{i=partons} \int_0^1 dx f_i(x) \hat{\sigma}(e^-p)$$

Unpolarized PDFs Helicity-averaged $f_i(x,\mu^2) = f_i^{\to}(x,\mu^2) + f_i^{\leftarrow}(x,\mu^2)$

Polarized PDFs

$$\Delta f_i(x,\mu^2) = f_i^{\rightarrow}(x,\mu^2) - f_i^{\leftarrow}(x,\mu^2)$$

Fraction of the momentum

Loss functions Maximum Mean Discrepancy, and L1

[arXiv:1808.04730] Analyzing Inverse Problems with Invertible Neural Networks

Loss functions Maximum Mean Discrepancy, and L1 Loss function (Training)

Loss functions Maximum Mean Discrepancy, and L1

Loss functions

Invertible Neural Networks Invertible mappings (Affine Coupling Layers)

[arXiv:1605.08803] **Density estimation using Real NVP**

$$x \odot y = (x_1 \cdot y_1, x_2 \cdot y_2)$$

We can calculate the inverse easily!

$$u_1 = e^{-s_2(u_2)} \odot (v_1 - t_2(u_2))$$

$$u_2 = e^{-s_1(v_1)} \odot (v_2 - t_1(v_1))$$

$$\odot e^{s_1(v_1)} + t_1(v_1)$$

