FRAGMENTATION FUNCTIONS IN NUCLEAR MEDIA

Ramiro Tomás Martinez Universidad de Buenos Aires Argentina

PhD advisor: Rodolfo Sassot

HUGS, June 2024

 $e^- + p \rightarrow e^- + h + X$

 $\sigma_{ep \to e'hX} = \sum f_i(x, \mu_{f'}) \otimes \hat{\sigma}_{ep_i \to e'p_j} \otimes D_j^h(z, \mu_{f'})$ i,j PDF

Parton Distribution Function

Fragmentation Function

What happens in nuclear media?

For example:

Nuclear DIS $e^- + A \rightarrow e^- + X$

0.8

0.6

→ Nuclear PDF 1.4 1.2 $\boldsymbol{R}_{\boldsymbol{f}}^{(A)}$ $R_f^{(A)}(x,Q) \equiv \frac{f^{(p|A)}(x,Q)}{f^{(p)}(x,Q)}$ 0.8 0.6 d, 1.4 1.2 Vacuum PDF $R_f^{(A)}$

Initial-state nuclear effects can be effectively factorized into nuclear PDFs (nPDFs)

arxiv.org/pdf/2201.12363

nNNPDF3.0

What about Fragmentation Functions FF?

What about Fragmentation Functions FF?

 What happened with the hadronization when it takes place in a nuclear media?

What about Fragmentation Functions FF?

- What happened with the hadronization when it takes place in a nuclear media?
- Is it necessary to take into account final-state nuclear effects?

Final-state nuclear effects?

$$R_{A}^{h}(\nu, Q^{2}, z, p_{T}^{2}) = \frac{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{T}^{2})}{N^{e}(\nu, Q^{2})}\right)_{A}}{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{T}^{2})}{N^{e}(\nu, Q^{2})}\right)_{D}}$$

 $\nu = E_e - E_{e'}$ (Proton rest frame)

A : Mass number

CLAS collaboration at JLab 5.014 GeV electron beam

data from arXiv: 2109.09951

Final-state nuclear effects?

$$R_{A}^{h}(\nu, Q^{2}, z, p_{T}^{2}) = \frac{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{T}^{2})}{N^{e}(\nu, Q^{2})}\right)_{A}}{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{T}^{2})}{N^{e}(\nu, Q^{2})}\right)_{D}}$$

 $\nu = E_e - E_{e'}$ (Proton rest frame)

A : Mass number

Vacuum FF prediction

-- nNNPDF3.0 & FF \bullet 1.0 < Q² < 1.3 GeV $4 \quad 1.3 < Q^2 < 1.8 \text{ GeV}$ $4 \quad 1.8 < Q^2 < 4.1 \text{ GeV}$

CLAS collaboration at JLab

5.014 GeV electron beam data from arXiv: 2109.09951

Final-state nuclear effects?

$$R_{A}^{h}(\nu, Q^{2}, z, p_{T}^{2}) = \frac{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{T}^{2})}{N^{e}(\nu, Q^{2})}\right)_{A}}{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{T}^{2})}{N^{e}(\nu, Q^{2})}\right)_{D}}$$

 $\nu = E_e - E_{e'}$ (Proton rest frame)

A : Mass number

Vacuum FF prediction

-- nNNPDF3.0 & FF ϕ 1.0 < Q² < 1.3 GeV $4 \quad 1.3 < Q^2 < 1.8 \text{ GeV}$ $4 \quad 1.8 < Q^2 < 4.1 \text{ GeV}$

CLAS collaboration at JLab

5.014 GeV electron beam data from arXiv: 2109.09951

Convolution Approach

Nuclear Fragmentation Functions **nFFs**

 $D_{i/A}^{h}(z,\mu_{0}) = \int_{z}^{1} \frac{dy}{y} W_{i}^{h}(y,A,\mu_{0}) D_{i}^{h}\left(\frac{z}{y},\mu_{0}\right) + \int_{z}^{h} \frac{dy}{y} W_{i}^{h}\left(\frac{z}{y},\mu_{0}\right) + \int_{z}^{h} \frac{dy}{y} W_{i}^{h}\left(\frac{z}{y},\mu_{$ Vacuum Fragmentation Weight Function Functions **FFs**

Convolution Approach

Nuclear Fragmentation Functions **nFFs**

 $D_{i/A}^{h}(z,\mu_{0}) = \int_{z}^{1} \frac{dy}{y} W_{i}^{h}(y,A,\mu_{0}) D_{i}^{h}\left(\frac{z}{y},\mu_{0}\right)$ Vacuum Fragmentation Weight Function Functions **FFs** FIT

Convolution Approach Nuclear Fragmentation Functions **nFFs**

Parametrization

Valence quarks $W_q(z) = n'_q \delta(z - (1 - \epsilon_q)) + \frac{n_q}{N_q} z^{\alpha_q} (1 - z^{\beta_q})$ $W_g(z) = n'_g \delta(z-1) + \frac{n_g}{N} z^{\alpha_g} (1-z^{\beta_g})$ Gluons N_{g} $W_s(z) = n'_s \,\delta(z - (1 - \epsilon_s)) + \frac{n_s}{N_s} \, z^{\alpha_s} (1 - z^{\beta_s})$ Sea quarks

• $D_{i/A}^{h}(z,\mu_0) = \int_{z}^{1} \frac{dy}{y} W_i^{h}(y,A,\mu_0) D_i^{h}\left(\frac{z}{y},\mu_0\right)$ Vacuum Fragmentation Weight Function Functions **FFs** FIT

Convolution Approach Nuclear Fragmentation Functions **nFFs**

Parametrization

 $W_{q}(z) = n'_{q} \,\delta(z - (1 - \epsilon_{q})) + \frac{n_{q}}{N_{q}} \,z^{\alpha_{q}}(1 - z^{\beta_{q}})$ Valence quarks $W_{g}(z) = n'_{g} \,\delta(z-1) + \frac{n_{g}}{N} \,z^{\alpha_{g}}(1-z^{\beta_{g}})$ Gluons N_{g} $W_s(z) = n'_s \delta(z - (1 - \epsilon_s)) + \frac{n_s}{N_s} z^{\alpha_s} (1 - z^{\beta_s})$ Sea quarks

 $D_{i/A}^{h}(z,\mu_{0}) = \int_{-1}^{1} \frac{dy}{y} W_{i}^{h}(y,A,\mu_{0}) D_{i}^{h}\left(\frac{z}{y},\mu_{0}\right) \longleftarrow$ Vacuum Fragmentation Weight Function Functions **FFs** mass number FIT Parameters A dependence: $\sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{i}} \xi = \lambda_{\xi} + \gamma_{\xi} A^{\delta_{\xi}}$ $\sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{i}} \sum_{j=1}^{n}$ 24 free parameters

Nuclear Fragmentation Function FIT

CLAS detector JLab

arXiv: 2109.09951

Vacuum FF prediction

– nNNPDF3.0 & nFF nNNPDF3.0 & FF --\$ $1.0 < Q^2 < 1.3 \text{ GeV}$ $4 \quad 1.3 < Q^2 < 1.8 \text{ GeV}$ $1.8 < Q^2 < 4.1 \text{ GeV}$ ¥

Nuclear Fragmentation Function FIT

CLAS detector JLab arXiv: 2109.09951

Vacuum FF prediction

– nNNPDF3.0 & nFF nNNPDF3.0 & FF --¢ $1.0 < Q^2 < 1.3 \text{ GeV}$ $4 \quad 1.3 < Q^2 < 1.8 \text{ GeV}$ ¥ $1.8 < Q^2 < 4.1 \text{ GeV}$

This plot is part of a **Global Analysis**

Global Analysis

CLAS $R_A^{\pi^+}C$ 1.31.00.71.31.00.71.31.00.00.21.31.00.71.31.01.31.00.0 0.21.31.00.71.3

0.7

0.7

0.7

1.0

0.7

1.3

1.0

0.7

0.0

 $\nu = E_e - E_{e'}$ (Proton rest frame)

arXiv: 2109.09951

Global Analysis

• Next to Leading Order (NLO) Cross sections up to $\mathcal{O}(\alpha_s)$

 $\nu = E_e - E_{e'}$ (Proton rest frame)

arXiv: 2109.09951

Global Analysis

• Next to Leading Order (NLO) Cross sections up to $\mathcal{O}(\alpha_s)$

• The global analysis was also done with TUJU21 nPDF set

 $\nu = E_e - E_{e'}$ (Proton rest frame)

arXiv: 2109.09951

arXiv: 2109.09951

CLAS π^{-} data

HERMES Collaboration

- 27.6 GeV electron beam store stored in the HERA ring at DESY
- Same observable R^h_A

- TUJU21 & nFF
- TUJU21 & FF
- nNNPDF3.0 & nFF
- -- nNNPDF3.0 & FF

data from arXiv: 0704.3270

p-Pb collisions

ALICE, LHC $\sqrt{s} = 5.02$ TeV

 $\frac{1}{\langle T_{pPb} \rangle} \frac{d^2 N^{pPb}}{dy \, dp_T}$ σ^{pPb} $R_{pPb} = \cdot$ $d^2\sigma^{pp}$ σ^{pp} $dy dp_T$

data from arXiv:1801.07051 arXiv:1601.03658

p-Pb collisions

ALICE, LHC $\sqrt{s} = 5.02$ TeV

$$R_{pPb} = \frac{\frac{1}{\langle T_{pPb} \rangle} \frac{d^2 N^{pPb}}{dy \, dp_T}}{\frac{d^2 \sigma^{pp}}{dy \, dp_T}} \sim \frac{\sigma^{pPb}}{\sigma^{pp}}$$

• Big difference between two PDFs set

data from arXiv:1801.07051

arXiv: 1601.03658

p-Pb collisions

ALICE, LHC $\sqrt{s} = 5.02$ TeV

$$R_{pPb} = \frac{\frac{1}{\langle T_{pPb} \rangle} \frac{d^2 N^{pPb}}{dy \, dp_T}}{\frac{d^2 \sigma^{pp}}{dy \, dp_T}} \sim \frac{\sigma^{pPb}}{\sigma^{pp}}$$

- Big difference between two PDFs set
- Dependence on R_{pPb} of the initial-state nuclear effect

d-Au collisions

STAR, PHENIX Collaborations at Relativistic Heavy Ion Collider RHIC $\sqrt{s} = 200$ GeV

$$R_{pPb} = \frac{\frac{1}{\langle N_{coll} \rangle} \frac{d^2 N^{dAu}}{dy \, dp_T}}{\frac{1}{\langle \sigma_{NN} \rangle} \frac{d^2 \sigma^{pp}}{dy \, dp_T}} \sim \frac{\sigma^{dAu}}{\sigma^{pp}}$$

• nNNPDF3.0 appears to fit the data better

data from arXiv: 0912.3838 arXiv: 1304.3410

Nuclear Fragmentation Functions

Valence quark nFF

Gluon nFF

Sea quark nFF

z = hadron momentum fraction

A = Mass number

Nuclear Fragmentation Functions

Nuclear effects increase with mass number **A**

Valence quark nFF

Gluon nFF

Sea quark nFF

z = hadron momentum fraction

A = Mass number

CONCLUSIONS

Final-state nuclear effects can be effectively described with nFFs

CONCLUSIONS

Final-state nuclear effects can be effectively described with nFFs

• The observable R_A^{π} in nuclear SIDIS, measured by CLAS, has proven to be an excellent tool for studying final-state nuclear effects.

CONCLUSIONS

• Final-state nuclear effects can be effectively described with **nFFs**

- The observable R^{π}_{A} in nuclear SIDIS, measured by CLAS, has proven to be an excellent tool for studying final-state nuclear effects.
- nuclear effects **nPDFs**.

Proton-Nucleus collision observables have a strong dependence on the initial-state

BACKUP

Experiment	Data Type	#Data in Fit	χ^2
HERMES	π^+ (He, Ne, Kr, Xe)	100	259.76
	π^- (He, Ne, Kr, Xe)	100	184.87
	π^0 (He, Ne, Kr, Xe)	100	244.84
CLAS	π^+ (C, Fe, Pb)	216	578.49
	π^- (C, Fe, Pb)	178	661.32
ALICE	$\pi^+\pi^-$ (Pb)	35	9.35
	$\pi^0 (Pb)$	24	7.36
STAR	π^0 (Au)	12	8.76
PHENIX	π^0 (Au)	10	3.53
LHCb	π^0 Bwd (Pb)	21	35.66
	π^0 Fwd (Pb)	21	81.72
TOTAL		817	2075.66

Table 1: Experimental data summary

Backward

Mean values of the momentum fractions

$$\langle x_i \rangle \equiv \frac{\int dx_i \, x_i \, \frac{d\sigma}{dx_i dp_T}}{\int dx_i \, \frac{d\sigma}{dx_i dp_T}} \quad , \quad \langle z \rangle \equiv \frac{\int dz \, z \, \frac{d\sigma}{dz dp_T}}{\int dz \, \frac{d\sigma}{dz dp_T}}$$

Forward

Backward

Forward

n

nNNPDF3.0

In order to fit this data set

- nPDF with more shadowing than nNNPDF3.0
- nPDF with antishadowing similar to nNNPDF3.0