

Funded by NSF-PHY-2209199 Deeply Virtual Compton Scattering Using a Neutral Particle Spectrometer in Hall C

Mark Mathison

Ohio University

June 12, 2024

Theory: Internal Structure of the Nucleon

• GPDs develop multidimensional picture of internal nucleon structure

Process	What we get	Info encoded
Elastic scattering $(eN \rightarrow e'N')$	Form factors	Spatial distribution of electric charge
Deep inelastic scattering (DIS) $(eN \rightarrow e'X)$	Parton distribution functions (PDFs)	Longitudinal momentum distribution of partons
Deeply virtual Compton scattering (DVCS) $(eN \rightarrow e'N'\gamma)$	Generalized parton distributions (GPDs)	Both spatial and momentum distributions of partons

Theory: DVCS and GPDs

- DVCS is the simplest probe for accessing GPDs
 - \cdot Measure Compton form factors, then deconvolve into GPDs

Experimental Setup

- 3 experiments running from September 2023 to May 2024
- DVCS is $eN \rightarrow e'N'\gamma$
 - Electron in HMS
 - N not detected; identified by missing mass
 - Photon in NPS

Neutral Particle Spectrometer (NPS) Calorimeter

- + 1080 (30x36) channels with $PbWO_4$ crystal blocks and PMTs
 - Resistant to radiation damage
 - High light yield
 - High energy resolution
- All channels able to perform well at very high luminosity (~7.5x10³⁷ cm²/s)

Waveform and Energy Resolution

- Flash analog to digital converters (fADCs) on every channel
 - 250MHz sampling rate
 - Allows reconstruction of pulse waveforms

DISCLAIMER! Everything after this is preliminary

Validating Luminosity and HMS Acceptance with DIS Analysis

- Interested in measuring experimental DIS cross section
 - Well-understood at these kinematics
 - Compare yield of DIS events to MC simulation
- MC process:
 - Generate events flat distribution across HMS acceptance
 - Apply radiative corrections
 - Weight events according to DIS cross section

- Data process:
 - Apply cuts to select for electron events
 - Apply detector corrections
 - Remove background contributions

DIS Analysis: Deuterium

102.9% of expected yield

DIS Analysis: Hydrogen

94.1% of expected yield

10

Target Issues?

LH2					
Kinematic	Target Cell	Fan Speed	Pressure	DIS Data yield/ Predicted MC yield	
KinC_x60_4	Loop 2	$58 \mathrm{Hz}$	$25 \mathrm{psi}$	62.3%	
KinC_x36_4	Loop 2	$58 \mathrm{Hz}$	$25 \mathrm{psi}$	60.0%	
	Loop 2	42 Hz	$25 \mathrm{psi}$	70.1%	
	Loop 3	58 Hz	$25\mathrm{psi}$	64.0%	
	Loop 3	42 Hz	$25\mathrm{psi}$	73.6%	
	Loop 3	42 Hz	30psi	79.6%	
KinC_x25_3	Loop 3	42 Hz	30psi	73.9%	
	Loop 3	42Hz	$35\mathrm{psi}$	76.4%	
	Loop 3	40-41Hz	$40 \mathrm{psi}$	81.2%	
KinC_x50_0	Loop 3	42 Hz	40psi	94.1%	
	Loop 3	40 Hz	40psi	93.6%	
	Loop 3	36Hz	$40 \mathrm{psi}$	96.0%	
	Loop 3	32 Hz	40psi	95.5%	

Summary

- DVCS is one of the cleanest probes of GPDs, leading to a more comprehensive picture of the internal structure of the nucleon
- The NPS experiments in Hall C took DVCS data for several months and aim to precisely measure GPDs using the high energy resolution of the NPS
- Preliminary analysis indicates NPS is performing well and is in line with making these precision measurements

• Analysis ongoing to characterize issues with LH2 target and properly model discrepancies

Bonus Slides!

NPS Resolutions

Energy Resolution

Time Resolution

Theory: DVCS Cross Section

- * DVCS is the simplest probe for accessing GPDs
- $\ast\, \rm DVCS$ is not the only eN $\rightarrow e'\rm N'\gamma\, process$
- $\begin{aligned} & \diamond \, \sigma(\mathrm{eN} \rightarrow \mathrm{e'N'}_{Y}) = \, | \, \mathrm{DVCS} \, | \, {}^{2} \, + \\ & | \, \mathrm{BH} \, | \, {}^{2} \, + \, Interference \end{aligned}$
 - $\$ | BH | 2 calculable from QED w/ FFs
 - \diamond Interference terms separable from beam energy dependence and angle ϕ

Clustering Method

			0.2		
			3.0	1.0	0.2
0.3	0.2	0.4	7.0	2.0	0.2
2.0	8.0	1.0	0.4		
0.2	0.6	0.3	0.2		

			3.0		
			7.0	7.0	2.0
8.0	8.0	8.0	7.0	7.0	2.0
8.0	8.0	8.0	7.0		
8.0	8.0	8.0	1.0		

			7.0		
			7.0	7.0	7.0
8.0	8.0	8.0	7.0	7.0	7.0
8.0	8.0	8.0	7.0		
8.0	8.0	8.0	8.0		

$$x = \frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} \quad w_{i} = \max\left\{0, \left[W_{0} + \ln\left(\frac{E_{i}}{E}\right)\right]\right\}.$$

16

Radiation Damage

Column Number

DIS Hydrogen/Deuterium Yield Ratio

Ratio LH2/LD2: x50_0

