## Hypercentral Quark Model for Mass Spectra, Semileptonic Decays, and Regge Trajectories of Doubly Heavy Ξ Baryons

## André Aimé ATANGANA LIKÉNÉ

Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon

The 39th Annual Hampton University Graduate Summer Program at Jefferson Lab May 28 - June 14, 2024

## Introduction

- 2 Theoretical Framework
- Magnetic moments, radiative transitions and semileptonic decays
- 4 Numerical results



## Introduction

- A doubly heavy baryon combines two heavy quarks (b, c) with a light quark ((u, d) for Ξ baryons and s for Ω baryons).
- In 2002, the SELEX collaboration observed the  $\Xi_{cc}^+$  baryon with a measured mass of  $(3519 \pm 1)$  MeV in the decay mode  $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ . The recent observation of  $\Xi_{cc}^{++}$  baryon with lifetime  $\tau(\Xi_{cc}^{++}) = (0.256^{+0.024}_{-0.022} \pm 0.014)$  ps, demonstrates how really the LHC is a powerful discovery machine, and stimulates the theoretical studies of mass spectra of doubly heavy baryons.
- The doubly heavy  $\equiv$  baryons masses are experimentally unknown (except  $\equiv_{cc}^+$  and  $\equiv_{cc}^{++}$ )
- For the doubly heavy baryons, no experimental semileptonic decays are reported, and only a limited number of theoretical calculations are available
- As there are more doubly heavy baryons that may be discovered in the future, proposing theoretical models for their structure is essential.

## Introduction

In recent years, due availability of so many experimental facilities, the spectroscopy of heavy flavor hadrons has attracted considerable interest.

- CLEO
- BaBar and Belle
- Selex
- CERN : LHCb
- Tevatron
- Future experiments PANDA, Belle-II

The search for light resonances is the main focus of the baryon program at

- JLab
- the Beijing Spectrometer (BES)
- the Electron Stretcher and Accelerator (ELSA) facility (the Crystal Barrel collaboration)
- the Two Arms Photon Spectrometer (TAPS)
- SAPHIR and CLAS

New results are expected from analysis projects such as EBAC, Julich,

SAID, and MAID.

## Theoretical Framework

Since 1950's, the excited states of nucleons have been studied experimentally. Their study contributed to the discovery of the quark model by Gell-Mann and Zweig in 1964, and were critical for the discovery of "color" degrees of freedom as introduced by Greenberg.

### Different Approaches

- relativistic quark model (Ebert et al.)
- variational approach (Roberts et al.)
- Lattice QCD (Padmanath et al., Brown et al., Paula et al.)
- Hamiltonian Model (Yoshida et al.)
- Chiral Quark Model (Li-Ye Xiao et al.)
- diquark picture (Qi-Fang LAij et al.)
- Sum rules (Azizi et al., Hua-Xing Chen et al., Aliev et al.)

In this study, we used the Hypercentral Constituent Quark Model, which was introduced in 1995 by M. Ferrariset et al.

## The Hypercentral Constituent Quark Model (hCQM)

In hCQM, baryons are viewed as three-body systems made up of quarks. In the reference frame of the center of mass, the interquark motion is usually described by the so-called Jacobi coordinates  $(\rho, \lambda)$  given by

Jacobi coordinates

$$\vec{\rho} = \frac{1}{\sqrt{2}} \left( \vec{r_1} - \vec{r_2} \right) \quad , \quad \vec{\lambda} = \sqrt{\frac{2}{3}} \left( \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2} - \vec{r_3} \right), \tag{1}$$

with  $r = \sqrt{\rho^2 + \lambda^2}$ . In this reference frame, the reduced mass associated with each of the coordinate are given by

### Reduced mass

$$m_{
ho} = rac{2m_1m_2}{m_1 + m_2} , \ m_{\lambda} = rac{2m_3(m_1^2 + m_2^2 + m_1m_2)}{(m_1 + m_2)(m_1 + m_2 + m_3)} , \ m = rac{2m_{
ho}m_{\lambda}}{m_{\lambda} + m_{
ho}}.$$
 (2)

André Aimé ATANGANA LIKÉNÉ (Laborat Hypercentral Quark Model for Mass Spectra,

The 30th Annual Hampton University

## The Hypercentral Constituent Quark Model (hCQM)

In the framework of 6-dimensional hypercentral constituent quark models, a three bodies baryonic system can be described by the Hamiltonian operator expressed as follows

Hamiltonian operator

$$\hat{H} = \frac{P_{\rho}^2}{2m_{\rho}} + \frac{P_{\lambda}^2}{2m_{\lambda}} + V(r) = -\frac{1}{2m} \left[ \frac{d^2}{dr^2} + \frac{5}{r} \frac{d}{dr} - \frac{\vec{L}^2(\Omega_{\rho}, \Omega_{\lambda}, \xi)}{r^2} \right] + V(r), \quad (3)$$

where  $\Omega_{\rho} = (\theta_{\rho}, \varphi_{\rho})$  and  $\Omega_{\lambda} = (\theta_{\lambda}, \varphi_{\lambda})$  are the hyperspherical coordinates. Thus, the eigenvalues equation of  $\vec{L}^2(\Omega_{\rho}, \Omega_{\lambda}, \xi)$  can be written as

## Eigenvalues equation of $\vec{L}^2(\Omega_{\rho}, \Omega_{\lambda}, \xi)$

$$\vec{L}^{2}(\Omega_{\rho},\Omega_{\lambda},\xi)Y_{[\gamma],l_{\rho},l_{\lambda}}(\Omega_{\rho},\Omega_{\lambda},\xi) = \gamma(\gamma+4)Y_{[\gamma],l_{\rho},l_{\lambda}}(\Omega_{\rho},\Omega_{\lambda},\xi), \qquad (4)$$

The 30th Annual Hampton University

## The Hypercentral Constituent Quark Model (hCQM)

Thus, the hyperradial Schrödinger equation reads

$$\frac{d^2\varphi_{\nu\gamma}(r)}{dr^2} + \left[2mE_{\nu\gamma} - 2mV(r) - \frac{(2\gamma+3)(2\gamma+5)}{4r^2}\right]\varphi_{\nu\gamma}(r) = 0.$$
(5)

The hypercentral interaction potential V(r) in Eq.(5) has the following form

$$V(r) = V^{(0)}(r) + \left(\frac{1}{m_{\rho}} + \frac{1}{m_{\lambda}}\right) V^{(1)}(r) + V_{SD}(r), \qquad (6)$$

$$V^{(0)}(r) = -\frac{b}{r}e^{-cr} + ar + dr^2,$$
(7)

$$V^{(1)}(r) = -C_F C_A \frac{\alpha_S^2}{4r^2},$$
(8)

$$\alpha_{S} = \frac{\alpha_{S}(\mu_{0})}{1 + (\frac{33 - 2n_{f}}{12\pi})\alpha_{S}(\mu_{0})\ln(\frac{m_{1} + m_{2} + m_{3}}{\mu_{0}})}.$$
(9)

The spin-dependent forces  $V_{SD}$  are given in terms of the spin-spin interaction  $V_{SS}$ , spin-orbit interaction  $V_{\gamma S}$  and the tensor term  $V_T$  as

$$V_{SD}(r) = V_{SS}(r) \left[ \vec{S}_{\rho} \cdot \vec{S}_{\lambda} \right] + V_{\gamma S} \left[ \vec{\gamma} \cdot \vec{S} \right] + V_{T}(r) \left[ \vec{S}^{2} \right]. \quad (10)$$
  
$$- 3 \left( \vec{S} \cdot \frac{\vec{r}}{|\vec{r}|} \right) \left( \vec{S} \cdot \frac{\vec{r}}{|\vec{r}|} \right) \right],$$

where  $V_{SS}$ ,  $V_{\gamma S}$  and  $V_T$  are given by

$$V_{SS}(r) = \frac{1}{3m_{\lambda}m_{\rho}}\nabla^{2}V_{V}(r)$$
(11)  

$$V_{\gamma S}(r) = \frac{1}{2m_{\lambda}m_{\rho}r}\left(3\frac{dV_{V}(r)}{dr} - \frac{dV_{S}(r)}{dr}\right)$$
(12)  

$$V_{T}(r) = \frac{1}{6m_{\lambda}m_{\rho}}\left(3\frac{d^{2}V_{V}(r)}{dr^{2}} - \frac{1}{r}\frac{dV_{V}(r)}{dr}\right).$$
(13)

Hampton University

## Mass equation of the doubly heavy $\Xi$ baryons

$$M_{B} = \theta_{1} + m_{1} + m_{2} + m_{3} - \frac{1}{6m} \left[ \frac{\theta_{2}}{2\nu + 1 + 2\sqrt{\theta_{3} + \frac{1}{4}}} \right]^{2}, \quad (14)$$

$$\theta_{1} = \frac{\mu(\vec{\gamma} \cdot \vec{S})d}{m_{\lambda}m_{\rho}} + \frac{10d}{3\delta^{2}} + \frac{2a}{\delta} - \frac{\delta\left(-\frac{1}{2}c^{2}\phi_{1} + c\phi_{2} - \phi_{3}\right)}{3}$$

$$- \sum_{k=0}^{\infty} \frac{(-1)^{k}c^{k+1}(k+2)(k+3)}{6(k+1)!\delta^{k}} \left[ \phi_{3} - \frac{\phi_{1}c^{2}}{(k+3)} \right] \quad (15)$$

$$\theta_{2} = -\sum_{k=0}^{\infty} \frac{2m(-1)^{k}c^{k+1}(k+2)(k+4)}{2(k+1)!\delta^{k+1}} \left[ \phi_{3} - \frac{\phi_{1}c^{2}}{(k+3)} \right] + \frac{48md}{\delta^{3}}$$

$$+ \frac{30ma}{\delta^{2}} - 3h_{3} - \frac{12m\phi_{1}}{\delta^{2}} - \frac{8\epsilon_{\nu\gamma}}{\delta} \quad (16)$$

$$\theta_{3} = -\sum_{k=0}^{\infty} \frac{2m(-1)^{k}c^{k+1}(k+3)(k+4)}{2(k+1)!\delta^{k+2}} \left[ \phi_{3} - \frac{\phi_{1}c^{2}}{(k+3)} \right] + \frac{30md}{\delta^{4}} + \frac{30md}$$

# Magnetic moments, radiative transitions and semileptonic decays

• Magnetic moments of the doubly heavy  $\Xi$  baryons

The magnetic moments are fundamental properties of baryons that are essential for a complete description of their behavior in electromagnetic fields. Having the baryonic wave function at hand, one can easily calculate the magnetic moment of a doubly heavy  $\Xi$  baryon as follows:

$$\mu_{B} = \sum_{i} \langle \psi_{sf} | \hat{\mu}_{i} | \psi_{sf} \rangle = \sum_{i} \langle \psi_{sf} | \mu_{i} \sigma_{i} | \psi_{sf} \rangle, \qquad (18)$$

where  $\psi_{sf}$  is the spin flavor wave function of the baryonic system, and  $\hat{\mu}_i$  is the magnetic moment operator given by:

$$\hat{\mu}_i = \mu_i \sigma_i = \frac{e_i}{2m_i^{\text{eff}}} \sigma_i \quad , \quad m_i^{\text{eff}} = m_i \left( 1 + \frac{\langle H \rangle}{\sum_i m_i} \right).$$
(19)

In Eq.(19),  $e_i$ ,  $m_i$  and  $\sigma_i$  stand for the charge, mass and spin of the *i*-th quark, and  $m_i^{eff}$  is the effective mass.

## Magnetic moments, radiative transitions and semileptonic decays

• Radiative decay widths of the doubly heavy  $\Xi$  baryons

The M1 partial width of the decay  $B^* \rightarrow \gamma B$  is given by:

$$\Gamma = \frac{1}{137} \frac{\omega^3}{M_P^2} \frac{2}{2J+1} \left(\frac{M_B}{M_{B^*}}\right) \mu^2 (B^* \leftrightarrow B), \tag{20}$$

where  $M_P$  is the proton mass,  $M_{B^*}$  and J are the mass and spin of the decaying particle, M is the baryon's mass in its final state.

transition magnetic moment

$$\mu(B^* \leftrightarrow B) = \sum_{i} \left\langle \psi_{sf}^B \right| \frac{e_i}{2m_i^{eff}} \sigma_i \left| \psi_{sf}^{B^*} \right\rangle \quad , \quad \omega = \frac{M_{B^*}^2 - M_B^2}{2M_B}, \quad (21)$$

 $\omega$  is the photon momentum.

# Magnetic moments, radiative transitions and semileptonic decays

• Semileptonic decay widths of the doubly heavy  $\equiv$  baryons Close to zero recoil, the expressions for the semileptonic decay widths are simplified as follows:

$$\Gamma_{\frac{1}{2} \to \frac{1}{2}} = \frac{G_F^2}{12\pi^3} M_i^5 R^4 |V_{bc}|^2 \int_1^{\omega_{\max}} d\omega \sqrt{\omega^2 - 1} \left[ l_1^+(\omega) \eta^2(\omega) + l_1^-(\omega) \eta^2(\omega) \right],$$

$$\Gamma_{\frac{3}{2} \to \frac{1}{2}} = \frac{G_F^2}{24\pi^3} M_i^5 R^4 |V_{bc}|^2 \int_1^{\omega_{\max}} d\omega \sqrt{\omega^2 - 1} l_3(\omega) \eta^2(\omega),$$

$$\Gamma_{\frac{3}{2} \to \frac{3}{2}} = \frac{G_F^2}{24\pi^3} M_i^5 R^4 |V_{bc}|^2 \int_1^{\omega_{\max}} d\omega \sqrt{\omega^2 - 1} \left[ l_4^+(\omega) \eta^2(\omega) + l_4^-(\omega) \eta^2(\omega) \right],$$

$$(22)$$

where  $R = M_f/M_i$ ,  $V_{bc}$  is the CKM matrix element and  $\omega_{max} = (1 + R^2)/2R$ .

## Numerical results

- For the six doubly heavy Ξ baryons, light quarks (u and d) are combined with heavy quarks. The mass difference between the light quarks is 12 MeV. Thus, it is obvious that when we move towards the calculation of the excited states the baryons masses would also have a very small mass difference.
- For sake of completeness, we calculated whole mass spectrum for all six doubly heavy  $\equiv$  baryons:  $\equiv_{cc}^+$ ,  $\equiv_{cc}^{++}$ ,  $\equiv_{bb}^-$ ,  $\equiv_{bc}^0$ ,  $\equiv_{bc}^0$  and  $\equiv_{bc}^+$ , and we noticed that it hardly differs less than  $\approx 10$  MeV.
- The Calculations have been implemented for the ground state (1S), the radial excited states (2S-5S) and the orbital excited states (1P-5P).
- We consider all isospin splittings and accordingly  $J^P$  values are determined.

Annual Hampton Univ

- The LHCb experiment: Ξ<sup>++</sup><sub>cc</sub> with the mass (3621.40 ± 0.72 ± 0.27 ± 0.14) MeV and quark combination ccu. The decay mode of the experimental investigation is Ξ<sup>++</sup><sub>cc</sub> → Λ<sup>+</sup><sub>c</sub> K<sup>-</sup>π<sup>+</sup>π<sup>-</sup>.
- SELEX experiment: a ground state at 3520 MeV containing two charm quarks and a down quark in its decay mode  $\Xi_{cc}^+ \rightarrow pD^+K^-$ .

#### ۲

In our model, due to the lack of experimental data, the values of the potential parameters are obtained from fitting our calculated masses with those reported in other works. The values of the constituent quark masses and the parameters of the problem are reported in Table 1.

| Variables systems | $m_q$ | $\alpha_S$ | $C_F$ | $C_A$ | $a_V$   | $a_S$   | b       | с      | d       | δ      |
|-------------------|-------|------------|-------|-------|---------|---------|---------|--------|---------|--------|
| Unit              | GeV   | -          | -     | -     | $GeV^2$ | $GeV^2$ | -       | GeV    | $GeV^3$ | GeV    |
| u quark           | 0.34  | 0.340      | 2/3   | 3     | 0.08655 | 0.2518  | 391.841 | 0.0802 | 0.0089  | 0.0691 |
| d quark           | 0.35  |            |       |       |         |         |         |        |         |        |
| c quark           | 1.348 |            |       |       |         |         |         |        |         |        |
| b quark           | 4.750 |            |       |       |         |         |         |        |         |        |

Table 1: Parameters of the system under consideration.

## Ground state masses

## The ground state masses of the doubly heavy $\Xi$ baryons are listed in Table 2.

Table 2: The calculated ground state masses (in GeV) of  $\Xi$  baryons are listed with other relevant theoretical works.

| Baryon       | $\Xi_{ccd}$       | $\Xi_{ccu}$       | $\Xi_{bbd}$       | $\Xi_{bbu}$       | $\Xi_{bcd}$       | $\Xi_{bcu}$       |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| $J^P$        | $\frac{1}{2}^{+}$ | $\frac{3}{2}^{+}$ | $\frac{1}{2}^{+}$ | $\frac{3}{2}^{+}$ | $\frac{1}{2}^{+}$ | $\frac{3}{2}^{+}$ |
| Our          | 3.521             | 3.696             | 10.215            | 10.184            | 6.741             | 6.828             |
| Ref.[1]      | 3.520/3.511       | 3.695/3.687       | 10.317/10.312     | 10.340/10.335     | 6.920/6.914       | 6.986/6.980       |
| Ref.[72]     | 3.519             |                   |                   |                   |                   |                   |
| Ref.[20]     | 3.685             | 3.754             | 10.314            |                   |                   |                   |
| Ref.[22, 23] | 3.520             | 3.695             | 10.199            | 10.316            |                   |                   |
| Ref.[14]     | 3.610             | 3.694             |                   |                   |                   |                   |
| Ref.[24]     | 3.610             | 3.692             | 10.143            | 10.178            | 6.943             | 6.985             |
| Ref.[73]     | 3.561             | 3.642             |                   |                   |                   |                   |
| Ref.[28]     | 3.720             |                   | 9.960             |                   | 6.943             |                   |
| Ref.[29]     | 3.687             | 3.752             | 10.322            | 10.352            | 7.014             | 7.064             |
| Ref. [74]    | 3.676             | 3.753             | 10.340            | 10.367            | 7.011             | 7.074             |
| Ref. [75]    | 3.547             | 3.719             | 10.185            | 10.216            | 6.904             | 6.936             |
| Ref.[30]     | 3.579             | 3.565             | 10.189            | 10.218            |                   |                   |
| Ref.[31]     | 3.620             | 3.727             | 10.202            | 10.237            | 6.933             | 6.980             |
| Ref.[32]     | 3.478             | 3.610             | 10.093            | 10.133            | 6.820             | 6.900             |
| Ref. [76]    | 3.627             | 3.690             | 10.162            | 10.184            | 6.914             |                   |
| Ref.[77]     | 3.519             | 3.620             | 9.800             | 9.980             | 6.650             | 6.690             |
| Ref.[33]     | 3.612             | 3.706             | 10.197            | 10.136            | 6.919             | 6.986             |
| Ref. [78]    | 3.510             | 3.548             | 10.130            | 10.144            | 6.792 er V        | Vinde827          |
| Ref.[79]     | 3.570             | 3.610             | 10.170            | 10.220            | Accédez au        | ix paramètres d   |

André Aimé ATANGANA LIKÉNÉ (Laborat Hypercentral Quark Model for Mass Spectra,

The 39th Annual Hampton University Grad

## Ground state masses

Radial excited states masses of the doubly heavy  $\Xi$  baryons are listed in Table 3.

| Baryon      | State      | $J^P$             | Our Calc | 1      | 1      | 20     | 74     | 75     | 30     | 31     | 29     |
|-------------|------------|-------------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
|             | 2S         |                   | 3.903    | 3.925  | 3.920  | 4.079  | 4.029  | 4.183  | 3.976  | 3.910  | 4.030  |
|             | 38         |                   | 4.182    | 4.233  | 4.159  | 4.206  |        | 4.640  |        | 4.154  |        |
|             | 48         | $\frac{1}{2}^{+}$ | 4.436    | 4.502  | 4.501  |        |        |        |        |        |        |
| $\Xi_{ccd}$ | 58         | -                 | 4.669    | 4.748  | 4.748  |        |        |        |        |        |        |
| and         | 2S         |                   | 3.968    | 3.988  | 3.983  | 4.114  | 4.042  | 4.282  | 4.025  | 4.027  | 4.078  |
| Eccu        | 3S         |                   | 4.241    | 4.264  | 4.261  | 4.131  |        | 4.719  |        |        |        |
|             | 45         | 3+<br>2+          | 4.482    | 4.520  | 4.519  |        |        |        |        |        |        |
|             | <b>5</b> S | 2                 | 4.671    | 4.759  | 4.759  |        |        |        |        |        |        |
|             | 2S         |                   | 10.062   | 10.612 | 10.609 | 10.571 | 10.576 | 10.751 | 10.482 | 10.441 | 10.551 |
|             | 3S         |                   | 10.411   | 10.862 | 10.862 | 10.612 |        | 11.170 |        | 10.630 |        |
|             | 48         | $\frac{1}{2}^{+}$ | 10.816   | 11.088 | 11.090 |        |        |        |        | 10.812 |        |
| $\Xi_{bbd}$ | 58         | 2                 | 10.826   | 11.297 | 11.301 |        |        |        |        |        |        |
| and         | 2S         |                   | 9.998    | 10.619 | 10.617 | 10.592 | 10.578 | 10.770 | 10.501 | 10.482 | 10.574 |
| $\Xi_{bbu}$ | 3S         |                   | 10.485   | 10.855 | 10.866 | 10.593 |        | 11.184 |        | 10.673 |        |
|             | 45         | 3+                | 10.519   | 11.090 | 11.092 |        |        |        |        | 10.856 |        |
|             | 58         | 2                 | 10.812   | 11.298 | 11.302 |        |        |        |        |        |        |
|             | 2S         |                   | 6.979    | 7.244  | 7.240  |        |        | 7.478  |        |        | 7.321  |
|             | 38         |                   | 7.236    | 7.509  | 7.507  |        |        | 7.904  |        |        |        |
|             | 48         | $\frac{1}{2}^{+}$ | 7.429    | 7.746  | 7.744  |        |        |        |        |        |        |
| $\Xi_{bcd}$ | <b>5</b> S | 2                 | 7.725    | 7.963  | 7.964  |        |        |        |        |        |        |
| and         | 28         |                   | 7.019    | 7.267  | 7.263  |        |        | 7.495  |        |        | 7.353  |
| Ebou        | 38         |                   | 7.297    | 7.521  | 7.518  |        |        | 7.917  |        |        |        |
|             | 48         | 3+                | 7.474    | 7.752  | 7.752  |        |        |        |        |        |        |
|             | 58         | 2                 | 7.606    | 7.968  | 7.969  |        |        |        |        |        |        |
|             |            |                   |          |        |        |        |        |        | 2011   |        |        |

Table 3: The calculated radial excited state masses (in GeV) of  $\Xi$  baryons are listed with other relevant theoretical works.

André Aimé ATANGANA LIKÉNÉ (Laborat Hypercentral Quark Model for Mass Spectra,

The 39th Annual Hampton University Grad

## Calculated masses of orbital excited states

## Orbital excited states masses of $\Xi_{cc}^+$ and $\Xi_{cc}^{++}$ baryons are listed in Table 4.

| State            | Our Calc     | Our Calc        | 1     | 1     | 20    | 74    | 30    | 31    | 22    | 32    | 29    | 14    |
|------------------|--------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Control          | $\Xi_{cc}^+$ | $\Xi_{cc}^{++}$ | Ξ.    | Ξ_cc  | [-0]  | 1.4   | [oo]  | [0.1] | []    | 10-1  | []    | [***] |
| $(1^2 P_{1/2})$  | 3.850        | 3.848           | 3.865 | 3.861 | 3.947 | 3.910 | 3.880 | 3.838 |       |       | 4.073 | 3.892 |
| $(1^2 P_{3/2})$  | 3.838        | 3.833           | 3.847 | 3.842 | 3.949 | 3.921 |       | 3.959 | 3.786 | 3.834 | 4.079 | 3.989 |
| $(1^4 P_{1/2})$  | 3.867        | 3.861           | 3.875 | 3.871 |       |       |       |       |       |       |       |       |
| $(1^4 P_{3/2})$  | 3.849        | 3.843           | 3.856 | 3.851 |       |       |       |       |       |       |       |       |
| $(1^4 P_{5/2})$  | 3.882        | 3.875           | 3.890 | 3.888 | 4.163 | 4.092 |       | 4.155 | 3.949 | 4.047 | 4.089 |       |
| $(2^2 P_{1P_2})$ | 4.125        | 4.118           | 4.161 | 4.140 | 4.135 | 4.074 | 4.018 | 4.085 |       |       |       |       |
| $(2^2 P_{3/2})$  | 4.112        | 4.102           | 4.144 | 4.140 | 4.137 | 4.078 | 4.197 |       |       |       |       |       |
| $(2^4 P_{1/2})$  | 4.133        | 4.129           | 4.169 | 4.167 |       |       |       |       |       |       |       |       |
| $(2^4 P_{3/2})$  | 4.131        | 4.120           | 4.152 | 4.149 |       |       |       |       |       |       |       |       |
| $(2^4 P_{5/2})$  | 4.157        | 4.146           | 4.183 | 4.181 | 4.488 |       |       |       |       |       |       |       |
| $(3^2 P_{1/2})$  | 4.382        | 4.373           | 4.426 | 4.409 | 4.149 |       |       |       |       |       |       |       |
| $(3^2P_{3/2})$   | 4.365        | 4.358           | 4.411 | 4.409 | 4.159 |       |       |       |       |       |       |       |
| $(3^4 P_{1/2})$  | 4.378        | 4.371           | 4.433 | 4.432 |       |       |       |       |       |       |       |       |
| $(3^4P_{3/2})$   | 4.368        | 4.359           | 4.419 | 4.417 |       |       |       |       |       |       |       |       |
| $(3^4P_{5/2})$   | 4.376        | 4.372           | 4.399 | 4.396 | 4.534 |       |       |       |       |       |       |       |
| $(4^2 P_{1/2})$  | 4.612        | 4.603           | 4.671 | 4.671 |       |       |       |       |       |       |       |       |
| $(4^2P_{3/2})$   | 4.617        | 4.616           | 4.658 | 4.657 |       |       |       |       |       |       |       |       |
| $(4^4P_{1/2})$   | 4.624        | 4.619           | 4.678 | 4.678 |       |       |       |       |       |       |       |       |
| $(4^4 P_{2P_2})$ | 4.639        | 4.632           | 4.664 | 4.664 |       |       |       |       |       |       |       |       |
| $(4^4 P_{5/2})$  | 4.648        | 4.639           | 4.646 | 4.646 |       |       |       |       |       |       |       |       |
| $(5^2 P_{1/2})$  | 4.814        | 4.809           | 4.901 | 4.902 |       |       |       |       |       |       |       |       |
| $(5^2 P_{3/2})$  | 4.793        | 4.785           | 4.889 | 4.889 |       |       |       |       |       |       |       |       |
| $(5^4 P_{1/2})$  | 4.820        | 4.818           | 4.908 | 4.909 |       |       |       |       |       |       |       |       |
| $(5^4 P_{3/2})$  | 4.745        | 4.741           | 4.895 | 4.895 |       |       |       |       |       |       |       |       |
| $(5^4 P_{5/2})$  | 4.800        | 4.798           | 4.878 | 4.879 |       |       |       |       |       |       |       |       |

Table 4: Orbitaly excited states masses for  $\Xi_{cc}$  baryon (in GeV).

## Calculated masses of orbital excited states

=

## Orbital excited states masses of $\Xi_{bb}^{-}$ and $\Xi_{bb}^{0}$ baryons are listed in Table 5.

| State           | Our Calc      | Our Calc       | [1]        | 1              | 20     | 74     | 31     | 22     | 29     | Others      |
|-----------------|---------------|----------------|------------|----------------|--------|--------|--------|--------|--------|-------------|
|                 | $\equiv_{bb}$ | $\Xi_{bb}^{0}$ | $\Xi_{bb}$ | $\Xi_{bb}^{0}$ | • •    | • •    | • •    | • •    | • •    |             |
| $(1^2 P_{1/2})$ | 10.015        | 10.011         | 10.514     | 10.511         | 10.476 | 10.493 | 10.368 |        | 10.691 | 10.406[30]  |
| $(1^2 P_{3/2})$ | 10.123        | 10.119         | 10.509     | 10.506         | 10.476 | 10.495 | 10.408 | 10.474 | 10.692 | 10.390[79]  |
| $(1^4 P_{1/2})$ | 10.026        | 10.021         | 10.517     | 10.514         |        |        |        |        |        |             |
| $(1^4 P_{3/2})$ | 9.912         | 9.904          | 10.512     | 10.509         |        |        |        |        |        | 10.430 [28] |
| $(1^4 P_{5/2})$ | 10.046        | 10.041         | 10.521     | 10.518         | 10.759 |        |        | 10.588 | 10.695 |             |
| $(2^2 P_{1/2})$ | 10.146        | 10.144         | 10.770     | 10.770         | 10.703 | 10.710 | 10.563 |        |        | 10.612 [30] |
| $(2^2 P_{2/2})$ | 10.151        | 10.148         | 10.766     | 10.762         | 10.704 | 10.713 | 10.607 |        |        |             |
| $(2^4 P_{1/2})$ | 10.164        | 10.163         | 10.772     | 10.772         |        |        |        |        |        |             |
| $(2^4 P_{3/2})$ | 10.156        | 10.155         | 10.768     | 10.767         |        |        |        |        |        |             |
| $(2^4 P_{5/2})$ | 10.148        | 10.151         | 10.773     | 10.776         | 10.973 | 10.713 |        |        |        |             |
| $(3^2 P_{1/2})$ | 10.347        | 10.349         | 11.001     | 11.002         | 10.740 |        | 10.744 |        |        |             |
| $(3^2 P_{3/2})$ | 10.341        | 10.342         | 10.997     | 10.998         | 10.742 |        | 10.788 |        |        |             |
| $(3^4 P_{1/2})$ | 10.341        | 10.342         | 11.003     | 11.004         |        |        |        |        |        |             |
| $(3^4 P_{3/2})$ | 10.338        | 10.339         | 10.999     | 11.000         |        |        |        |        |        |             |
| $(3^4P_{5/2})$  | 10.329        | 10.335         | 10.994     | 11.007         | 11.004 |        |        |        |        |             |
| $(4^2 P_{1/2})$ | 10.577        | 10.581         | 11.214     | 11.217         |        |        | 10.900 |        |        |             |
| $(4^2 P_{2/2})$ | 10.584        | 10.590         | 11.210     | 11.213         |        |        |        |        |        |             |
| $(4^4 P_{1/2})$ | 10.547        | 10.549         | 11.216     | 11.219         |        |        |        |        |        |             |
| $(4^4 P_{3/2})$ | 10.571        | 10.573         | 11.212     | 11.215         |        |        |        |        |        |             |
| $(4^4 P_{5/2})$ | 10.566        | 10.574         | 11.208     | 11.222         |        |        |        |        |        |             |
| $(5^2 P_{1/2})$ | 10.727        | 10.732         | 11.413     | 11.418         |        |        |        |        |        |             |
| $(5^2 P_{3/2})$ | 10.711        | 10.715         | 11.410     | 11.415         |        |        |        |        |        |             |
| $(5^4 P_{1/2})$ | 10.719        | 10.725         | 11.415     | 11.420         |        |        |        |        |        |             |
| $(5^4 P_{3/2})$ | 10.732        | 10.737         | 11.412     | 11.417         |        |        |        |        |        |             |
| $(5^4 P_{5/2})$ | 10.711        | 10.718         | 11.407     | 11.423         |        |        |        |        |        |             |

Table 5: Orbitaly excited states masses for  $\Xi_{bb}$  baryon (in GeV).

## Calculated masses of orbital excited states

Orbital excited states masses of  $\Xi_{bc}^{0}$  and  $\Xi_{bc}^{+}$  baryons are listed in Table 6.

| State           | Our Calc       | Our Calc       | 1              | 1            | 29    |
|-----------------|----------------|----------------|----------------|--------------|-------|
|                 | $\Xi_{bc}^{0}$ | $\Xi_{bc}^{+}$ | $\Xi_{bc}^{0}$ | $\Xi_{bc}^+$ |       |
| $(1^2 P_{1/2})$ | 6.852          | 6.847          | 7.160          | 7.156        | 7.390 |
| $(1^2 P_{3/2})$ | 6.832          | 6.827          | 7.149          | 7.144        | 7.394 |
| $(1^4 P_{1/2})$ | 6.862          | 6.854          | 7.166          | 7.141        | 7.399 |
| $(1^4 P_{3/2})$ | 6.848          | 6.842          | 7.155          | 7.150        |       |
| $(1^4 P_{5/2})$ | 6.572          | 6.573          | 7.175          | 7.171        |       |
| $(2^2 P_{1/2})$ | 7.112          | 7.108          | 7.425          | 7.422        |       |
| $(2^2 P_{3/2})$ | 7.158          | 7.155          | 7.415          | 7.412        |       |
| $(2^4 P_{1/2})$ | 7.182          | 7.181          | 7.430          | 7.426        |       |
| $(2^4 P_{3/2})$ | 7.196          | 7.194          | 7.420          | 7.417        |       |
| $(2^4 P_{5/2})$ | 7.201          | 7.203          | 7.408          | 7.434        |       |
| $(3^2 P_{1/2})$ | 7.310          | 7.308          | 7.664          | 7.662        |       |
| $(3^2P_{3/2})$  | 7.301          | 7.299          | 7.655          | 7.654        |       |
| $(3^4 P_{1/2})$ | 7.309          | 7.307          | 7.668          | 7.666        |       |
| $(3^4P_{3/2})$  | 7.295          | 7.296          | 7.659          | 7.658        |       |
| $(3^4P_{5/2})$  | 7.301          | 7.304          | 7.648          | 7.673        |       |
| $(4^2 P_{1/2})$ | 7.512          | 7.531          | 7.884          | 8.015        |       |
| $(4^2 P_{3/2})$ | 7.489          | 7.490          | 7.876          | 7.877        |       |
| $(4^4 P_{1/2})$ | 7.513          | 7.512          | 7.888          | 7.888        |       |
| $(4^4 P_{3/2})$ | 7.503          | 7.504          | 7.880          | 7.880        |       |
| $(4^4 P_{5/2})$ | 7.494          | 7.510          | 7.870          | 7.895        |       |
| $(5^2 P_{1/2})$ | 7.697          | 7.699          | 8.091          | 8.092        |       |
| $(5^2 P_{3/2})$ | 7.695          | 7.694          | 8.084          | 8.085        |       |
| $(5^4 P_{1/2})$ | 7.703          | 7.711          | 8.094          | 8.096        |       |
| $(5^4 P_{3/2})$ | 7.708          | 7.709          | 8.087          | 8.088        |       |
| $(5^4 P_{5/2})$ | 7.691          | 7.692          | 8.078          | 8.079        |       |

Table 6: Orbitaly excited states masses for  $\Xi_{bc}$  baryon (in GeV).

André Aimé ATANGANA LIKÉNÉ (Labora: Hypercentral Quark Model for Mass Spectra,

The 39th Annual Hampton University Gradua

## The magnetic moments $\hat{\mu}_i$ of double heavy $\Xi$ baryons

Magnetic moments  $\hat{\mu}_i$  of double heavy  $\Xi$  baryons with positive parity  $J^P = \frac{1}{2}^+$  and  $\frac{3}{2}^+$  are listed in Table 7 in terms of the nuclear magnaton  $\mu_N$ .

| Baryon                           | Quark   | $J^{p}$                                                 | Function                                                 | Our Calc | ref. [83] | Others                |
|----------------------------------|---------|---------------------------------------------------------|----------------------------------------------------------|----------|-----------|-----------------------|
|                                  | content |                                                         |                                                          |          |           |                       |
| $\Xi_{cc}^+$                     | (ccd)   | $\frac{1}{2}^{+}$                                       | $\frac{4}{3}\mu_{c} - \frac{1}{3}\mu_{d}$                | 0.803    | 0.784     | $0.43 \pm 0.09$ [84]  |
| $\Xi_{cc}^{++}$                  | (ccu)   | $\frac{1}{2}^{+}$                                       | $\frac{4}{3}\mu_{c} - \frac{1}{3}\mu_{u}$                | -0.121   | 0.031     | $-0.23 \pm 0.05$ [84] |
| $\Xi_{bb}$                       | (bbd)   | $\frac{1}{2}^{+}$                                       | $\frac{4}{3}\mu_b - \frac{1}{3}\mu_d$                    | 0.205    | 0.196     | $0.28 \pm 0.04$ [84]  |
| $\Xi_{bb}^{-}$<br>$\Xi_{bb}^{0}$ | (bbu)   | $\frac{1}{2}^{+}$                                       | $\frac{4}{3}\mu_b - \frac{1}{3}\mu_u$                    | -0.594   | -0.663    | $-0.51 \pm 0.09$ [84] |
| $\Xi_{bc}^{0}$                   | (bcu)   | $\frac{1}{2}^{+}$<br>$\frac{1}{2}^{+}$                  | $\frac{2}{3}\mu_b + \frac{2}{3}\mu_c - \frac{1}{3}\mu_u$ | 0.517    | 0.527     | 0.560 [85]            |
| $\Xi_{bc}^+$                     | (bcd)   | $\frac{1}{2}^{+}$                                       | $\frac{2}{3}\mu_b + \frac{2}{3}\mu_c - \frac{1}{3}\mu_u$ | -0.441   | -0.304    | -0.540 [85]           |
| $\Xi_{cc}^{*+}$                  | (ccd)   | $\frac{1}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2}$ | $2\mu_c + \mu_d$                                         | 0.083    | 0.068     | -                     |
| $\Xi_{cc}^{*++}$                 | (ccu)   | $\frac{3}{2}$ +                                         | $2\mu_c + \mu_u$                                         | 2.311    | 2.218     |                       |
| $\Xi_{bb}^{+-}$                  | (bbd)   | 3+                                                      | $2\mu b + \mu d$                                         | -2.005   | 0.196     |                       |
| $\Xi_{bb}^{*0}$                  | (bbu)   | $\frac{3}{2}$ + $\frac{3}{2}$ +                         | $2\mu_b + \mu_u$                                         | -1.497   | -1.607    |                       |
| $\Xi_{bc}^{*0}$                  | (bcu)   | $\frac{3}{2}^{+}$                                       | $\mu_b + \mu_c + \mu_u$                                  | -0.524   | -0.448    |                       |
| $\Xi_{bc}^{*+}$                  | (bcd)   | 3+                                                      | $\mu_b + \mu_c + \mu_d$                                  | 1.846    | 2.107     |                       |

Table 7: The magnetic moments of the doubly heavy  $\Xi$  baryons in unit of nuclear magnaton  $\mu_N$ .

The 39th Annual Hampton University Gradu

## Radiative and semileptonic decay widths

The radiative and semileptonic decay widths of double heavy  $\Xi$  baryons in Tables 8 and 9 respectively.

| Decay                                                     | Our Calc | ref.[86]          | Others         |
|-----------------------------------------------------------|----------|-------------------|----------------|
| $\Gamma\left(\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma\right)$ | 1.792    | $2.22\pm0.098$    | 7.210 [48]     |
|                                                           |          |                   | 1.430 [45]     |
| $\Gamma\left(\Xi_{bb}^{*0}\to\Xi_{bb}^{0}\gamma\right)$   | 0.396    | $0.40\pm0.044$    | $0.310 \ [46]$ |
| ( 00 00 )                                                 |          |                   | 0.126 [45]     |
| $\Gamma\left(\Xi_{bc}^{*+}\to\Xi_{bc}^{+}\gamma\right)$   | 0.243    | $0.205 \pm 0.009$ | 0.209 [87]     |

Table 8: Radiative decay width of the doubly heavy  $\Xi$  baryons in unit of KeV.

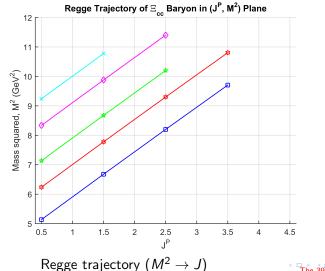
Table 9: Semileptonic decay width of the doubly heavy  $\Xi$  baryons in unit of  $10^{-14}$  GeV.

| Decay                                                                                                               | Our Calc | ref.[88]                      | ref.[86]      | Decay                                                                                                           | Our Calc | ref.[88]       | ref.[86]        |
|---------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|----------|----------------|-----------------|
| $\Gamma_{\frac{1}{2} \rightarrow \frac{1}{2}} \left( \Xi_{bb} \rightarrow \Xi'_{bc} l \bar{\nu}_l \right)$          | 0.670    | $1.06^{+0.13}_{-0.03}$        | $1.04\pm0.08$ | $\Gamma_{\frac{1}{2}\rightarrow\frac{3}{2}}(\Xi_{bc}\rightarrow\Xi_{cc}^{*}l\bar{\nu}_{l})$                     | 0.936    | $0.75^{+0.06}$ | $1.01\pm0.11$   |
| $\Gamma_{\frac{1}{2}\rightarrow\frac{1}{2}}(\Xi_{bb}\rightarrow\Xi_{bc}l\bar{\nu}_l)$                               | 1.727    | $1.92^{+0.25}_{-0.05}$        | $1.84\pm0.14$ | $\Gamma_{\frac{3}{2} \rightarrow \frac{1}{2}} (\Xi_{bb}^* \rightarrow \Xi_{bc}^* l \overline{\nu}_l)$           | 0.438    | $0.35^{+0.03}$ | $0.32\pm0.01$   |
| $\Gamma_{\frac{1}{2}\rightarrow\frac{1}{2}}(\Xi_{bc}\rightarrow\Xi_{cc}l\bar{\nu}_l)$                               | 1.910    | $2.57^{+0.26}_{-0.03}$        | $1.54\pm0.21$ | $\Gamma_{\frac{3}{2} \rightarrow \frac{1}{2}} \left( \Xi_{bb}^* \rightarrow \Xi_{bc}^{'} l \bar{\nu}_l \right)$ | 0.891    | $1.04^{+0.06}$ | $1.02\pm0.08$   |
| $\Gamma_{\frac{1}{2} \rightarrow \frac{1}{2}} \left( \Xi'_{bc} \rightarrow \Xi_{cc} l \bar{\nu}_l \right)$          | 1.401    | $1.36\substack{+0.10\\-0.03}$ | $1.30\pm0.13$ | $\Gamma_{\frac{3}{2} \rightarrow \frac{1}{2}} (\Xi_{bc}^* \rightarrow \Xi_{cc} l \bar{\nu}_l)$                  | 0.442    | $0.43^{+0.06}$ | $0.38 \pm 0.09$ |
| $\Gamma_{\frac{1}{2}\rightarrow\frac{3}{2}}(\Xi_{bb}\rightarrow\Xi_{bc}^{*}l\bar{\nu}_{l})$                         | 0.701    | $0.61^{+0.04}$                | $0.64\pm0.07$ | $\Gamma_{\frac{3}{2}\rightarrow\frac{3}{2}}^{*}(\Xi_{bb}^{*}\rightarrow\Xi_{bc}^{*}l\bar{\nu}_{l})$             | 2.066    | $2.09^{+0.16}$ | $2.04\pm0.22$   |
| $\Gamma_{\frac{1}{2} \rightarrow \frac{3}{2}} \left( \Xi_{bc}^{'} \rightarrow \Xi_{cc}^{*} l \bar{\nu}_{l} \right)$ | 2.385    | $2.33^{+0.16}$                | $2.21\pm0.19$ | $\Gamma_{\frac{3}{2} \to \frac{3}{2}} \left( \Xi_{bc}^* \to \Xi_{cc}^* l \bar{\nu}_l \right)$                   | 2.413    | $2.63^{+0.40}$ | $1.52\pm0.15$   |

The 30th Annual Hampton University

## Regge trajectories of doubly heavy $\Xi$ baryons

- In the 1960's, Tullio Regge introduced the concept of Regge trajectories in hadron physics.
- Regge theory is a successful fundamental theory of strong interactions at very high energies.
- One of the most distinctive feature of Regge theory are the Regge trajectories. Regge trajectories are directly related to mass spectra of hadrons.
- Using hadron masses, the trajectories can be generated in  $(n, M^2)$  and  $(J, M^2)$  planes:
- $J = \beta M^2 + \beta_0$  and  $J = \alpha M^2 + \alpha_0$
- In the Regge trajectories, the fundamental point is that they can predict the masses of unobserved states. The most important properties of Regge trajectories are linearity, divergence and parallelism. In the present work, we found that all the Regge trajectories show linear behavior.


## Regge Trajectories Plot for the $\Xi_{cc}^{++}$ baryon

straight lines were obtained by the linear fitting in all Figures.



## Regge Trajectories Plot for the $\Xi_{cc}^{++}$ baryon

We used the natural  $\left(J^P = \frac{1}{2}^+, J^P = \frac{3}{2}^-, J^P = \frac{5}{2}^+, J^P = \frac{7}{2}^-\right)$  parity masses



- The baryons containing two heavy quarks, namely charm-charm, bottom-bottom and bottom-charm with a light quarks (*u* or *d*) are reviewed.
- The mass spectra of the doubly heavy Ξ baryons are determined using the hypercentral constituent quark model.
- The magnetic moments are also calculated as well as radiative decay widths and semileptonic decay widths of the doubly heavy Ξ baryons.
- The Regge trajectories are useful to determine the unknown states.
- This study will definitely be useful for the identification of baryonic states from resonances in future experiments.

- Collaborators
- Organisers of theThe 39th Annual Hampton University Graduate Summer Program at Jefferson Lab





### Thank you for your kind attention!

The 30th