Reservers & Bound St Jes

Now, since
$$p(s) = 0$$
 below threshold an
the real axis, $p(s) = \frac{3}{8\pi E^{*}}$, $h^{*} = \frac{1}{2} \int S - 4m^{2}$,
the Im $M_{3}(s) = 0$ when $E^{*} = 2h$.

If a function
$$f(z)$$
 is real an a segment
of the real axis, then $f(z^*) = f^*(z)$,
thus is the Schwertz reflection principle.

Causality implies that the applitude
for physical crugics is the boundary value
of some analytic function.
$$\mathcal{M}_{3}^{(Phys)}(s) = \lim_{\epsilon \to 0^{+}} \mathcal{M}_{3}^{(s+i\epsilon)}$$

The imaginary part if the applitude is
relited to its discontinuity
Direc
$$f(x) = \lim_{\epsilon \to 0^+} [f(x + \epsilon) - f(x - \epsilon)]$$

So,
zi Im $\mathcal{M}(s) = \mathcal{M}(s) - \mathcal{M}^*(s)$
 $= \mathcal{M}(s + \epsilon) - \mathcal{M}^*(s + \epsilon)$

$$= \mathcal{M}(s+i\epsilon) - \mathcal{M}(s-i\epsilon) \qquad Schultz = Disc \mathcal{M}(s)$$

<u> </u>

$$Disc M_{3}(s) = 2i p(s) |M_{3}(s)|^{2}$$

$$\int \mathcal{M}_{3}(s+i\varepsilon) \qquad \int \mathcal{M}_{3}(s+i\varepsilon) \qquad Breach cut$$

$$\int \mathcal{M}_{3}(s+i\varepsilon) \qquad Breach cut$$

$$\int (2m)^{2} \qquad \int (3m)^{2} \qquad (3m)^{2}$$

$$\mathcal{M}_{3}(s-i\varepsilon) \neq \mathcal{M}_{3}(s+i\varepsilon)$$

Counselity close gives the the applitudes are analytic function in the complex S-plane, except for mitarity cats & pole singularities below threshold.

The binding energy is TS.E. = 2m - Mrs The bound DDe has a spir J Examples include the deatern in up scattering.

Use look I in example, consider S-will
scattering described by a leading order
effective range, a >0
$$M(s) = \frac{8\pi Js}{7} \frac{1}{-1} - ih^{4}$$
$$pole singularity exists when $ih^{4} = -\frac{1}{a}$
$$Define binding monodrum K as $h^{*} = iK$
$$\Rightarrow K = \frac{1}{a}$$
$$The bound follow mass is$$
$$M_{5} = 2 \int M^{2} - K^{2}$$
$$= 2 \int M^{2} - \frac{1}{a^{2}}$$
$$M_{5} < 2M$$$$$$

$$-g_{b}^{2} = \oint ds \mathcal{M}(s)$$

$$=) g_{l} = 8 \int \overline{\pi} m_{s} \kappa'$$

(exercise)

I

Resonances

Why if we want to desvike a cross-section with a classic resonance behavior? or-lui? If we try to parandurize the K mdrix by a single pole, e.s., K(s) = g_o^2 m_o^2 ~ luc, g. 2 mo we just paranders mo²-5 Single pale paranduitedias So, $M(s) = K(s) - \frac{1}{1 - i\rho K(s)}$ $= 90^{2} m o^{2}$ $m_{0}^{2} - 5 - ig_{0}^{2}m_{0}^{2}p$

This is an S-vare Breit-Wigner amplitude, describes an isoland, narrow-width peak where the is approx. The peak location in 55 Ut us massage it to a more faulting form for some, recall that $p = \frac{2}{8\pi} h^{+}$ $M = \frac{g_{o}^{2} m o^{2}}{m_{o}^{2} - 5 - i S 5 \Gamma(s)}$ Where $T(s) = \frac{2}{5} \frac{g_{o}^{2} m_{o}^{2} h^{+}}{8\pi}$ and width

the & g. we not physical parameters. The only maningful parameters are the pole positions. What are the poles of our "Breit-Vignar"? First, consider the narrow-width (init (g=>0) thm, $M(cs) = \frac{g^2 m_0^2}{m_0^2 - s - c\epsilon}$

pole $J = m_o^2 - i\epsilon$ $\Rightarrow JS = \pm (m_o - i\epsilon)$ $(2m)^2$ $m_o^2 - i\epsilon$ In the limits $f \in = >0$, the pole is a red pole, thus Deble (bound De). So, $JS = M_0 = M$ added haves

But, sue we have scattering,
$$M > 2m$$
.
A real axis pole above threshold violdes
withinky!
 $Tm M \sim S(S - m^2)$
 $\neq p |M|^2 \sim \left(\frac{L}{S - m^2}\right)^2$

 $\Rightarrow NJ physically clloved.$ Lotot the we have a sound g, ? (very narrow) $Han, Mass = \frac{g_{s}^{2}m_{s}^{2}}{m_{s}^{2}-s-cJs} \Gamma(s)$

pole at $m_0^2 - s - i SS \Gamma(s) = 0$

For Unishing
$$g_{s}$$
, $S = m_{o}^{2}$
So, $C_{R}pund Accor g_{o} \Rightarrow 0$ linst
 $S = m_{o}^{2} - i J_{S} T(c)$
 $\simeq m_{o}^{2} \mp i m_{o} T(m_{o}^{2})$
 $\Rightarrow T(m_{o}^{2}) \equiv \Gamma_{o}$
 $a \text{ small constant}$
 $\approx (m_{o} \mp i T_{o})^{2} + (9(T_{o}^{2}))$
 $\int (2m)^{2}$
 $\int (2m)^{2}$
 $\int (m_{o} - i T_{o})^{2}$

Hoe, $M = m_0$ is resonance mass T = T. is resonance width $T = \frac{1}{T}$ is lifetime

In guow, $M = M(r_0, g_0)$ $T = T(r_0, g_0)$ We define the resonance mass and width, in order to reproduce narrow width Brest-Wigner, as

$$J_{p} = M^2 - \frac{1}{2} \prod_{z}^{p}$$
note position sp

Recall that the applitude is discontinuous across the real artis for $S \ge (2n)^2$. The branch and is square-rod-like, (think fit being induced by place space) $p \sim 55-4n^2$

Constraining K-morries

- We have a and the for for the applitude, by we need to and the k with estand defortion. For Hadre physics, we have 3 options
- Experina · Maisure Obsvulles, e.g., o~ (M)². · Construit amplitude M = K _____ I-ipk Parametrize K · Scarch Far poles => yet hadra properties - Thurdical model · Choose model or EFT, e.g., 7 PT, ... · Compare K, e.g. to some chiral order · Confire to data, fix promises I theary · Scarch for poles => get hadra properties Latice GLD
 - · Conpute Fivile-volume spectrum En
 - · Map En to K Via Lüscher
 - · Scarch for poles => yet hadran properties