70 Years of Hyperon Spectroscopy: The Exploration of Very Strange Baryons

Volker Credé

Florida State University, Tallahassee, Florida

HUGS 2024

Jefferson Lab, Newport News

06/11/2024

Outline

- Brief Review and Motivation
 - Experimental Studies of Baryons
- Baryon Spectroscopy at GlueX
 - The GlueX Experiment
 - Spectroscopy of Ξ Resonances
 - Magnetic Moments of Baryons
- Heavy-Flavor Resonances
- 4 Summary and Conclusions

< 17 ▶

Experimental Studies of Baryons

Outline

- Brief Review and Motivation
 - Experimental Studies of Baryons
- 2 Baryon Spectroscopy at GlueX
 - The GlueX Experiment
 - Spectroscopy of Ξ Resonances
 - Magnetic Moments of Baryons
- 3 Heavy-Flavor Resonances
- Summary and Conclusions

ヘロト ヘアト ヘヨト ヘ

Experimental Studies of Baryons

The Structure of the Nucleon

ヘロト ヘワト ヘビト ヘビト

э

Experimental Studies of Baryons

The Structure of the Nucleon

・ロト ・四ト ・ヨト ・ヨト

э

Volker Credé 70 Years of Hyperon Spectroscopy

Experimental Studies of Baryons

The Structure of the Nucleon

<ロト <回 > < 注 > < 注 > 、

э

Experimental Studies of Baryons

The Structure of the Nucleon

The unknown beast ...

- Origin of nucleon mass
- Origin of nucleon spin
- Confinement
- Behavior of quarks / gluons in nucleon as compared to nuclei

ヘロト ヘアト ヘヨト

etc.

Experimental Studies of Baryons

The Electron-Ion Collider (EIC)

World's first polarized electron-proton collider:

→ The spins of both colliding particles can be aligned in a controlled way.

Lepton-hadron facilities:

- Two-scale observables are natural
- Imaging partonic structure without breaking it!

イロト イポト イヨト イヨト

- Emergence of hadrons
- Heavy ion target or beam

HERA discovery: Hadron stays intact 10-15% time.

Nuclear Femtography: Non-Perturbative QCD

How does QCD give rise to excited nucleons?

- Relevant degrees of freedom
- Quark-quark interactions

Particle Zoo

Name "proton" given to H nucleus by Rutherford in 1920

He had discovered earlier that proton was a candidate to be a fundamental particle & building block of nitrogen, and all other heavier atomic nuclei.

> MATTER from molecule to quark

Molecul

A D b 4 A b

Electron

1932 Neutron

- 1947 First Mesons: π^+ , π^- , K^+ , K^-
- 1951 Strange baryons: $\Lambda \text{ with } |uds\rangle$
- **1964** Ω^- with $|sss\rangle$
- 1964 Quark model
- 1968 Discovery of "partons" at SLAC

after 1970: Quantum Chromodynamics

Down-type

Experimental Studies of Baryons

1964: Discovery of the Ω Baryon at BNL

Brief Review and Motivation

Baryon Spectroscopy at GlueX Heavy-Flavor Resonances

Experimental Studies of Baryons

р п	$\frac{1/2^+}{1/2^+}$	****	△(1232) △(1600)	$\frac{3/2^+}{3/2^+}$ ****	Σ^+ Σ^0	$\frac{1/2^+}{1/2^+}$	****	$A_c^+ A_c^- (2595)^+$	$\frac{1/2^+}{1/2^-}$	****	$A_b^0 = \frac{1}{A_b}$	/2 ⁺ /2 ⁻	***
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	1/2 ****	Σ^{-}	$1/2^{+}$	****	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***	$\Lambda_b(5920)^0 = 3/$	2-	***
N(1520)	3/2-	****	$\Delta(1700)$	3/2 ****	$\Sigma(1385)$	$3/2^{+}$	****	$\Lambda_{c}(2765)^{+}$		*	$\Lambda_b(6070)^0 = 1/$	′2 ⁺	***
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$ *	$\Sigma(1580)$	3/2-	*	$\Lambda_{c}(2860)^{+}$	$3/2^{+}$	***	A _b (6146) ⁰ 3/	/2+	***
N(1650)	$1/2^{-}$	****	$\Delta(1900)$	1/2 ***	Σ(1620)	1/2-	*	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	+++	$\Lambda_b(6152)^0 = 5/$	2+	***
N(1675)	5/2-	****	$\Delta(1905)$	5/2+ ****	$\Sigma(1660)$	$1/2^{+}$	***	$\Lambda_{c}(2910)^{+}$		*	$\Sigma_{b} = 1/$	′2 ⁺	***
N(1680)	$5/2^{+}$	****	$\Delta(1910)$	1/2+ ****	$\Sigma(1670)$	3/2-	****	$\Lambda_c(2940)^+$	3/2-	***	Σ [*] _b 3/	′2 ⁺	***
N(1700)	3/2-	***	$\Delta(1920)$	3/2+ ***	$\Sigma(1750)$	$1/2^{-}$	***	$\Sigma_{c}(2455)$	$1/2^{+}$	****	$\Sigma_{b}(6097)^{+}$		***
N(1710)	$1/2^{+}$	****	$\Delta(1930)$	5/2 ***	$\Sigma(1775)$	5/2-	****	$\Sigma_{c}(2520)$	$3/2^{+}$	***	$\Sigma_{b}(6097)^{-}$		***
N(1720)	3/2+	****	$\Delta(1940)$	3/2 **	$\Sigma(1780)$	$3/2^{+}$	*	$\Sigma_{c}(2800)$		***	= - 1/	′2 ⁺	***
N(1860)	$5/2^{+}$	**	$\Delta(1950)$	7/2+ ****	$\Sigma(1880)$	$1/2^{+}$	**	\equiv_{c}^{+}	$1/2^{+}$	***	$= \frac{\ddot{0}}{b}$ 1/	/2+	***
N(1875)	3/2	***	$\Delta(2000)$	5/2+ **	$\Sigma(1900)$	$1/2^{-}$	**	\equiv_{c}^{0}	$1/2^{+}$	****	$\Xi_{h}^{\prime}(5935)^{-1}$	/2+	+++
N(1880)	$1/2^{+}$	***	$\Delta(2150)$	$1/2^{-}$ *	$\Sigma(1910)$	3/2-	***	$=_{c}^{\prime+}$	$1/2^{+}$	***	$\Xi_{b}(5945)^{0}$ 3/	/2+	***
N(1895)	1/2	****	$\Delta(2200)$	7/2 ***	$\Sigma(1915)$	5/2+	****	='0	$1/2^{+}$	***	$\Xi_{b}(5955) = 3/$	2+	***
N(1900)	3/2+	****	$\Delta(2300)$	9/2+ **	$\Sigma(1940)$	3/2+	*	$\Xi_{c}(2645)$	3/2+	***	$\Xi_{b}(6087)^{0}$ 3/	2-	***
N(1990)	7/2+	**	$\Delta(2350)$	5/2 *	$\Sigma(2010)$	3/2-	+	$\Xi_{c}(2790)$	1/2-	***	$\Xi_b(6095)^0$ 3/	/2-	***
N(2000)	5/2+	**	$\Delta(2390)$	7/2+ *	$\Sigma(2030)$	7/2+	****	$\Xi_{c}(2815)$	3/2-	+++	$\Xi_b(6100) = 3/$	′2	***
N(2040)	3/2+	+	$\Delta(2400)$	9/2 **	$\Sigma(2070)$	5/2+	*	$\Xi_{c}(2882)$		*	$\Xi_b(6227)^-$		+++
N(2060)	5/2	***	$\Delta(2420)$	11/2 + ****	Σ(2080)	3/2+	*	$\Xi_{c}(2923)$		**	$\Xi_{b}(6227)^{0}$		***
N(2100)	$1/2^{+}$	+++	$\Delta(2750)$	13/2 **	$\Sigma(2100)$	7/2-	*	$\Xi_{c}(2930)$		**	$\Xi_{b}(6327)^{0}$		+++
N(2120)	3/2-	***	$\Delta(2950)$	$15/2^{+} **$	$\Sigma(2110)$	1/2-	*	$\Xi_{c}(2970)$	$1/2^{+}$	***	$\Xi_b(6333)^0$		***
N(2190)	7/2-				$\Sigma(2230)$	3/2+		$\Xi_{c}(3055)$		***	$\Omega_b^- = 1/$	/2+	***
N(2220)	9/2+		1	1/21 ++++	$\Sigma(2250)$			$\Xi_{c}(3080)$		***	$\Omega_{b}(6316)^{-}$		***
N(2250)	9/2-	****	7(1380)	1/2 **	$\Sigma(2455)$		*	$\Xi_{c}(3123)$		*	$\Omega_{b}(6330)^{-}$		***
N(2300)	$1/2^{+}$		7(1405)	1/2 ++++	$\Sigma(2620)$			Ω_c^0	$1/2^{+}$	***	$\Omega_{b}(6340)^{-}$		***
N(2570)	5/2-	**	7(1520)	3/2 ****	Σ(3000)			$\Omega_{c}(2770)^{0}$	3/2+	+++	$\Omega_{b}(6350)^{-}$		***
N(2600)	11/2-		A(1600)	1/2 ****	Σ(3170)		*	$\Omega_{c}(3000)^{0}$		***			
N(2700)	13/2	**	A(1670)	1/2 ****	-0	1 (0+	****	$\Omega_{c}(3050)^{0}$		***	$P_{c\overline{c}}(4312)^{+}$		+
			/(1690)	3/2 ****	=_	1/2	****	$\Omega_{c}(3065)^{0}$		***	P _{ccs} (4338) ⁰ 1/	2-	+
			A(1800)	1/2 ***	= (1520)	3/2+	****	$\Omega_{c}(3090)^{0}$		+++	$P_{c\overline{c}}(4380)^+$		*
			4(1810)	1/2 ***	=(1630)	3/2	**	$\Omega_{c}(3120)^{0}$		***	$P_{c\bar{c}}(4440)^+$		+
			A(1820)	E/2± ****	=(1620)		***	$\Omega_{c}(3185)^{0}$		***	$P_{c\overline{c}}(4457)^+$		*
			A(1820)	5/2 ****	=(1830)	2/2-	***	$\Omega_{c}(3327)^{0}$		***	$P_{c\overline{c}s}(4459)^0$		+
			A(1800)	3/2 ****	=(1050)	3/2	***						
			4(2000)	1/2 *	=(2030)	<u>5</u> ?	***	=		*			
			4(2050)	3/2 *	=(2030)	- 2	*	\equiv_{cc}^{+++}		***			
			4(2070)	3/2+ *	=(2220)		**						
			4(2080)	5/2 *	=(2230)		**						
			A(2085)	7/2+ **	=(2500)		*						
			A(2100)	7/2 ****	1 - (2500)								
			A(2110)	5/2+ ***	Ω ⁻	$3/2^{+}$	****						
			A(2325)	3/2 *	$\Omega(2012)^{-}$	2	***						
			A(2350)	9/2+ ***	Q(2250)-		***						
			A(2585)	*	$\Omega(2380)^{-}$		**						
					$\Omega(2470)^{-}$		**						

Volker Credé 70 Years of Hyperon Spectroscopy

E 99€

ヘロン 人間 とくほう くほとう

Experimental Studies of Baryons

The Status of very strange Baryons

Experimental Studies of Baryons

The Status of very strange Baryons

 Ξ^0 $\Xi^ \Xi(1530)$ $3/2^{+}$ **** $\Xi(1620)$ ** $\Xi(1690)$ *** *** $\Xi(1820)$ 3/2 $\Xi(1950)$ *** $\geq \frac{5}{2}$? *** $\Xi(2030)$ $\Xi(2120)$ ** $\Xi(2250)$ $\Xi(2370)$ $\Xi(2500)$

 Ω^{-} $3/2^{+}$ **** $\Omega(2012)^{-}$?- *** $\Omega(2250)^{-}$ *** $\Omega(2380)^{-}$ ** $\Omega(2470)^{-}$ **

- *** Existence is certain, and properties are at least fairly well explored.
- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.
- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Experimental Studies of Baryons

SU(4) Multiplet Structure of Baryons

Multiplet structure for flavor SU(3):

 $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10}_{\mathcal{S}} \oplus \mathbf{8}_{\mathcal{M}} \oplus \mathbf{8}_{\mathcal{M}} \oplus \mathbf{1}_{\mathcal{A}}$

★ E → ★ E →

э

Experimental Studies of Baryons

SU(4) Multiplet Structure of Baryons

Volker Credé 70 Years of Hyperon Spectroscopy

Experimental Studies of Baryons

SU(4) Multiplet Structure of Baryons

Multiplet structure for flavor SU(4):

 $\mathbf{4}\,\otimes\,\mathbf{4}\,\otimes\,\mathbf{4}\,=\,\mathbf{20}_{\mathcal{S}}\,\oplus\,\mathbf{20}_{\mathcal{M}}\,\oplus\,\mathbf{20}_{\mathcal{M}}\,\oplus\,\mathbf{4}_{\mathcal{A}}$

➔ Great progress also for charmed and bottom baryons (Belle, LHCb).

・ロット (雪) () () () ()

э

Experimental Studies of Baryons

Description of a Baryon

Simple quark model depiction of a baryon

The reduced masses of ρ and λ are defined in terms of the kinetic energy:

$$T \propto rac{{ec p}_
ho^2}{2\mu_
ho} + rac{{ec p}_\lambda^2}{2\mu_\lambda} + rac{{ec P}\,^2}{2M} \, = \, rac{{ec p}_1^{\ 2}}{2m_q} + rac{{ec p}_2^{\ 2}}{2m_q} + rac{{ec p}_3^{\ 2}}{2m_Q} \, ,$$

where $M = 2m_q + m_Q$ and $\vec{P} = \vec{p}_q + \vec{p}_q + \vec{p}_Q$.

Experimental Studies of Baryons

Description of a Baryon

The reduced masses of the two oscillators are then given as:

$$\mu_{\rho} = m_q \quad \text{and} \quad \mu_{\lambda} = \frac{3m_q m_Q}{2m_q + m_Q} ,$$

where q = s and Q = u, d for the doubly strange Ξ system, and q = u, d and Q = c, b for the singly heavy charmed or bottom baryons.

The ratio of the harmonic oscillator frequencies is given by:

$$rac{\omega_\lambda}{\omega_
ho} \,=\, \sqrt{rac{1}{3} \left(1+2m_q/m_Q
ight)} \,\leq\, 1\,.$$

In the limit of $m_q \approx m_Q$, e.g. for $N^* \& \Delta^*$ states, the excitation energies in the ρ and λ oscillators are about the same, whereas the excitation energies in the λ oscillator are reduced by a factor of $\sqrt{3}$ in the heavy-quark limit, $m_Q \rightarrow \infty$.

How do we study baryons experimentally?

Light-flavor baryons are typically studied in fixed-target experiments (nuclear physics), heavy-flavor baryons are studied at colliders (high-energy physics).

Fixed-Target Experiments

Photo-/electroproduction, e.g. Jefferson Lab, ELSA, MAMI, etc.

e.g.
$$\gamma N (e^- N) \rightarrow (e^-) N^* / \Delta^*$$

 $\gamma N (e^- N) \rightarrow (e^-) K Y^* (Y^{ast} = \Lambda^*, \Sigma^*)$

 π / K -induced production, e. g. HADES@GSI, (future J-PARC, JLab) e. g. $\pi N \rightarrow N^* / \Delta^*$

Collider Experiments

at e^+e^- machines, e.g. BES III, Belle, BaBar, etc.

e.g. $\Xi_c^+(\Lambda_c^+) \rightarrow [\Xi^-\pi^+]_{\Xi^*}\pi^+(K^+)$ or $e^+e^- \rightarrow J/\psi \rightarrow N^*\bar{N}$ at pp machines, e.g. LHC

e.g. $\Xi_b^{*\,-} \rightarrow \Xi_b^- \pi^+ \pi^-$ (LHCb, CMS)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

How do we study baryons experimentally?

Light-flavor baryons are typically studied in fixed-target experiments (nuclear physics), heavy-flavor baryons are studied at colliders (high-energy physics).

Fixed-Target Experiments

Photo-/electroproduction, e.g. Jefferson Lab, ELSA, MAMI, etc.

e.g.
$$\gamma N (e^- N) \rightarrow (e^-) N^* / \Delta^*$$

 $\gamma N (e^- N) \rightarrow (e^-) K Y^* (Y^{ast} = \Lambda^*, \Sigma^*)$

 π / K -induced production, e.g. HADES@GSI, (future J-PARC, JLab) e.g. $\pi N \rightarrow N^* / \Delta^*$

2 Collider Experiments

6

at e^+e^- machines, e.g. BES III, Belle, BaBar, etc.

e.g.
$$\equiv_c^+ (\Lambda_c^+) \rightarrow [\equiv^- \pi^+]_{\equiv^*} \pi^+ (K^+) \text{ or } e^+ e^- \rightarrow J/\psi \rightarrow N^* \bar{N}$$

at pp machines, e.g. LHC

e.g.
$$\Xi_b^{*\,-} \rightarrow \Xi_b^- \pi^+ \pi^-$$
 (LHCb, CMS)

イロン 不良 とくほう 不良 とうほ

The GlueX Experiment Spectroscopy of Ξ Resonances Magnetic Moments of Baryons

Outline

- Brief Review and Motivation
 Experimental Studies of Baryons
- 2 Baryon Spectroscopy at GlueX
 - The GlueX Experiment
 - Spectroscopy of Ξ Resonances
 - Magnetic Moments of Baryons
- 3 Heavy-Flavor Resonances
- Summary and Conclusions

イロト イロト イヨト イヨト

The GlueX Experiment Spectroscopy of Ξ Resonances Magnetic Moments of Baryons

The GlueX Collaboration

- ~ 135 members, 29 institutions (Armenia, Canada, Chile, China, Germany, Greece, Russia, UK, USA)
- GlueX phase-I complete (120 PAC days)
- First physics published in 2017

The GlueX Experiment Spectroscopy of Ξ Resonances Magnetic Moments of Baryons

The GlueX Experiment: Photon Beamline

• Phase-I intensity of $5 \times 10^7 \gamma$ /s in peak.

The GlueX Experiment

QCD Phases and the Study of Baryon Resonances

RPP (u, d, s, c) baryons not sufficient to describe freeze-out behavior. (e.g. A. Bazavov et al., PRL 113 (2014) 7, 072001)

> Volker Credé 70 Years of Hyperon Spectroscopy

→ E → < E →</p>

 μ_{R}

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Spectrum of *N*^{*} **Resonances**

N	(D, L_N^P)	S	J^P	Octet Members				Singlets
0	$(56, 0_0^+)$	$\frac{1}{2}$	$\frac{1}{2}^{+}$	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	Ξ(1318)	-
1	$(70, 1_1^-)$	1 2 3 2	$\frac{1}{2}$ - $\frac{1}$	$\begin{array}{c} N(1535) \\ N(1520) \\ N(1650) \\ N(1700) \\ N(1675) \end{array}$	$\begin{array}{c} \Lambda(1670) \\ \Lambda(1690) \\ \Lambda(1800) \\ \end{array}$ $\begin{array}{c} \Lambda(1830) \end{array}$	$\Sigma(1620)$ $\Sigma(1670)$ $\Sigma(1750)$ $\Sigma(1775)$	Ξ(1690) Ξ(1820)	$\Lambda(1405)$ $\Lambda(1520)$ - - -
2	$(56, 0_2^+) (70, 0_2^+) (56, 2_2^+) (70, 2_2^+)$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	$ \begin{array}{c} N(1440) \\ N(1710) \\ N(1720)^{\dagger} \\ N(1680) \\ N(1860) \\ N(1880) \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \Sigma(1660) \\ \Sigma(1770)^{\dagger} \\ \Sigma(1840)^{\dagger} \\ \Sigma(1915)^{\dagger} \end{array}$		
	$(20, 1^+_2)$	1/2	$\overline{2}^{+}_{32} + + + + + + + + + + + + + + + + + + +$	N(1880) $N(1900)^{\dagger}$ N(2000) N(1990) $N(2100)^{\dagger}$ $N(2040)^{\dagger}$	$\Lambda(2110)^{\dagger}$ $\Lambda(2020)$	$\Sigma(2080)^{\dagger}$ $\Sigma(2070)^{\dagger}$ $\Sigma(2030)^{\dagger}$	_	

ヨンドヨン

ъ

V.C. & W. Roberts, Rep. Prog. Phys. 76 (2013)

Volker Credé

70 Years of Hyperon Spectroscopy

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Cascade Resonances: Status as of 2018

— U. Loering, B. Ch. Metsch, H. R. Petry, Eur. Phys. J. A10 (2001) 447-486

Volker Credé 70 Years of Hyperon Spectroscopy

The GlueX Experiment Spectroscopy of E Resonances Magnetic Moments of Baryons

The Ξ^* and Ω^* Spectrum from Lattice QCD

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of states of each flavor and spin consistent with QM for the lowest negative- and positive-parity bands.

The GlueX Experiment Spectroscopy of E Resonances Magnetic Moments of Baryons

The Ξ^* and Ω^* Spectrum from Lattice QCD

R. Edwards et al., PRD 87, 054506 (2013)

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of states of each flavor and spin consistent with QM for the lowest negative- and positive-parity bands.

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

The Ξ^* Spectrum in a Dyson-Schwinger Approach

C. Fischer et al., PoS Hadron 2017 (2018) 007

 $\frac{1}{2}^{+}$

Ξ(1320) ****	$\rightarrow \Lambda \pi$	$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{1}{2}^{+}\right)$
Ξ(1530) ****	$\rightarrow \Xi \pi$	$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{3}{2}^{+}\right)$
Ξ(1620) *	$\rightarrow \equiv \pi$?	$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{1}{2}^{+} \text{ or } \frac{1}{2}^{+}\right)$
Ξ(1690) ***		$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{1}{2}^{-2}\right)$
Ξ(1820) ***	$\rightarrow \Lambda \overline{K}$	$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{3}{2}^{-}\right)$
Ξ(1950) ***		$I\left(J^{\mathcal{P}}\right) = \frac{1}{2}\left(\frac{3}{2}^{-2}\right)$
Ξ(2030) ***	$\rightarrow Y\overline{K}$	$I\left(J^{\mathcal{P}}\right) = \frac{1}{2} \left(\geq \frac{5}{2}^{?} \right)$

 $\frac{3}{2}$

 $\frac{1}{2}^{-}$ $\frac{3}{2}^{+}$

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

The Ξ^* Spectrum in a Dyson-Schwinger Approach

C. Fischer et al., PoS Hadron 2017 (2018) 007

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

PDG 2022 Mini-Review

Ξ Resonances

Revised 2004 by C.G. Wohl, (LBNL).

The accompanying table gives our evaluation of the present status of the Ξ resonances. Not much is known about Ξ resonances. This is because (1) they can only be produced as a part of a final state, and so the analysis is more complicated than if direct formation were possible, (2) the production cross sections are small (typically a few μ b), and (3) the final states are topologically complicated and difficult to study with electronic techniques. Thus early information about Ξ resonances came entirely from bubble chamber experiments, where the numbers of events are small, and only in the 1980's did electronic experiments make any significant contributions. However, nothing of significance on Ξ resonances has been added since our 1988 edition.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

The GlueX Experiment Spectroscopy of E Resonances Magnetic Moments of Baryons

PDG 2023 Mini-Review

Ξ Resonances

Revised 2023 by V. Crede (FSU), U. Thoma (U. Bonn)

Most of our present knowledge of Ξ resonances stems from the low-statistics data samples recorded in the 1960s–1980s using K^- beams and in the 1980s and 1990s using hyperon (Σ^-, Ξ^-) beams. This is because (1) they could only be produced as a part of a final state, and so the analysis is more complicated than if direct formation were possible, (2) the production cross sections are small (typically a few μ b), and (3) the final states are topologically complicated and difficult to study with electronic techniques. Thus, early information about Ξ resonances came entirely from bubble chamber experiments, where the numbers of events are small, and only in the 1980s did electronic experiments make any significant contributions.

In recent years, significant contributions have come from collider experiments. Excited Ξ baryons are produced and have been studied in the decay of the charmed Λ_c^+ into $(\Sigma^+K^-)_{\Xi(1690)}K^+$ by the Belle Collaboration [1] and into $(\Xi^-\pi^+)_{\Xi^*}K^+$ by the BaBar Collaboration [2]. Belle measures the decay $\Xi_c^+ \to (\Xi^-\pi^+)_{\Xi^*}\pi^+$ [3] with unprecedented statistical quality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Hyperons in Florida

VOLUME 51, NUMBER 11

PHYSICAL REVIEW LETTERS

12 September 1983

Existence of **Z** Resonances above 2 GeV

C. M. Jenkins, J. R. Albright, R. N. Diamond, H. Fenker,^(a) J. H. Goldman, S. Hagopian, V. Hagopian, and W. Morris^(b)

Florida State University, Tallahassee, Florida 32306

and

L. Kirsch, R. Poster, and P. Schmidt^(c) Brandeis University, Waltham, Massachusetts 02154

and

S. U. Chung, R. C. Fernow, H. Kirk, S. D. Protopopescu, and D. P. Weygand Brookhaven National Laboratory, Upton, New York 11973

and

B. T. Meadows University of Cincinnati, Cincinnati, Ohio 45221

and

Z. Bar-Yam, J. Dowd, W. Kern, and M. Winik^(d) Southern Massachusetts University, North Dartmouth, Massachusetts 02747 (Recieved 30 June 1983)

 Ξ^{++} production was studied in the reaction $K^+ p \to K^+_{1,1up} + X^-$ at 5 GeV/c. The slow K⁺ was electronically detected, while the X⁺ was observed as a missing mass, thus allowing for observation of all Ξ^+ independent of decay mode. The observed Z states were G13209, S13309, S13809, G2309, S12809, G2309, Hased and establish and confirm the existence of Z02300 and indicate a peculiar production-cross-section behavior for the S1(3370).

PACS numbers: 14.20.Jn, 13.75.Jz

 $K^- p \rightarrow K^+ X^-$

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

CLAS g12: Total Cross Sections of $(\Xi^-)^*$

Volker Credé

J. T. Goetz *et al.* [CLAS Collaboration], Phys. Rev. C **98**, 062201 (2018)

< A

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

CLAS g11a: Excited States in $\gamma p \rightarrow K^+ K^+ \pi^- (X)$

From the paper: Although a small enhancement is observed in the $\Xi^0 \pi^-$ invariant mass spectrum near the controversial 1-star $\Xi^-(1620)$ resonance, it is not possible to determine its exact nature without a full partial wave analysis. Phys. Rev. C **76**, 025208 (2007)

Need high-statistics, high-energy data from an experiment designed to see Ξ states:

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors

CLAS 12 and GlueX at Jefferson Lab

・ロット (雪) () () () ()
The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Excited E* States: 1500 - 1750 Mass Region

From the paper: Although a small enhancement is observed in the $\Xi^0 \pi^-$ invariant mass spectrum near the controversial 1-star $\Xi^-(1620)$ resonance, it is not possible to determine its exact nature without a full partial wave analysis.

[CLAS], Phys. Rev. C 76, 025208 (2007)

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Possible Production Mechanisms

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Possible Production Mechanisms

 $K^{+}(\Xi^{-}K^{+}), \ K^{+}(\Xi^{0}K^{0}), \ K^{0}(\Xi^{0}K^{+})$

→ Cross sections, beam asymmetries (similar to pππ & pKK*)

At other facilities (for comparison):

${\cal K}^- ho ightarrow {\cal K}^+ \Xi^{*-}$	J-PARC (2029?)
${\it K}_L p ightarrow {\it K}^+ \Xi^{*0}$	Hall D (2026/30?)
$p p ightarrow \Xi^* X$	LHCb
$\overline{p} p ightarrow \Xi^* \overline{\Xi}$	$\overline{P}ANDA?$
$e^+ e^- ightarrow \Xi^* X$	Belle II, BES III

* W. Roberts et al., Phys. Rev. C 71, 055201 (2005)

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

GlueX: Cross Sections in $\gamma p \rightarrow K^+ K^+ \equiv (1320)^-$

Measurements of

- Differential cross sections
- Polarization observables

코 에 제 코 어

Mass, width, spin

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

GlueX: Cross Sections in $\gamma p \rightarrow K^+ K^+ \equiv (1320)^-$

Courtesy of Jesse Hernandez (FSU)

Volker Credé 70 Years of Hyperon Spectroscopy

э

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Magnetic Moment

The magnetic moment of a magnet is a quantity that determines the torque it will experience in an external magnetic field:

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Torque on a current-carrying loop:

$$\tau = IAB\sin\phi$$
 with $IA = \mu$

Remember: $L = I \omega = (mR^2) \left(\frac{2\pi}{\Delta t}\right)$ (for a point charge moving in a circle):

$$IA = \frac{\Delta Q}{\Delta t} \cdot \pi R^2 = \frac{\Delta Q}{\Delta t} \frac{2m_e}{2m_e} \pi R^2 = \frac{\Delta Q}{2m_e} L$$

Electron: $\vec{\mu} = -q/2m_e \vec{L}$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Magnetic Moment & Spin

For spin: $\vec{\mu} = -q/2m_e \vec{S}$ (according to the classical theory).

・ロト ・ ア・ ・ ヨト ・ ヨト

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Particle Properties

Mass, electric charge, "spin" (permanent ang. momentum), ...

1924: Experimental evidence of e⁻ spin (spin-magn. moment)

→ Two orientations relative to external magnetic field.

Spin: $S_z = m_S \hbar (\hbar = h/2\pi)$ with $(2m_S + 1)$ orientations

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Magnetic Moment & Spin

For spin: $\vec{\mu} = -q/2m_e \vec{S}$ (according to the classical theory).

Stern-Gerlach experiment involves sending a beam of particles through an inhomogeneous magnetic field and observing their deflection. Results show that particles possess intrinsic angular momentum that is closely analogous to the angular momentum of a classically-spinning object,

- But that takes only certain quantized values,
- And is off by a factor for the spin-magnetic moment:

$$ec{\mu}\,=\,-g\,rac{e}{2m_e}\,ec{S}\,=\,-g\,\mu_B\,rac{ec{S}}{\hbar}$$

with the Bohr magneton (defined in SI units) $\mu_B = \frac{e\hbar}{2m_e}$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Spin I

Existence of spin ang. momentum is inferred from experiments. Spin is like a vector quantity, it has:

• Definite magnitude and "direction," spin orientation.

Spin has peculiar properties different from orbital ang. mom.:

- Spin quantum numbers (QN) may take half-integer values.
- Direction of spin can be changed but a particle cannot be made to spin faster or slower.
- Spin of charged particle associated with magn. dipole moment:

$$\vec{\mu} = -g_S \frac{q}{2m} \vec{S}$$
 with $g_s = \text{spin g factor}$

Classically, $g_S \neq 1$ only if mass & charge fill volumes with diff. radii.

<ロト < 同ト < 回ト < 回ト = 三

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Spin II

Existence of spin ang. momentum is inferred from experiments. Spin is like a vector quantity, it has:

• Definite magnitude and "direction," spin orientation.

For electrons:

•
$$S^2 = s(s+1)\hbar^2 = 3/4\hbar^2$$
 for spin $S = 1/2$.

2 $S_z = m_s \hbar$ with $m_S = \pm 1/2$ (for electrons in units of \hbar).

→ $|\vec{\mu}_{S_z}| = \mu_B = \frac{q\hbar}{2m}$ and $|\vec{\mu}_S| = \sqrt{3}\mu_B$ (total spin magnetic moment)

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Baryon Magnetic Moments

- **1** Meson: quark-antiquark pair $(q\bar{q}) = \pi, \eta$, etc.
- **2** Baryon: three-quark state (qqq) p, n, Δ , etc.

Charged particles with spin have intrinsic magnetic moment:

$$\vec{\mu}_{\mathcal{S}} = (q/m) \, \vec{S}$$

Dirac equation describes point-like spin- $\frac{1}{2}$ particle (q, m):

$$|\vec{\mu}_z| = \frac{q\hbar}{2m} = -g_S \mu_B m_S \approx \mu_B$$
 (Bohr magneton for electron)

In general:

 $g_S pprox 2$ for $e^-, \ g_S pprox -3.83$ for neutron, $\ g_S pprox +5.59$ for proton

イロン 不良 とくほう 不良 とうほ

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Decay of the Λ Baryon

Magnetic moment of $\Lambda |uds\rangle$ in the quark model: $(I = \frac{1}{2} u \text{ and } d \text{ quarks couple to total } I = 0)$

$$\mu_{\Lambda} = \mu_{s} = \frac{e}{2m_{s}} \left(-\frac{1}{3}\right) = \left(-\frac{1}{3}\right) \frac{M_{p}}{m_{s}} \mu_{N}$$

Decay: $\Lambda \rightarrow p \pi^-$ with L = 0, 1, and parity not conserved.

・ロト ・ ア・ ・ ヨト ・ ヨト

The GlueX Experiment Spectroscopy of Ξ Resonances Magnetic Moments of Baryons

Decay of the Λ Baryon

Magnetic moment of $\Lambda |uds\rangle$ in the quark model: $(I = \frac{1}{2} u \text{ and } d \text{ quarks couple to total } I = 0)$

$$\mu_{\Lambda} = \mu_{s} = \frac{e}{2m_{s}} \left(-\frac{1}{3}\right)$$

Decay: $\Lambda \rightarrow p \pi^-$ with L = 0, 1, and parity not conserved.

• In Λ rest frame: proton along z_1 and $m_s = +\frac{1}{2}$

$$\pi^{-} p \rangle = \alpha_{0} \left\langle \frac{1}{2} \frac{1}{2} | 0 \frac{1}{2} 0 + \frac{1}{2} \right\rangle + \alpha_{1} \left\langle \frac{1}{2} \frac{1}{2} | 1 \frac{1}{2} 0 + \frac{1}{2} \right\rangle = \begin{pmatrix} \alpha_{0} - \frac{1}{\sqrt{3}} \alpha_{1} \\ 0 \end{pmatrix}$$

• In Λ rest frame: proton along z_2 and $m_s = -\frac{1}{2}$

$$|\pi^{-}p\rangle = \alpha_{0}\left\langle\frac{1}{2} - \frac{1}{2} | 0\frac{1}{2}0 - \frac{1}{2}\right\rangle + \alpha_{1}\left\langle\frac{1}{2} - \frac{1}{2} | 1\frac{1}{2}0 - \frac{1}{2}\right\rangle = \begin{pmatrix}0\\\alpha_{0} + \frac{1}{\sqrt{3}}\alpha_{1}\end{pmatrix}$$

イロン 不同 とくほう イヨン

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Decay of the Λ Baryon

- In Λ rest frame: proton along z_3 with $\theta = 90^{\circ}$
 - → Equal superposition of the other two cases.

The decay intensity for any proton and angle θ is then proportional to (α_0 and α_1 are complex constants):

$$\boldsymbol{w}(\theta) = \langle \pi^{-} \boldsymbol{p} | \pi^{-} \boldsymbol{p} \rangle = \cos^{2} \frac{\theta}{2} \left| \alpha_{0} - \frac{\alpha_{1}}{\sqrt{3}} \right|^{2} + \sin^{2} \frac{\theta}{2} \left| \alpha_{0} + \frac{\alpha_{1}}{\sqrt{3}} \right|^{2}$$

describing angular distribution of proton in rest frame of 100 % polarized Λ along z_1 .

$$w(\theta) = |\alpha_0|^2 + \frac{|\alpha_1|^2}{3} - 2\operatorname{Re}\frac{\alpha_0^*\alpha_1}{\sqrt{3}}\left(\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}\right) \qquad S \equiv \alpha_0 \text{ and } P \equiv -\frac{\alpha_1}{\sqrt{3}}$$

$$= \left(\left| S \right|^2 + \left| P \right|^2 \right) \left(1 + \left[\frac{2 \operatorname{Re}(S^* P)}{\left| S \right|^2 + \left| P \right|^2} \right]_{\equiv \alpha_{\Lambda}} \cos \theta \right) = \frac{1}{4\pi} \left(1 + \alpha_{\Lambda} \cos \theta \right).$$

ヨト イヨト

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Decay of the Λ Baryon

$$w(\theta) = \left(\left| S \right|^2 + \left| P \right|^2 \right) \left(1 + \left[\frac{2 \operatorname{Re}(S^* P)}{\left| S \right|^2 + \left| P \right|^2} \right]_{\equiv \alpha_{\Lambda}} \cos \theta \right) = \frac{1}{4\pi} \left(1 + \alpha_{\Lambda} \cos \theta \right).$$

The parity-violating forward-backward asymmetry is due to the interference of the S (L = 0) and P (L = 1) waves.

For hyperons with partial polarization P_{Λ} :

$$w(\theta) = \frac{1}{4\pi} \left(1 + \alpha_{\Lambda} P_{\Lambda} \cos \theta \right).$$

For an unpolarized hyperon, the proton is longitudinally polarized with the number of protons flying in the +*z* direction proportional to $(1 + \alpha_{\Lambda})$ and $(1 - \alpha_{\Lambda})$, respectively:

$${\cal P}_{
m proton}\,=\,rac{1+lpha_{\Lambda}-(1-lpha_{\Lambda})}{1+lpha_{\Lambda}+(1-lpha_{\Lambda})}\,=\,lpha_{\Lambda}\,.$$

This property was used to measure α_{Λ} , e.g. at BNL in the reaction $\pi^- \rho \to K^0 \Lambda$.

イロン 不良 とくほう 不良 とうせい

The GlueX Experiment Spectroscopy of \equiv Resonances Magnetic Moments of Baryons

Decay of the ∧ Baryon: Data Situation in 2024

Decay parameter α_- of the parity-violating weak decay $\Lambda \to p\pi^-$ describes the interference between parity-violating *S* and parity-conserving *P* waves.

- Important for any kind of experiment that involves the polarization of the Λ.
- A comparison of α₋ and α₊ provides a test of CP symmetry for strange baryons.
- → GlueX Proposal to JLab 2024 PAC.

イロト イポト イヨト イヨト

Outline

- Brief Review and Motivation
 Experimental Studies of Baryons
- Baryon Spectroscopy at GlueX
 The GlueX Experiment
 - Spectroscopy of Ξ Resonances
 - Magnetic Moments of Baryons
- Heavy-Flavor Resonances
- 4 Summary and Conclusions

3

ヘロト ヘアト ヘビト ヘ

Summary and Conclusions

Peak Hunting for Heavy-Flavor States

https://www.nikhef.nl/ pkoppenb/particles.html

Volker Credé

> < ≣

э

Description of a Baryon

The reduced masses of the two oscillators are then given as:

$$\mu_{
ho} = m_q \quad \text{and} \quad \mu_{\lambda} = \frac{3m_q m_Q}{2m_q + m_Q} ,$$

where q = s and Q = u, d for the doubly strange Ξ system, and q = u, d and Q = c, b for the singly heavy charmed or bottom baryons.

The ratio of the harmonic oscillator frequencies is given by:

$$rac{\omega_\lambda}{\omega_
ho} \,=\, \sqrt{rac{1}{3} \left(1+2m_q/m_Q
ight)} \,\leq\, 1\,.$$

In the limit of $m_q \approx m_Q$, e.g. for $N^* \& \Delta^*$ states, the excitation energies in the ρ and λ oscillators are about the same, whereas the excitation energies in the λ oscillator are reduced by a factor of $\sqrt{3}$ in the heavy-quark limit, $m_Q \rightarrow \infty$.

Excitation Energy as Function of Heavy Quark Mass

Comparison of Charmed and Bottom Baryons

- Hyperfine splitting inversely proportional to the heavy quark mass.
- 2 Small decrease in λ excitations.
- Bottom baryons (and their properties) can be predicted from charmed baryon spectrum.

Volker Credé 70 Years of Hyperon Spectroscopy

Summary and Conclusions

SU(4) Multiplet Structure of Baryons

Multiplet structure for flavor SU(4):

 $\mathbf{4}\,\otimes\,\mathbf{4}\,\otimes\,\mathbf{4}\,=\,\mathbf{20}_{\mathcal{S}}\,\oplus\,\mathbf{20}_{\mathcal{M}}\,\oplus\,\mathbf{20}_{\mathcal{M}}\,\oplus\,\mathbf{4}_{\mathcal{A}}$

➔ Great progress also for charmed and bottom baryons (Belle, LHCb).

ヘロア 人間 アメヨア 人口 ア

э

Summary and Conclusions

SU(4) Multiplet Structure of Baryons

Singly heavy baryons particularly amenable to potential models, and states can be classified according to multiplet structure of the light diquark:

$$\mathbf{3} \otimes \mathbf{3} = \overline{\mathbf{3}}_A \oplus \mathbf{6}_S.$$

These diquarks are sometimes called *good* and *bad* diquarks for $s_{qq} = 1$ and $s_{qq} = 0$, respectively.

Light Diquark Structure for Singly Heavy Baryons

$$l_{\rho} = 0 \ (S) = \begin{cases} s_{qq} = 0 \ (A), \quad \bar{\mathbf{3}}_{F} \ (A) \quad j_{qq} = 0, \\ s_{qq} = 1 \ (S), \quad \mathbf{6}_{F} \ (S) \quad j_{qq} = 1, \end{cases}$$
$$l_{\rho} = 1 \ (A) = \begin{cases} s_{qq} = 0 \ (A), \quad \mathbf{6}_{F} \ (S) \quad j_{qq} = 1, \\ s_{qq} = 1 \ (S), \quad \bar{\mathbf{3}}_{F} \ (A) \quad j_{qq} = 0/1/2, \end{cases}$$
$$l_{\rho} = 2 \ (S) = \begin{cases} s_{qq} = 0 \ (A), \quad \bar{\mathbf{3}}_{F} \ (A) \quad j_{qq} = 2, \\ s_{qq} = 1 \ (S), \quad \mathbf{6}_{F} \ (S) \quad j_{qq} = 1/2/3, \end{cases}$$

where the total angular momentum of the singly heavy baryon is then

$$J = s_Q \otimes (j_{qq} \otimes I_{\lambda}).$$

ヘロン ヘアン ヘビン ヘビン

э

Summary and Conclusions

Example of ρ and λ Classification Scheme

	L	l_{ρ}	l_{λ}	s_{qq}	j_{qq}	J^P	(nL)	Observed Candidates
	0	0	0	0	0	$\frac{1}{2}^{+}$	(1S)	$\Lambda_c \frac{1}{2}^+, (\Xi_c^+, \Xi_c^0) \frac{1}{2}^+$
	0	0	0	0	0	$\frac{1}{2}^{+}$	(2S)	$*\Lambda_c(2765) \frac{1}{2}^+ (?)^{\dagger}, \Xi_c(2970) \frac{1}{2}^+$
	1	0	1	0	1	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$	(1P)	$\Lambda_c(2595) \frac{1}{2}^-, \Lambda_c(2625) \frac{3}{2}^-$
_								$\Xi_c(2790) \frac{1}{2}^-, \ \Xi_c(2815) \frac{3}{2}^-$
$3_{\rm F}$	1	1	0	1	0	$\frac{1}{2}^{-}$	(1P)	
$\Lambda_c^{(*)}$	1	1	0	1	1	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$	(1P)	$\int (1 (2040) 3^{-})^{2} $
$\Xi_c^{(*)}$	1	1	0	1	2	$\frac{3}{2}^{-}, \frac{5}{2}^{-}$	(1P)	$\left\{\begin{array}{c} \left(\Lambda_c(2940) \stackrel{\circ}{\underline{2}}\right) \text{``possibly a } 2P \text{ state''} \\ \end{array}\right\}$
	2	0	2	0	2	$\frac{3}{2}^+, \frac{5}{2}^+$	(1D)	$\Lambda_c(2860) \frac{3}{2}^+, \Lambda_c(2880) \frac{5}{2}^+$
	2	2	0	0	2	$\frac{3}{2}^+, \frac{5}{2}^+$	(1D)	$\Xi_{c}(3030) \overline{2} (1)^{*}, \Xi_{c}(3080) \overline{2} (1)^{*}$

イロト 不得 とくほと くほとう

æ

Comparison of Charmed Baryon Spectra

V.C. and J. Yelton, 70 Years of Hyperon Spectroscopy, submitted to Rept. Prog. Phys. (2024)

 Σ -like resonances

Λ-like resonances

Volker Credé 70 Years of Hyperon Spectroscopy

Doubly-Heavy (Charmed) Resonances

2017: The LHCb (Large Hadron Collider beauty) collaboration at CERN's Large Hadron Collider in Switzerland has reported the observation of a doubly charmed particle, $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$.

Discovery will improve the predictive power of theories.

"In contrast to other baryons, in which the three quarks perform an elaborate dance around each other, a doubly heavy baryon is expected to act like a planetary system, where the two heavy quarks play the role of two heavy stars orbiting one around the other, with the lighter quark orbiting around this binary system."

・ロト ・四ト ・ヨト ・ヨト

Doubly-Heavy (Charmed) Resonances

2017: The LHCb (Large Hadron Collider beauty) collaboration at CERN's Large Hadron Collider in Switzerland has reported the observation of a doubly charmed particle, $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$.

Volker Credé 70 Years of Hyperon Spectroscopy

Summary and Conclusions

Observation of a Narrow Pentaquark State

A narrow pentaquark state, $P_c(4312)^+$, decaying to $J/\psi p$ was discovered by the LHCb Collaboration with statistical significance of 7.3σ in a data sample of $\Lambda_b^0 \rightarrow (J/\psi p) K^-$ decays.

A higher-mass $P_c(4450)^+$ pentaquark structure formerly reported by LHCb confirmed and observed to consist of two narrow overlapping peaks, $P_c(4440)^+$ and $P_c(4457)^+$.

★ E → < E →</p>

R. Aaij et al., PRL 122, 222001 (2019)

J/ψ Photoproduction Near Threshold

Photoproduction of J/ψ (near threshold) provides clean laboratory to study $c\bar{c}$:

• Probes gluon distribution in proton

(D. Kharzeev et al., Nucl. Phys. A 661, 568 (1999))

Sensitive to multi-quark correlations

(S. Brodsky et al., Phys. Lett. B 498, 23 (2001))

leading twist

higher twist

J/ψ Photoproduction Near Threshold

Photoproduction of J/ψ (near threshold) provides clean laboratory to study cc:

- Probes gluon distribution in proton
- Sensitive to multi-guark correlations
- Intriguing possibility of five-quark interaction

Cornell 75 SLAC 75

Observation of J/ψ at GlueX

A. Ali et al. [GlueX Collaboration], Phys. Rev. Lett. 123, no.7, 072001 (2019)

First observation of J/ψ at Jefferson Lab in $\gamma p \rightarrow p J/\psi \rightarrow p e^+ e^-$

First detailed look at cross section near threshold

ヘロン 人間 とくほ とくほ とう

э

Summary and Conclusions

Observation of J/ψ at GlueX

First observation of J/ψ at Jefferson Lab in $\gamma p \rightarrow p J/\psi \rightarrow p e^+e^-$

- First detailed look at cross section near threshold
- Measurement of t slope (at 10.7 GeV avg. E_{γ}): (-1.67 ± 0.39) GeV⁻²
- Limits on pentaquark production

・ロト ・ 理 ト ・ ヨ ト ・

э

Outline

- Brief Review and Motivation
 Experimental Studies of Baryons
 - Baryon Spectroscopy at Glue
 The GlueX Experiment
 - Spectroscopy of E Resonances
 - Magnetic Moments of Baryons
- 3 Heavy-Flavor Resonances
- Summary and Conclusions

イロト イポト イヨト イヨト

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - → Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- Can we identify unconventional states in the strangeness sector, e.g. a Λ(1405) or N(1440)? What is the situation with the (20, 1⁺₂)?
- What is the nature of non-quark contributions, e.g. meson-baryon cloud or dynamically-generated states?
 - → Probe the running quark mass and determine the relevant degrees of freedom at different distance scales.
- How do nearly massless quarks acquire mass? (as predicted in DSE and LQCD)

Summary and Conclusions

Spectroscopy of (low-mass) \equiv resonances very important to understand the systematics of the baryon spectrum:

- What about the properties of the $\Xi(1620) / \Xi(1690)$ states?
- Is the Ξ(1620) more than one state? Is the Ξ(1620) the doubly strange partner of the Λ(1405)?
- Where is the radial excitation of the Ξ(1320)?

Volker Credé 70 Years of Hyperon Spectroscopy

Summary and Conclusions

Quantum Chromodynamics (QCD) is (most likely) the correct theory of strong interactions. However, the theory remains still fairly untested and not very well understood at low energies (spectra and properties of hadrons).

Hadron spectroscopy is a powerful tool to scrutinize ideas on the effective degrees of freedom that govern hadron dynamics.

• QCD-inspired models have been very successful at describing the overall features of the spectrum of mesons and baryons, and also their decays, form factors, transition form factors, magnetic moments, etc.

• However, these models have also exhibited important failures:

- Link between partonic degrees of freedom seen in deep inelastic scattering and constituent quarks remains poorly understood.
- Experiments have yet to provide compelling evidence for gluonic excitations (glueballs, hybrids, etc.)

ヘロン ヘアン ヘビン ヘビン

Summary and Conclusions

Quantum Chromodynamics (QCD) is (most likely) the correct theory of strong interactions. However, the theory remains still fairly untested and not very well understood at low energies (spectra and properties of hadrons).

Hadron spectroscopy is a powerful tool to scrutinize ideas on the effective degrees of freedom that govern hadron dynamics.

 QCD-inspired models have been very successful at describing the overall features of the spectrum of mesons and baryons, and also their decays, form factors, transition form factors, magnetic moments, etc.

• However, these models have also exhibited important failures:

- Link between partonic degrees of freedom seen in deep inelastic scattering and constituent quarks remains poorly understood.
- Experiments have yet to provide compelling evidence for gluonic excitations (glueballs, hybrids, etc.)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Summary and Conclusions

Quantum Chromodynamics (QCD) is (most likely) the correct theory of strong interactions. However, the theory remains still fairly untested and not very well understood at low energies (spectra and properties of hadrons).

Hadron spectroscopy is a powerful tool to scrutinize ideas on the effective degrees of freedom that govern hadron dynamics.

- QCD-inspired models have been very successful at describing the overall features of the spectrum of mesons and baryons, and also their decays, form factors, transition form factors, magnetic moments, etc.
- However, these models have also exhibited important failures:
 - Link between partonic degrees of freedom seen in deep inelastic scattering and constituent quarks remains poorly understood.
 - Experiments have yet to provide compelling evidence for gluonic excitations (glueballs, hybrids, etc.)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Opportunities with Secondary K_L^0 Beams in Hall D

Possible reactions to be studied (elastic and charge-exchange reactions):

- 2- & 3-body reactions producing S = -1 hyperons
- 2-body reactions producing S = −2 hyperons
 → K⁰_L p → K⁺ Ξ⁰; π⁺K⁺ Ξ⁻; K⁺ Ξ^{0*}; π⁺K⁺ Ξ^{-*}

Volker Credé

70 Years of Hyperon Spectroscopy

 $\overline{K}{}^{0} p \rightarrow K^{+} \Xi^{0}$