

Andrew ^W. Jackwa William & Mary

HUGS 2024

Quarks, Gluans, & Hadrons

Our curred view at the minuse is we live in a 4-dimensional Spacetime in which all phenomena can be described by a relatively small number of porticles that differant via
a few well-defined laws.

There are four known forces, Electromagnetism, Weak , Strong , and Gravitational . All forces except Gravitation are described by the Standard Model 5 Partie Physics.

The Standard Model of Particle Physics is an anomaly-free, renormalizable, relativistic Quatum field theory which is invariant under the local gange group SU(3) \times SU(2) \times U(1) y which spontaneously breaks via ^a scalar field to $SU(3)_c \times U(1)_Q$

The sector of the SM World groups. 3 mag
\nnumber Stordries is called Guchm Clorbody₁₆is:
\n
$$
J_{ac} = \frac{1}{2} \sum_{i} \overline{f}_{i} X e_{i} + L.c.
$$
\n
$$
= \frac{1}{2} tr(G_{av} G^{v})
$$
\n
$$
J_{ac} = \frac{1}{2} tr(G_{av} G^{v})
$$
\n
$$
J_{ac} = \frac{1}{2} tr(G_{av} G^{v})
$$
\n
$$
J_{ac} = \sum_{i=1}^{2} \frac{1}{2} Tr(G_{av} G^{v})
$$
\n
$$
J_{ac} = \sum_{i=1}^{2} \frac{1}{2} \int_{r_{i}}^{a} f^{a}
$$
\n
$$
J_{ac} = \sum_{i=1}^{2} \frac{1}{2} \int_{r_{i}}^{a} f^{a}
$$
\n
$$
J_{ac} = \frac{1}{2} [F_{c} F_{c} F_{c}]
$$

There are 6 types of quarts: $\boldsymbol{q}_\texttt{f}$ = $\boldsymbol{\mu}$, d, 3 , c, b , t All quals are massive spin-tz forions. The different quart types are called flavors . The quarhes have another quartum number, Colar. There are three colors :

Red, Green, Blue (R.G.B) Therefore, there are $3\times 6 = 18$ quarks. The quarks are not directly observed. We any experimentally dited combinations of quarks called hadrons

* Exotica refers 1. Nun-bund rodel objets

Nuclé can be considered as baryonic motecules

Examples in the meson spectrum (pdg. 1bl.gov)

* Recall : $T = \frac{1}{2} \pi T$

There are 100's & Lenour Cradres, ell & which are du principle understood via GCD.

 \Rightarrow The lifetime $\frac{1}{2}$ QCD unstable $\frac{1}{2}$ Edes is $\frac{1}{2}$ the order d' Strag aderadions, τ - 10²³ s.

How do we deserve such Dates?

Undable halvans ar observel as resonances de hadraire readions eg_{y} carsider the $a,(1260)$

These resonances often^{*} appear as enhancements in $Cross-sects$

* This is subtle, especially with multiple scalibing clameds & overlapping resonances, d . σ & f_o (480) in $\tau \pi$ /K \overline{k} .

Resonances avec miversa) => Do not depend au
the production mechanism. However, their pre the production mechanism. However, their presence may be move ^o less obvious in some experiments. For example, if the production coupling is small,
we could miss them.

Resource physics is inherally few-body physics. Reserances ave Myanously defined as pole singularities in the complex energy-plane of scattering de the complex energy-plane of scatturing
amplitudes. Thus, to understand their properties, we must have access to the scafering arditucle .

Hadron Spectroscopy is the Study of the patterns 2 properties of hadrons, including their masses & lifetimes. GCD spectroscopy, is the theoretical Staly of the nadion spectrum & how it emerges from the quark & gluor dynamics of QCD. Studying the spectrum necessities determing the relevant scattering complitude for the hadronic resonance & interest.

<u>Scattering Amplitudes</u>

Carsider the readier of some initial state & to some fuel EDc p.

The ~~S~~-halck encales all dynamics for such a process
\n
$$
S_{px} = \langle \frac{1}{5} | \alpha \rangle
$$
\n
$$
S_{px} = \langle \frac{1}{5} | \alpha \rangle
$$
\n
$$
S_{\text{low}} = \text{low} \text{blue}
$$

 r and ζ is r . We to corpute than via perturbition theory with some perticular QFT.

The Lehman-Synank-Emomen (Lse) redation
\nformn (Lse) redation
\nformn (Lse) redation
\n
\nSchleity anfitades to QFT model as functions
\n
$$
S_{\mu\nu} = \frac{1}{1!} \prod_{j\in\mathbb{N}} \left(\frac{p_i^2 - p_i^2}{152} \right) \int_{\text{Poisson}} \frac{1}{152} \text{d}x \left(\frac{p_i^2 - p_i^3}{152} \right) \int_{\text{Poisson solution}} \frac{1}{152} \text{d}x \left(\frac{p_i^2 - p_i^2}{152} \right) \int_{\text{Poisson solution}} \frac{1}{p_i^2 - p_i^2} \int_{\text{Poisson solution}} \frac
$$

 $+$ $O(\alpha^2)$

Recall 12 α $= \frac{e^2}{44} \approx \frac{1}{137}$ f_{bc} - Scudre c -Sat

In trying to apply this to GOD, we run Do an issue in 119 the asy-posic Dides are hadras, Lit the $f_1 \circ f_2$ $f_3 \circ f_5 \circ f_6$ and in terms of quarks & gluons. Counteding there two regimes is incredibly difficult. What makes this task hand is the fait for l owereurgy physics, and is the +
 $x_5 = \frac{q_s^2}{4\pi} \sim 1$ so <u>cuer</u>y term in the porturation series contributes.

We can make progress by using group principles
\n
$$
\theta
$$
 physics to concept, non-potically
\nrepresalities. For the scattering amplitude.
\nThese principles include:

- Poincare (Laretz ⁺ Traditional) Invariance - Probability conservation - Causality - Crossing

These an be used effectively to constrict andytic represetations for amplitudes , which can be used to phenomenologically Judy processes using experimete dafe, or as we will see, in theoretica studies with Latice QCD.

We will ong focus on ^a few aspects of this approache

Poincare Inocience is assured as we wal within a relativistic framework . Consider a single patide site, ¹⁸, 07 , which is able & has a mass m . Therefar, Ep= So, ↑" 18, 07 ⁼ m = 15,oh ↑18, 0 ⁼ pr18, 07 > pr ⁼ (Ep,) The particle has ^a spin j , & ^a projection o 5 ¹⁸, 07 ⁼ j(j⁺ 1) 15, o 5 ^z ¹⁵, 0 ⁼ 01, 5 under translations, Wallp, ⁰¹ ⁼ eip,o, oh A good multipatide state , 127 ⁼ 15, ⁵, ¹⁸²⁵, ⁷⁰ ...1^a thus transforms as Ucal(d ⁼ ei ¹²

Here,
$$
\sum_{j=1}^{n_{\alpha}} p_{j} = P_{\alpha}
$$
 (d) hardt $d \propto \Rightarrow \beta$
\nSo, f_{α} du S rdr x $det \overline{J}$ f_{α} $\alpha \Rightarrow \beta$,
\n $\langle \beta | \hat{S} | \alpha \rangle$ $\frac{1}{t(\alpha)} \overline{J_{\alpha}}$ $\frac{1}{C}i(P_{\beta}-P_{\alpha})\cdot a \langle \beta | \hat{S} | \alpha \rangle$

 s , if $P_a P_b$ \Rightarrow $S_{ba} = 0$ identically.

Using symmotics allows are to enturne cardrands a Spx. Lardz transformations impose faither restrictions. If the Syden has She word quation runbers, eg, Flavar, Esseph, ..., Then These will also impose réditions.

 e_{7} $\langle \mathcal{T}_{A} | \hat{S} | \mathcal{T}_{\alpha} \rangle = \delta_{\mathcal{T}_{A} \mathcal{T}_{\alpha}} S_{\alpha \alpha}^{\perp}$ L_{SospM}

The S-Mix excodes all dynantes, celleding no Dundias. It is useful to renove the case where the particles never interest.

 e_{ϑ} , for $2\ni 2$ scatturing

We straluce the traste of T- with via $\hat{S} = \hat{1} + \hat{i}$ La convertion

So, S-rdre dend is

$$
S_{\text{tot}} = S_{\text{tot}} + (2\pi)^{4} S^{(4)}(P_{A} - P_{A}) i M_{A d}
$$
\n
$$
M_{\text{total}} = 1
$$
\n
$$
S_{\text{coupled}} = 1
$$
\n
$$
S_{\text{coupled}} = 1
$$
\n
$$
S_{\text{coupled}} = 1
$$