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The Standard Model of Particle Physics

Nature can be described by a remarkably simple* theory

Matter Force Carriers

ﬂ” - Quarks - Gauge Bosons
H ’ - Leptons . Higgs Boson

as®

* simple = An anomaly-free renormalizable relativistic quantum gauge field theory,
invariant under the gauge group SU(3)- ® SU(2); @ U(1)y
which spontaneously breaks via a scalar field to SU(3) ® U(1),,




The Standard Model of Particle Physics

Nature can be described by a remarkably simple* theory

Matter Force Carriers
. Quarks - Gauge Bosons
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Strong Nuclear

| Quantum ChromoDynamics (QCD)
* simple =An a
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Nuclear Forces

Most of our mass comes from nuclear forces!
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New discoveries in Nuclear Physics

Zoo of exotic quark configurations discovered
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62 new hadrons at the LHC
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Many types of nuclear particles

A zoo of particles — How to understand?

Baryons (fermions) Mesons (bosons)
olecules (nuclei




%serving Hadrons

We observe strongly interacting hadrons through reactions in accelerators/colliders

N x o o« |[M|?
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ﬂaserving Hadrons

We observe strongly interacting hadrons through reactions in accelerators/colliders
- If the interaction is sufficiently attractive, particles can form a resonance
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Observing Hadrons

We observe strongly interacting hadrons through reactions in accelerators/colliders

- If the interaction is sufficiently attractive, particles can form a resonance

Resonance

Unstable hadron which decays
via strong nuclear interaction

Has a mass and finite lifetime

T ~ 10723 sec

Most hadrons are resonances
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Observing Hadrons

We observe strongly interacting hadrons through reactions in accelerators/colliders
If the interaction is sufficiently attractive, particles can form a resonance
Resonances can appear as enhancements in the cross-section / amplitude
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Observing Hadrons

We observe strongly interacting hadrons through reactions in accelerators/colliders
If the interaction is sufficiently attractive, particles can form a resonance
Resonances can appear as enhancements in the cross-section / amplitude
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ﬂaserving Hadrons

We observe strongly interacting hadrons through reactions in accelerators/colliders
« If the interaction is sufficiently attractive, particles can form a resonance
* Resonances can appear as enhancements in the cross-section / amplitude
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Modern Nuclear Physics

Connect low-energy hadron & nuclear physics to QCD
Quantitatively describe few-body reactions and their impact on observables

Scattering Theory

Effective Field

Lattice QCD Theories

Nuclear Reactions
from QCD

Reaction Few-Body
Phenomenology Matrix Elements

Hadron Hadron
Spectroscopy Structure




Outline

|. Scattering Theory
Amplitudes and the S matrix

Partial Wave Analysis
Resonances & Bound States

Il. Connecting QCD to Scattering Amplitudes
Overview of Lattice QCD
Correlators and Finite-Volume Spectra
Lischer Quantization Condition

| will assume you have had some exposure to...

particle physics (e.g., you know what a quark is)
quantum field theory (e.g., you know what a Feynman diagram is)

complex analysis (e.g., you know what a contour integral is)
N = 4 supersymmetric Yang-Mills Theory

15
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|. Scattering Theory
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Resonances & Bound States

Il. Connecting QCD to Scattering Amplitudes
Overview of Lattice QCD
Correlators and Finite-Volume Spectra
Lischer Quantization Condition

| will assume you have had some exposure to...

particle physics (e.g., you know what a quark is)
quantum field theory (e.g., you know what a Feynman diagram is)

complex analysis (e.g., you know what a contour integral is)

A 4 N Mills T

16



Some References (that | like)

Also see JPAC summer schools http://jpac.nucleares.unam.mx/schools.html

Volume I Foundations

THE

TEBOIRY, st

JonN R. TAYLOR

QUANTUM B @ iy The Quncun Theoyof
THEORY OF ,
FIELDS

Martin L. Perl

K
STEVEN WEINBERG

17


http://jpac.nucleares.unam.mx/schools.html

Some References (that | like)

arXiv:1706.06223 (2017)

Scattering processes and resonances from lattice QCD

Radl A. Bricefio,!'* Jozef J. Dudek,»2 T and Ross D. Young3'Jt
L Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

2Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

3Special Research Center for the Subatomic Structure of Matter (CSSM), Department of Physics,

University of Adelaide, Adelaide 5005, Australia

(Dated: June 21, 2017)

The vast majority of hadrons observed in nature are not stable under the strong inter-
action, rather they are resonances whose existence is deduced from enhancements in
the energy dependence of scattering amplitudes. The study of hadron resonances of-
fers a window into the workings of quantum chromodynamics (QCD) in the low-energy
non-perturbative region, and in addition, many probes of the limits of the electroweak
sector of the Standard Model consider processes which feature hadron resonances. From
a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks
and gluons into hadron resonances also controls their decay into lighter hadrons, so a
complete approach to QCD is required. Presently, lattice QCD is the only available tool
that provides the required non-perturbative evaluation of hadron observables. In this
article, we review progress in the study of few-hadron reactions in which resonances and
bound-states appear using lattice QCD techniques. We describe the leading approach
which takes advantage of the periodic finite spatial volume used in lattice QCD calcula-
tions to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in
a box. We explain how from explicit lattice QCD calculations, one can rigorously gar-
ner information about a variety of resonance properties, including their masses, widths,
decay couplings, and form factors. The challenges which currently limit the field are
discussed along with the steps being taken to resolve them.

1. The importance of “multi-hadron” operators

Unitarized chiral perturbation theory and chiral

B. Lellouch-Liischer formalism and its generalizations

CONTENTS
1. Introduction 2 VI. Examples of resonance determination
A. Elastic resonances in 77 scattering
II. Resonances, composite particles, and scattering B. Resonances in coupled-channel meson-meson
amplitudes 3 scattering
A. Pole singularities 3
B. Coupled-channel scattering 4 VII. Other approaches to resonance determination
C. Diagrammatic representation 5 A. Resonances in the Liischer formalism in the
narrow-width approximation
III. - Lattice QCD 5 B. Resonances and ‘naive’ level counting
IV. Scattering in a finite-volume 6 g Finite volume EFT Hamiltonian approach
A. Scattering in non-relativistic quantum mechanics in .
. . extrapolations
one space dimension 7 E. Oth h
B. Scattering in a periodic cubic volume 7 ’ er approaches
c. ?peeljgzg scattering amplitudes to finite-volume 10 VIII. Coupling re.scrnances t.o external cgrren@
1. Dominance of the lowest partial-wave 10 A. Determining matrix elements in lattice QCD
2. Coupled-channel scattering and parameterization
of scattering amplitudes 11 C. Applications
3. Examples of finite-volume spectra for simple
scattering amplitudes 11 IX. Contemporary Extensions
A. Particles with nonzero intrinsic spin
V. Determining the finite-volume spectrum 12 B. Three-particle systems
A. Variational analysis of correlation matrices 12 C. Elastic form factors of resonances
B. Operator construction 15
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Novel approaches in Hadron Spectroscopy
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