

Machine Learning for Nuclear Physics Lecture 2

Daniel Lersch

Tuesday, June 4, 2024

Office of Science

On the Menu

▪ **Lecture 1**

- Machine learning workflow
- Neural networks
- Deep learning

▪ **Lecture 2**

- Network types and applications in Nuclear Physics
- Methods and tools

$AI \supset ML \supset DL$

Image source: https://www.embedded-vision.com/industry-analysis/blog/artificial-intelligence-machine-learning-deep-learning-and-computer-visionwha

Plot taken from [Brenda Ngs talk at deep learning for science](https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit) [school 2019](https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit)

- Dense neural networks (already covered in part 1)
- Convolutional neural networks
- **Recurrent neural networks**
- **Graph neural networks**
- Large language models
- Auteoncoder neural networks
- **Generative Models**

Convolutional Neural Network (CNN)

Image taken from [SaturnCloud blog about CNNs](https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/)

Input

- Used for image recognition / computer vision
- **Feature extraction via filters** and subsampling
- At JLab: Support shift takers with online monitoring --> See **"Machine Learning for Nuclear Physics: Hands-On"**,Wed. 06/05/2024, Thomas Britton

Convolutional Layer: Pooling / Subsampling Layer:

Image taken from [SuperAnnote blog about CNNs](https://www.superannotate.com/blog/guide-to-convolutional-neural-networks) **Image taken from [SaturnCloud blog about CNNs](https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/)**

Recurrent Neural Network (RNN)

- RNNs may struggle with long-term dependencies
- Long Short Term Memory (LSTM) Networks are alternative to RNN
- Use gates to regulate information flow
- Used to analyze time series or sequential data **(e.g. hits in a forward drift chamber)**
- \blacksquare Input: (x_{t-1}, x_t, x_{t+1})
- **•** Output: (h_{t-1}, h_t, h_{t+1}) $h_t(x_t, h_{t-1}) = \tanh[W \cdot (x_t, h_{t-1})]$
- Unroll recurrent loop

- Pictures taken from [colah's blog](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
- This blog provides good and detailed explanation
- Did not talk about Gated Recurrent Unit (GRU) Networks

Recurrent Neural Network for Track Reconstruction

...

- Toy problem provided by David Lawrence and Thomas Britton
- Reconstruct particle tracks in GlueX forward drift chamber

- Try to reconstruct particle properties (momentum and position in plane i when all previous planes fired
- Use LSTM + Dense layers to reconstruct particle tracks

Graph Neural Network (GNN)

Jefferson Lab

Large Language Model (LLM)

- Natural language processing (e.g. language translation, analyze documents, answer questions,…)
- ChatGPT, Gemini, Meta's LLaMA
- Backbone is [transfromer network](https://arxiv.org/pdf/1706.03762) --> Replace RNN based [seq2seq model](https://arxiv.org/pdf/1409.3215)
- Encoder-Decoder structure
- Transformers capture distant / long-range contexts
- Crucial: Need to translate text to numbers --> Word Tokenizer Inputs at the bottom, labels at the top.

Many use-cases for LLMs in Nuclear Physics!

Autoencoder Networks

- **Encoder Network:** Compress input data to latent space
- **Decoder Network:** Translate latent space data back to original features space
- **Training:** Output Data = **Decoder**[**Encoder**(Input Data)] = Input Data
- **Typical loss functions:** Mean Squared Error, Mean Absolute Error, Huber
- Networks can be dense, convolutional, recurrent,...
- **Shown above: Dense autoencoder on GlueX simulated lepton tracks**

Autoencoder Networks

- **Encoder Network:** Compress input data to latent space
- **Decoder Network:** Translate latent space data back to original features space
- **Training:** Output Data = **Decoder**[**Encoder**(Input Data)] = Input Data
- **Typical loss functions:** Mean Squared Error, Mean Absolute Error, Huber
- Networks can be dense, convolutional, recurrent,...
- **Shown above: Dense autoencoder on GlueX simulated lepton tracks**

Autoencoders and Anomaly Detection

- Train Autoencoder: 2 = **Decoder**[**Encoder**(2)]
- **Anomaly: Input ≠ Output**
- Use loss as anomaly score: Loss \sim [Input Output]

Anomaly Detection with Siamese Models

- Alternative to autoencoder networks
- Superior in handling unseen anomalies
- Siamese model focusses on similarity, rather than explicit classification
- Network A/B can be convolutional, dense,...
- **At JLab:** Anomality detection in particle accelerators (Kishan Rajput et al.)

Denoising with Autoencoders

Input Output

- Train Autoencoder: Image = **Decoder**[**Encoder**(Image + Noise)]
- Autoencoder translates noisy data to noise free data
- There is much more to Autoencoders --> See talk: **"Machine Learning for Nuclear Physics: Lecture 3"**, Thu. 06/06/2024, Gagik Gavalian at el.

Variational Autoencoder (VAE)

- Like autoencoder, but constrain latent space to follow a normal distribution
- Once trained, generate data from decoder: **Decoder**[N(0,1)]
- Generative model
- Used as anomaly detector
- **E** At JLab: Mainly used for PID and / or physics data generation

Variational Autoencoder (VAE)

Generated Output

- Like autoencoder, but constrain latent space to follow a normal distribution
- Once trained, generate data from decoder: **Decoder**[N(0,1)]
- Generative model
- Used as anomaly detector
- At JLab: Mainly used for PID and / or physics data generation

HUGS June 2024

HUGS June 2024

HUGS June 2024

'son Lab

'son Lab

- GAN training is successful <--> Discriminator output similar for real / generated data
- **At JLab:** Use GAN to solve inverse nuclear physics problems

HUGS June 2024

Generative Models – A brief Overview

- Uncertainty Quantification
- Distributed Training
- Hyper Parameter Optimization (HPO)
- Software packages

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …

- Deduced from data with known truth (or something close to it)
- No applicable to single prediction

Example: Mean Squared Error

$$
\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2, y_i : \text{known truth for } x_i, \hat{y}_i = \text{model}(x_i)
$$

==> Gives an idea how good / bad the model performs on the entire data set

 $\hat{y}_i = \text{model}(x_i)$ holds NO information about uncertainty of \hat{y}_i

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …

- Deduced from data with known truth (or something close to it)
- No applicable to single prediction

Common Techniques (just 2 out of many techniques)

1.) Ensemble: M models, independently trained on same data, but different initialization for internal parameters

$$
\hat{y}_i = \frac{1}{M} \sum_{k=1}^{M} \text{model}_k(x_i)
$$
\n
$$
\sigma_i = \sqrt{\frac{1}{M} \sum_{k=1}^{M} (\text{model}_k(x_i) - \hat{y}_i)^2}
$$

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …

- Deduced from data with known truth (or something close to it)
- No applicable to single prediction

Common Techniques (just 2 out of many techniques)

2.) Deep Gaussian Process Approximation (DGPA): Approximate kernel k(x,y) to reduce computational cost. Model directly predicts uncertainty.

Allows to formulate uncertainties $\approx z^T(x)z(y)$ $k(x, y)$

Distributed Training and do I need it?

- Depending on the model complexity, a single GPU is not suitable for training (Unless you are fine waiting months for your publication results)
- To speed up training time: Run your analysis across multiple GPUs
- **Scaling: Total training time / Model** performance vs. Number of GPUs
- **Example on the left:** MNIST Classifier trained on JLab GPUs, training times nearly identical for all runs

Basic Distributed Training Strategies

Distributed Training Tools and Methods

[Horovod](https://horovod.ai/)

- Supports many deep learning frameworks (PyTorch, Tensorflow, Keras,...)
- Based on data parallel training

[PyTorch Distributed Training Packages](https://pytorch.org/tutorials/beginner/dist_overview.html)

- Supports various training strategies: data parallel, model parallel, fully sharded data parallel (FSDP),… ffload grads f
CPU if CPU Load shard
From CPU if
- Works for PyTorch models only
- Asynchronous ring all-reduce is common method to distribute gradients
- Even faster: [double binary trees](https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/)

Hyper Parameter Optimization (HPO)

- Various optimization algorithms on the market
	- Grid search
	- Random search
	- Bayesian optimization
- Many software packages supporting HPO
	- **[KerasTuner](https://keras.io/keras_tuner/)**
	- [Optuna](https://optuna.org/)
	- **[Weights & Biases](https://wandb.ai/site)**
	- **[Ray Tune](https://docs.ray.io/en/latest/tune/index.html)**
	- ...

HUGS June 2024 22

Pseudocode Hyperparameter One = $[a, b, c]$ Hyperparameter Two = $[x, y, z]$ Hyperparameter 2 y $\boldsymbol{\mathrm{x}}$ Hyperparameter 1

Grid Search

Random Search

Taken from [Jack Stalforts blog](https://medium.com/@jackstalfort/hyperparameter-tuning-using-grid-search-and-random-search-f8750a464b35)

Taken from [Juan Navas blog](https://www.anyscale.com/blog/what-is-hyperparameter-tuning)

Which one to choose? --> Depends on what you want to do and personal taste...

Summary & Outlook

- Deep learning models in nuclear physics
	- Anomaly detection / classification
	- Tracking & reconstruction
	- Event level analysis
	- **Monitoring**
	- …
- Practical Tips
	- Try to use a baseline analysis for comparison
	- Use HPO to tune your model
	- Speed up training with distributed strategies
	- Further reading: [Andrej Kaparthy blog,](http://karpathy.github.io/2019/04/25/recipe/) distill.pub

■ Not covered

- Reinforcement Learning
- Fairness and ethnics in AI
- Continual learning
- ...