

Machine Learning for Nuclear Physics Lecture 2

Daniel Lersch

Tuesday, June 4, 2024

Office of Science

On the Menu

Lecture 1

- Machine learning workflow
- Neural networks
- Deep learning

Lecture 2

- Network types and applications in Nuclear Physics
- Methods and tools

$\mathsf{AI} \supset \mathsf{ML} \supset \mathsf{DL}$

Image source: https://www.embedded-vision.com/industry-analysis/blog/artificial-intelligence-machine-learning-deep-learning-and-computer-visionwha

Plot taken from <u>Brenda Ngs talk at deep learning for science</u> <u>school 2019</u>

- Dense neural networks (already covered in part 1)
- Convolutional neural networks
- Recurrent neural networks
- Graph neural networks
- Large language models
- Auteoncoder neural networks
- Generative Models

Convolutional Neural Network (CNN)

Image taken from SaturnCloud blog about CNNs

Convolutional Layer:

Input

Image taken from SuperAnnote blog about CNNs

- Used for image recognition / computer vision
- Feature extraction via filters and subsampling
- **At JLab:** Support shift takers with online monitoring --> See "Machine Learning for **Nuclear Physics: Hands-On**",Wed. 06/05/2024, **Thomas Britton**

Pooling / Subsampling Layer:

Image taken from SaturnCloud blog about CNNs

Recurrent Neural Network (RNN)

- RNNs may struggle with long-term dependencies
- Long Short Term Memory (LSTM) Networks are alternative to RNN
- Use gates to regulate information flow

- Used to analyze time series or sequential data (e.g. hits in a forward drift chamber)
- Input: (x_{t-1}, x_t, x_{t+1})
- **Output:** (h_{t-1}, h_t, h_{t+1}) $h_t(x_t, h_{t-1}) = \tanh[W \cdot (x_t, h_{t-1})]$
- Unroll recurrent loop

- Pictures taken from <u>colah's blog</u>
- This blog provides good and detailed explanation
- Did not talk about Gated Recurrent Unit (GRU) Networks

Recurrent Neural Network for Track Reconstruction

. . .

- Toy problem provided by David Lawrence and Thomas Britton
- Reconstruct particle tracks in GlueX forward drift chamber

- Try to reconstruct particle properties
 (momentum and position in plane i when all previous planes fired
- Use LSTM + Dense layers to reconstruct particle tracks

Graph Neural Network (GNN)

Jefferson Lab

Large Language Model (LLM)

- Natural language processing (e.g. language translation, analyze documents, answer questions,...)
- ChatGPT, Gemini, Meta's LLaMA
- Backbone is transfromer network --> Replace RNN based seq2seq model
- **Encoder-Decoder structure**
- Transformers capture distant / long-range contexts
- Crucial: Need to translate text to numbers --> Word Tokenizer Inputs at the bottom, labels at the top.

Many use-cases for LLMs in Nuclear **Physics!**

Autoencoder Networks

- Encoder Network: Compress input data to latent space
- Decoder Network: Translate latent space data back to original features space
- Training: Output Data = Decoder[Encoder(Input Data)] = Input Data
- Typical loss functions: Mean Squared Error, Mean Absolute Error, Huber
- Networks can be dense, convolutional, recurrent,...
- Shown above: Dense autoencoder on GlueX simulated lepton tracks

Autoencoder Networks

- Encoder Network: Compress input data to latent space
- **Decoder Network:** Translate latent space data back to original features space
- Training: Output Data = Decoder[Encoder(Input Data)] = Input Data
- Typical loss functions: Mean Squared Error, Mean Absolute Error, Huber
- Networks can be dense, convolutional, recurrent,...
- Shown above: Dense autoencoder on GlueX simulated lepton tracks

Autoencoders and Anomaly Detection

- Train Autoencoder: 2 = Decoder[Encoder(2)]
- Anomaly: Input ≠ Output
- Use loss as anomaly score: Loss ~ [Input Output]

Anomaly Detection with Siamese Models

- Alternative to autoencoder networks
- Superior in handling unseen anomalies
- Siamese model focusses on similarity, rather than explicit classification
- Network A/B can be convolutional, dense,...
- At JLab: Anomality detection in particle accelerators (Kishan Rajput et al.)

Denoising with Autoencoders

- Train Autoencoder: Image = Decoder[Encoder(Image + Noise)]
- Autoencoder translates noisy data to noise free data
- There is much more to Autoencoders --> See talk: "Machine Learning for Nuclear Physics: Lecture 3", Thu. 06/06/2024, Gagik Gavalian at el.

Output

Variational Autoencoder (VAE)

- Like autoencoder, but constrain latent space to follow a normal distribution
- Once trained, generate data from decoder: Decoder[N(0,1)]
- Generative model
- Used as anomaly detector
- At JLab: Mainly used for PID and / or physics data generation

Variational Autoencoder (VAE)

Generated Output

- Like autoencoder, but constrain latent space to follow a normal distribution
- Once trained, generate data from decoder: Decoder[N(0,1)]
- Generative model
- Used as anomaly detector
- At JLab: Mainly used for PID and / or physics data generation

HUGS June 2024

son Lab

HUGS June 2024

son Lab

HUGS June 2024

- GAN training is successful <--> Discriminator output similar for real / generated data
- At JLab: Use GAN to solve inverse nuclear physics problems

HUGS June 2024

Generative Models – A brief Overview

	Anomaly Detection	Data Generation	Training Difficulty	Image Quality & Diversity
Generative Adverserial Network (GAN)	\bigcirc			$\bigstar \bigstar \bigstar \bigstar$
Variational Autoencode (VAE)	r 🧹	\checkmark		* * *
Diffusion Models	\checkmark	\checkmark	\sim	* * * * *
Energy Based Models (EBM)	\checkmark	\checkmark	\sim	$\star\star\star\star\star\star$

- Uncertainty Quantification
- Distributed Training
- Hyper Parameter Optimization (HPO)
- Software packages

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, ...

- Deduced from data with known truth (or something close to it)
- No applicable to single prediction

Example: Mean Squared Error

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2, y_i : Known truth for x_i, \hat{y}_i = model(x_i)$$

==> Gives an idea how good / bad the model performs on the entire data set

 $\hat{y}_i = \text{model}(x_i)$ holds NO information about uncertainty of \hat{y}_i

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,... ROC-Curve, ...

- Deduced from data with known truth (or something close to it)
- No applicable to single prediction

Common Techniques (just 2 out of many techniques)

1.) Ensemble: M models, independently trained on same data, but different initialization for internal parameters

$$\hat{y}_i = \frac{1}{M} \sum_{k=1}^M \text{model}_k(x_i)$$
$$\sigma_i = \sqrt{\frac{1}{M} \sum_{k=1}^M (\text{model}_k(x_i) - \hat{y}_i)^2}$$

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,... ROC-Curve, ...

- Deduced from data with known truth (or something close to it)
- No applicable to single prediction

Common Techniques (just 2 out of many techniques)

2.) Deep Gaussian Process Approximation (DGPA): Approximate kernel k(x,y) to reduce computational cost. Model directly predicts uncertainty.

Allows to formulate uncertainties $k(x,y) \approx z^T(x) z(y)$

Distributed Training and do I need it?

Data Format	Model Complexity (Number of trainable Parameters)
Digits	~1k - 100k
Images & Videos	~100k - 10000k
Text & Language	>> 10000k

- Depending on the model complexity, a single GPU is not suitable for training (Unless you are fine waiting months for your publication results)
- To speed up training time: Run your analysis across multiple GPUs
- Scaling: Total training time / Model performance vs. Number of GPUs
- Example on the left: MNIST Classifier trained on JLab GPUs, training times nearly identical for all runs

Basic Distributed Training Strategies

Distributed Training Tools and Methods

<u>Horovod</u>

- Supports many deep learning frameworks (PyTorch, Tensorflow, Keras,...)
- Based on data parallel training

PyTorch Distributed Training Packages

- Supports various training strategies: data parallel, model parallel, fully sharded data parallel (FSDP),...
- Works for PyTorch models only
- Asynchronous ring all-reduce is common method to distribute gradients
- Even faster: <u>double binary trees</u>

Hyper Parameter Optimization (HPO)

	Neural Network Parameters	Neural Network Hyper Parameters	7
┥	Weights, biases, filters,	Number of hidden layers, batch size, filter size, activation functions, learning rate, number of learning epochs,	HPO

- Various optimization algorithms on the market
 - Grid search
 - Random search
 - Bayesian optimization
- Many software packages supporting HPO
 - <u>KerasTuner</u>
 - <u>Optuna</u>
 - Weights & Biases
 - <u>Ray Tune</u>
 - •

HUGS June 2024

Random Search

Hyperparameter 1

Taken from Jack Stalforts blog

Taken from Juan Navas blog

Software Package	Suited for	Language
<u>sciki-learn</u>	Machine learning with off the shelf models; Provides all tools to set up an entire ML workflow	python
tensorflow	Customize deep learning models; Supports variety of diagnostic tools, e.g. tensorboard	python
<u>PyTorch</u>	Customize deep learning models; High flexibiltiy for user to define own training / evaluation routines	python
<u>keras</u>	Customize deep learning models; Supports tensorflow and pytorch; HPO tools	python
ROOT TMVA	Machine learning with off the shelf models + Deep Learning with keras / PyTorch	C / C++ / python

Which one to choose? --> Depends on what you want to do and personal taste...

Summary & Outlook

- Deep learning models in nuclear physics
 - Anomaly detection / classification
 - Tracking & reconstruction
 - Event level analysis
 - Monitoring
 - ...
- Practical Tips
 - Try to use a baseline analysis for comparison
 - Use HPO to tune your model
 - Speed up training with distributed strategies
 - Further reading: <u>Andrej Kaparthy blog</u>, <u>distill.pub</u>

Not covered

- Reinforcement Learning
- Fairness and ethnics in AI
- Continual learning
- ...

