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Plot taken from Brenda Ngs talk at deep learning for science 
school 2019

▪ Lecture 1

▪ Lecture 2

• Machine learning workflow
• Neural networks
• Deep learning

• Network types and applications 
in Nuclear Physics

• Methods and tools

https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit
https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit


Network Types and Applications
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▪ Dense neural networks (already covered in part 1)
▪ Convolutional neural networks
▪ Recurrent neural networks
▪ Graph neural networks
▪ Large language models
▪ Auteoncoder neural networks
▪ Generative Models
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Convolutional Neural Network (CNN)
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Convolutional Layer: Pooling / Subsampling Layer:

Image taken from SaturnCloud blog about CNNs

Image taken from SaturnCloud blog about CNNsImage taken from SuperAnnote blog about CNNs

▪ Used for image recognition / 
computer vision

▪ Feature extraction via filters 
and subsampling

▪ At JLab: Support shift takers 
with online monitoring --> See 
"Machine Learning for 
Nuclear Physics: Hands-
On",Wed. 06/05/2024, 
Thomas Britton
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https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://www.superannotate.com/blog/guide-to-convolutional-neural-networks


Recurrent Neural Network (RNN)
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▪ Used to analyze time series or 
sequential data (e.g. hits in a 
forward drift chamber)

▪ Input: (xt-1,xt,xt+1)
▪ Output: (ht-1,ht,ht+1)

▪ Unroll recurrent loop

▪ RNNs may struggle with long-term dependencies
▪ Long Short Term Memory (LSTM) Networks are 

alternative to RNN
▪ Use gates to regulate information flow

▪ Pictures taken from colah's blog
▪ This blog provides good and 

detailed explanation
▪ Did not talk about Gated 

Recurrent Unit (GRU) Networks
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Network for Track Reconstruction
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▪ Toy problem provided by David Lawrence and Thomas Britton
▪ Reconstruct particle tracks in GlueX forward drift chamber

▪ Try to reconstruct particle properties 
(momentum and position in plane i when all 
previous planes fired

▪ Use LSTM + Dense layers to reconstruct particle 
tracks



Graph Neural Network (GNN)
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Pictures taken from distill.pub intro to GNNs
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▪ At JLab: Use GNNs for finding particle tracks in Hall 
D (Kishansingh Rajput & Ahmed Mohammed)

▪ Nodes: hits / Edges: Connect hits
▪ Form tracks via edge classification

https://distill.pub/2021/gnn-intro/


Large Language Model (LLM)
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▪ Natural language processing (e.g. language translation, 
analyze documents, answer questions,…)

▪ ChatGPT, Gemini, Meta's LLaMA
▪ Backbone is transfromer network --> Replace RNN based 

seq2seq model
▪ Encoder-Decoder structure
▪ Transformers capture distant / long-range contexts
▪ Crucial: Need to translate text to numbers --> Word 

Tokenizer
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Encoder Decoder
Image taken 
from tensorflow 
webpage

Many use-cases for 
LLMs in Nuclear 
Physics!

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1409.3215
https://www.tensorflow.org/text/tutorials/transformer
https://www.tensorflow.org/text/tutorials/transformer


Autoencoder Networks

9

Input Data Output DataLatent Space
(compressed data)

Encoder Decoder

▪ Encoder Network: Compress input data to latent space
▪ Decoder Network: Translate latent space data back to original features space
▪ Training: Output Data = Decoder[Encoder(Input Data)] = Input Data
▪ Typical loss functions: Mean Squared Error, Mean Absolute Error, Huber
▪ Networks can be dense, convolutional, recurrent,…
▪ Shown above: Dense autoencoder on GlueX simulated lepton tracks

HUGS June 2024



Autoencoder Networks

9

Input Data Output DataLatent Space
(compressed data)

Encoder Decoder

▪ Encoder Network: Compress input data to latent space
▪ Decoder Network: Translate latent space data back to original features space
▪ Training: Output Data = Decoder[Encoder(Input Data)] = Input Data
▪ Typical loss functions: Mean Squared Error, Mean Absolute Error, Huber
▪ Networks can be dense, convolutional, recurrent,…
▪ Shown above: Dense autoencoder on GlueX simulated lepton tracks
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Autoencoders and Anomaly Detection

10

Input Output 

Encoder Decoder

Is Normal

▪ Train Autoencoder: 2 = Decoder[Encoder(2)]
▪ Anomaly: Input ≠ Output

▪ Use loss as anomaly score: Loss ~ [Input - Output]

Input Output = Decoder[Encoder(Input)]

2 2

Not a 2 ?
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Anomaly Detection with Siamese Models
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▪ Alternative to autoencoder networks
▪ Superior in handling unseen anomalies
▪ Siamese model focusses on similarity, rather than explicit classification
▪ Network A/B can be convolutional, dense,...
▪ At JLab: Anomality detection in particle accelerators (Kishan Rajput et al.)

Network A

Network B

share weights

Features fA

Features fB

Distance [fA,fB]

0 Dissimilar

1 Similar

Similarity
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Denoising with Autoencoders
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Input Output 

Encoder Decoder

▪ Train Autoencoder: Image = Decoder[Encoder(Image + Noise)]
▪ Autoencoder translates noisy data to noise free data
▪ There is much more to Autoencoders --> See talk: "Machine 

Learning for Nuclear Physics: Lecture 3", Thu. 06/06/2024, Gagik 
Gavalian at el.
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Variational Autoencoder (VAE)
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Input Output 

Encoder Decoder

Laten Space

▪ Like autoencoder, but constrain latent space to follow a normal distribution
▪ Once trained, generate data from decoder: Decoder[N(0,1)]
▪ Generative model
▪ Used as anomaly detector
▪ At JLab: Mainly used for PID and / or physics data generation

Random Normal Distribution N(0,1)
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Variational Autoencoder (VAE)
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Generated Output

Decoder
Random Normal Distribution N(0,1)

▪ Like autoencoder, but constrain latent space to follow a normal distribution
▪ Once trained, generate data from decoder: Decoder[N(0,1)]
▪ Generative model
▪ Used as anomaly detector
▪ At JLab: Mainly used for PID and / or physics data generation
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Generative Adverserial Network (GAN) (1)
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Generator

Real Data

Noise

Discriminator

Generated Data

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively

How do you 
like my 
drawing of a 2?

Hmm, a bit 
noisy if you 
ask me...
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Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

and now?

No, not 
really...

A few training iterations later...

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively
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Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

How about 
now?

I still don't 
feel it...

A few more training iterations later...

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively
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Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

What about 
this one?

Reminds 
me of a 2...

Many more training iterations later...

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively
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Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

This is my 
personal 
favorite...

Mine 2! 
Looks very 
real !

GAN training finished

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively
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Generative Adverserial Network (GAN) (2)
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Discriminator

▪ GAN training is successful <--> 
Discriminator output similar for 
real / generated data

▪ At JLab: Use GAN to solve 
inverse nuclear physics 
problems
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Generative Models – A brief Overview
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Anomaly
Detection

Data
Generation

Training
Difficulty

Image Quality & 
Diversity

Generative Adverserial
Network (GAN)

Variational Autoencoder 
(VAE)

Diffusion Models

Energy Based Models 
(EBM)
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Methods and Tools
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▪ Uncertainty Quantification
▪ Distributed Training
▪ Hyper Parameter Optimization (HPO)
▪ Software packages

HUGS June 2024
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Uncertainty Quantification

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

Example: Mean Squared Error

==> Gives an idea how good / bad the model performs on the entire data set

A single model, without specific modifications, has no uncertainty!

HUGS June 2024



18

Uncertainty Quantification

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

Common Techniques (just 2 out of many techniques)

1.) Ensemble: M models, independently trained on same data, but different initialization for 
internal parameters

A single model, without specific modifications, has no uncertainty!

HUGS June 2024



18

Uncertainty Quantification

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

2.) Deep Gaussian Process Approximation (DGPA): Approximate kernel k(x,y) to 
reduce computational cost. Model directly predicts uncertainty.

D
G

PA

In
p

u
t F
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V
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r

𝜇

𝜎

Common Techniques (just 2 out of many techniques)

Allows to formulate 
uncertainties
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Distributed Training and do I need it?
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Data Format Model Complexity

(Number of trainable Parameters)

Digits ~1k - 100k

Images & Videos ~100k - 10000k

Text & Language >> 10000k

▪ Depending on the model complexity, a 
single GPU is not suitable for training 
(Unless you are fine waiting months for 
your publication results)

▪ To speed up training time: Run your 
analysis across multiple GPUs

▪ Scaling: Total training time / Model 
performance vs. Number of GPUs

• Example on the left: MNIST Classifier 
trained on JLab GPUs, training times 
nearly identical for all runs
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Basic Distributed Training Strategies

20

Training Method Explanation

Data Parallel Shard data across GPUs, each GPU sees full 

model --> Distribute gradients

Model Parallel Shard model across GPUs, each GPU sees 

fraction of the model and full data

Pipeline Parallel Combine the above two

Data Parallel + Shard model Mainly data parallel, but each GPU operates 

only on subsection of model (implementation 

NOT the same as pipeline parallel)
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Distributed Training Tools and Methods
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Horovod
▪ Supports many deep learning frameworks (PyTorch, Tensorflow, Keras,…)
▪ Based on data parallel training

PyTorch Distributed Training Packages
▪ Supports various training strategies: data parallel, model parallel, fully sharded 

data parallel (FSDP),…
▪ Works for PyTorch models only

(asynchronous) ring all-reduce

• Asynchronous ring all-reduce is 
common method to distribute 
gradients

• Even faster: double binary trees

HUGS June 2024

https://horovod.ai/
https://pytorch.org/tutorials/beginner/dist_overview.html
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/


Hyper Parameter Optimization (HPO)
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Neural Network Parameters Neural Network Hyper 

Parameters

Weights, biases, filters,.. Number of hidden layers, batch 

size, filter size, activation 

functions, learning rate, number 

of learning epochs,...

Tr
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▪ Various optimization algorithms on the market

▪ Many software packages supporting HPO

• Grid search
• Random search
• Bayesian optimization

• KerasTuner
• Optuna
• Weights & Biases
• Ray Tune
• ...

Taken from Jack Stalforts blog

Taken from Juan Navas blog

https://keras.io/keras_tuner/
https://optuna.org/
https://wandb.ai/site
https://docs.ray.io/en/latest/tune/index.html
https://medium.com/@jackstalfort/hyperparameter-tuning-using-grid-search-and-random-search-f8750a464b35
https://www.anyscale.com/blog/what-is-hyperparameter-tuning


Software Packages
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Software Package Suited for Language

sciki-learn Machine learning with off the shelf models; 

Provides all tools to set up an entire ML 

workflow

python

tensorflow Customize deep learning models; Supports 

variety of diagnostic tools, e.g. tensorboard

python

PyTorch Customize deep learning models; High 

flexibiltiy for user to define own training / 

evaluation routines

python

keras Customize deep learning models; Supports 

tensorflow and pytorch; HPO tools

python

ROOT TMVA Machine learning with off the shelf models + 

Deep Learning with keras / PyTorch

C / C++ / python

Which one to choose? --> Depends on what you want to do and personal taste...
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https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://root.cern/manual/tmva/


Summary & Outlook
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▪ Deep learning models in nuclear physics

▪ Practical Tips

▪ Not covered

• Anomaly detection / classification
• Tracking & reconstruction
• Event level analysis
• Monitoring
• …

• Try to use a baseline analysis for comparison
• Use HPO to tune your model
• Speed up training with distributed strategies
• Further reading: Andrej Kaparthy blog, distill.pub

• Reinforcement Learning
• Fairness and ethnics in AI
• Continual learning
• ...

http://karpathy.github.io/2019/04/25/recipe/
https://distill.pub/
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