
HUGS 2024

Machine Learning for Nuclear Physics

Lecture 2

Daniel Lersch

Tuesday, June 4, 2024



On the Menu

2HUGS June 2024

Plot taken from Brenda Ngs talk at deep learning for science 
school 2019

▪ Lecture 1

▪ Lecture 2

• Machine learning workflow
• Neural networks
• Deep learning

• Network types and applications 
in Nuclear Physics

• Methods and tools

https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit
https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit


Network Types and Applications

3

▪ Dense neural networks (already covered in part 1)
▪ Convolutional neural networks
▪ Recurrent neural networks
▪ Graph neural networks
▪ Large language models
▪ Auteoncoder neural networks
▪ Generative Models

HUGS June 2024



Convolutional Neural Network (CNN)

4

Convolutional Layer: Pooling / Subsampling Layer:

Image taken from SaturnCloud blog about CNNs

Image taken from SaturnCloud blog about CNNsImage taken from SuperAnnote blog about CNNs

▪ Used for image recognition / 
computer vision

▪ Feature extraction via filters 
and subsampling

▪ At JLab: Support shift takers 
with online monitoring --> See 
"Machine Learning for 
Nuclear Physics: Hands-
On",Wed. 06/05/2024, 
Thomas Britton

HUGS June 2024

https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://www.superannotate.com/blog/guide-to-convolutional-neural-networks


Recurrent Neural Network (RNN)

5

▪ Used to analyze time series or 
sequential data (e.g. hits in a 
forward drift chamber)

▪ Input: (xt-1,xt,xt+1)
▪ Output: (ht-1,ht,ht+1)

▪ Unroll recurrent loop

▪ RNNs may struggle with long-term dependencies
▪ Long Short Term Memory (LSTM) Networks are 

alternative to RNN
▪ Use gates to regulate information flow

▪ Pictures taken from colah's blog
▪ This blog provides good and 

detailed explanation
▪ Did not talk about Gated 

Recurrent Unit (GRU) Networks

HUGS June 2024

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Network for Track Reconstruction

6

▪ Toy problem provided by David Lawrence and Thomas Britton
▪ Reconstruct particle tracks in GlueX forward drift chamber

▪ Try to reconstruct particle properties 
(momentum and position in plane i when all 
previous planes fired

▪ Use LSTM + Dense layers to reconstruct particle 
tracks



Graph Neural Network (GNN)

7HUGS June 2024

Node (Vertex V)
Edge E
Graph G(V,E)

V

V

V

V

V

E

E

E

E

E

Pictures taken from distill.pub intro to GNNs

Raw Data (Hits) Hitgraph

GNN
Model

V

▪ At JLab: Use GNNs for finding particle tracks in Hall 
D (Kishansingh Rajput & Ahmed Mohammed)

▪ Nodes: hits / Edges: Connect hits
▪ Form tracks via edge classification

https://distill.pub/2021/gnn-intro/


Large Language Model (LLM)

8

▪ Natural language processing (e.g. language translation, 
analyze documents, answer questions,…)

▪ ChatGPT, Gemini, Meta's LLaMA
▪ Backbone is transfromer network --> Replace RNN based 

seq2seq model
▪ Encoder-Decoder structure
▪ Transformers capture distant / long-range contexts
▪ Crucial: Need to translate text to numbers --> Word 

Tokenizer

HUGS June 2024

Encoder Decoder
Image taken 
from tensorflow 
webpage

Many use-cases for 
LLMs in Nuclear 
Physics!

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1409.3215
https://www.tensorflow.org/text/tutorials/transformer
https://www.tensorflow.org/text/tutorials/transformer


Autoencoder Networks

9

Input Data Output DataLatent Space
(compressed data)

Encoder Decoder

▪ Encoder Network: Compress input data to latent space
▪ Decoder Network: Translate latent space data back to original features space
▪ Training: Output Data = Decoder[Encoder(Input Data)] = Input Data
▪ Typical loss functions: Mean Squared Error, Mean Absolute Error, Huber
▪ Networks can be dense, convolutional, recurrent,…
▪ Shown above: Dense autoencoder on GlueX simulated lepton tracks

HUGS June 2024



Autoencoder Networks

9

Input Data Output DataLatent Space
(compressed data)

Encoder Decoder

▪ Encoder Network: Compress input data to latent space
▪ Decoder Network: Translate latent space data back to original features space
▪ Training: Output Data = Decoder[Encoder(Input Data)] = Input Data
▪ Typical loss functions: Mean Squared Error, Mean Absolute Error, Huber
▪ Networks can be dense, convolutional, recurrent,…
▪ Shown above: Dense autoencoder on GlueX simulated lepton tracks

HUGS June 2024



Autoencoders and Anomaly Detection

10

Input Output 

Encoder Decoder

Is Normal

▪ Train Autoencoder: 2 = Decoder[Encoder(2)]
▪ Anomaly: Input ≠ Output

▪ Use loss as anomaly score: Loss ~ [Input - Output]

Input Output = Decoder[Encoder(Input)]

2 2

Not a 2 ?

HUGS June 2024



Anomaly Detection with Siamese Models

11

▪ Alternative to autoencoder networks
▪ Superior in handling unseen anomalies
▪ Siamese model focusses on similarity, rather than explicit classification
▪ Network A/B can be convolutional, dense,...
▪ At JLab: Anomality detection in particle accelerators (Kishan Rajput et al.)

Network A

Network B

share weights

Features fA

Features fB

Distance [fA,fB]

0 Dissimilar

1 Similar

Similarity

HUGS June 2024



Denoising with Autoencoders

12

Input Output 

Encoder Decoder

▪ Train Autoencoder: Image = Decoder[Encoder(Image + Noise)]
▪ Autoencoder translates noisy data to noise free data
▪ There is much more to Autoencoders --> See talk: "Machine 

Learning for Nuclear Physics: Lecture 3", Thu. 06/06/2024, Gagik 
Gavalian at el.

HUGS June 2024



Variational Autoencoder (VAE)

13

Input Output 

Encoder Decoder

Laten Space

▪ Like autoencoder, but constrain latent space to follow a normal distribution
▪ Once trained, generate data from decoder: Decoder[N(0,1)]
▪ Generative model
▪ Used as anomaly detector
▪ At JLab: Mainly used for PID and / or physics data generation

Random Normal Distribution N(0,1)

HUGS June 2024



Variational Autoencoder (VAE)

13

Generated Output

Decoder
Random Normal Distribution N(0,1)

▪ Like autoencoder, but constrain latent space to follow a normal distribution
▪ Once trained, generate data from decoder: Decoder[N(0,1)]
▪ Generative model
▪ Used as anomaly detector
▪ At JLab: Mainly used for PID and / or physics data generation

HUGS June 2024



Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively

How do you 
like my 
drawing of a 2?

Hmm, a bit 
noisy if you 
ask me...

HUGS June 2024



Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

and now?

No, not 
really...

A few training iterations later...

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively

HUGS June 2024



Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

How about 
now?

I still don't 
feel it...

A few more training iterations later...

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively

HUGS June 2024



Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

What about 
this one?

Reminds 
me of a 2...

Many more training iterations later...

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively

HUGS June 2024



Generative Adverserial Network (GAN) (1)

14

Generator

Real Data

Noise

Discriminator

Generated Data

This is my 
personal 
favorite...

Mine 2! 
Looks very 
real !

GAN training finished

▪ Generative Model
▪ Generator Network: Generates data and 

tries to fool the discriminator
▪ Discriminator Network: Tries to tell real 

and generated data apart
▪ Train both networks competitively

HUGS June 2024



Generative Adverserial Network (GAN) (2)

15

Discriminator

▪ GAN training is successful <--> 
Discriminator output similar for 
real / generated data

▪ At JLab: Use GAN to solve 
inverse nuclear physics 
problems

HUGS June 2024



Generative Models – A brief Overview

16

Anomaly
Detection

Data
Generation

Training
Difficulty

Image Quality & 
Diversity

Generative Adverserial
Network (GAN)

Variational Autoencoder 
(VAE)

Diffusion Models

Energy Based Models 
(EBM)

HUGS June 2024



Methods and Tools

17

▪ Uncertainty Quantification
▪ Distributed Training
▪ Hyper Parameter Optimization (HPO)
▪ Software packages

HUGS June 2024



18

Uncertainty Quantification

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

Example: Mean Squared Error

==> Gives an idea how good / bad the model performs on the entire data set

A single model, without specific modifications, has no uncertainty!

HUGS June 2024



18

Uncertainty Quantification

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

Common Techniques (just 2 out of many techniques)

1.) Ensemble: M models, independently trained on same data, but different initialization for 
internal parameters

A single model, without specific modifications, has no uncertainty!

HUGS June 2024



18

Uncertainty Quantification

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

2.) Deep Gaussian Process Approximation (DGPA): Approximate kernel k(x,y) to 
reduce computational cost. Model directly predicts uncertainty.

D
G

PA

In
p

u
t F

ea
tu

re
 

V
ec

to
r

𝜇

𝜎

Common Techniques (just 2 out of many techniques)

Allows to formulate 
uncertainties

HUGS June 2024



Distributed Training and do I need it?

19

Data Format Model Complexity

(Number of trainable Parameters)

Digits ~1k - 100k

Images & Videos ~100k - 10000k

Text & Language >> 10000k

▪ Depending on the model complexity, a 
single GPU is not suitable for training 
(Unless you are fine waiting months for 
your publication results)

▪ To speed up training time: Run your 
analysis across multiple GPUs

▪ Scaling: Total training time / Model 
performance vs. Number of GPUs

• Example on the left: MNIST Classifier 
trained on JLab GPUs, training times 
nearly identical for all runs

HUGS June 2024



Basic Distributed Training Strategies

20

Training Method Explanation

Data Parallel Shard data across GPUs, each GPU sees full 

model --> Distribute gradients

Model Parallel Shard model across GPUs, each GPU sees 

fraction of the model and full data

Pipeline Parallel Combine the above two

Data Parallel + Shard model Mainly data parallel, but each GPU operates 

only on subsection of model (implementation 

NOT the same as pipeline parallel)

HUGS June 2024



Distributed Training Tools and Methods

21

Horovod
▪ Supports many deep learning frameworks (PyTorch, Tensorflow, Keras,…)
▪ Based on data parallel training

PyTorch Distributed Training Packages
▪ Supports various training strategies: data parallel, model parallel, fully sharded 

data parallel (FSDP),…
▪ Works for PyTorch models only

(asynchronous) ring all-reduce

• Asynchronous ring all-reduce is 
common method to distribute 
gradients

• Even faster: double binary trees

HUGS June 2024

https://horovod.ai/
https://pytorch.org/tutorials/beginner/dist_overview.html
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/


Hyper Parameter Optimization (HPO)

22HUGS June 2024

Neural Network Parameters Neural Network Hyper 

Parameters

Weights, biases, filters,.. Number of hidden layers, batch 

size, filter size, activation 

functions, learning rate, number 

of learning epochs,...

Tr
ai

n
in

g H
P

O

▪ Various optimization algorithms on the market

▪ Many software packages supporting HPO

• Grid search
• Random search
• Bayesian optimization

• KerasTuner
• Optuna
• Weights & Biases
• Ray Tune
• ...

Taken from Jack Stalforts blog

Taken from Juan Navas blog

https://keras.io/keras_tuner/
https://optuna.org/
https://wandb.ai/site
https://docs.ray.io/en/latest/tune/index.html
https://medium.com/@jackstalfort/hyperparameter-tuning-using-grid-search-and-random-search-f8750a464b35
https://www.anyscale.com/blog/what-is-hyperparameter-tuning


Software Packages

23

Software Package Suited for Language

sciki-learn Machine learning with off the shelf models; 

Provides all tools to set up an entire ML 

workflow

python

tensorflow Customize deep learning models; Supports 

variety of diagnostic tools, e.g. tensorboard

python

PyTorch Customize deep learning models; High 

flexibiltiy for user to define own training / 

evaluation routines

python

keras Customize deep learning models; Supports 

tensorflow and pytorch; HPO tools

python

ROOT TMVA Machine learning with off the shelf models + 

Deep Learning with keras / PyTorch

C / C++ / python

Which one to choose? --> Depends on what you want to do and personal taste...

HUGS June 2024

https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://root.cern/manual/tmva/


Summary & Outlook

24HUGS June 2024

▪ Deep learning models in nuclear physics

▪ Practical Tips

▪ Not covered

• Anomaly detection / classification
• Tracking & reconstruction
• Event level analysis
• Monitoring
• …

• Try to use a baseline analysis for comparison
• Use HPO to tune your model
• Speed up training with distributed strategies
• Further reading: Andrej Kaparthy blog, distill.pub

• Reinforcement Learning
• Fairness and ethnics in AI
• Continual learning
• ...

http://karpathy.github.io/2019/04/25/recipe/
https://distill.pub/

	Slide 1: HUGS 2024
	Slide 2: On the Menu
	Slide 3: Network Types and Applications
	Slide 4: Convolutional Neural Network (CNN)
	Slide 5: Recurrent Neural Network (RNN) 
	Slide 6: Recurrent Neural Network for Track Reconstruction
	Slide 7: Graph Neural Network (GNN)
	Slide 8: Large Language Model (LLM)
	Slide 9: Autoencoder Networks
	Slide 10: Autoencoder Networks
	Slide 11: Autoencoders and Anomaly Detection
	Slide 12: Anomaly Detection with Siamese Models
	Slide 13: Denoising with Autoencoders
	Slide 14: Variational Autoencoder (VAE)
	Slide 15: Variational Autoencoder (VAE)
	Slide 16: Generative Adverserial Network (GAN) (1)
	Slide 17: Generative Adverserial Network (GAN) (1)
	Slide 18: Generative Adverserial Network (GAN) (1)
	Slide 19: Generative Adverserial Network (GAN) (1)
	Slide 20: Generative Adverserial Network (GAN) (1)
	Slide 21: Generative Adverserial Network (GAN) (2)
	Slide 22: Generative Models – A brief Overview
	Slide 23: Methods and Tools
	Slide 24: Uncertainty Quantification
	Slide 25: Uncertainty Quantification
	Slide 26: Uncertainty Quantification
	Slide 27: Distributed Training and do I need it?
	Slide 28: Basic Distributed Training Strategies
	Slide 29: Distributed Training Tools and Methods
	Slide 30: Hyper Parameter Optimization (HPO)
	Slide 31: Software Packages
	Slide 32: Summary & Outlook

