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On the Menu
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Plot taken from Brenda Ngs talk at deep learning for science 
school 2019

▪ Lecture 1

▪ Lecture 2

• Machine learning workflow
• Neural networks
• Deep learning

• Network types and applications 
in Nuclear Physics

• Methods and tools

https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit
https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit


Machine Learning Workflow
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▪ "Typical" nuclear physics analysis

▪ Basic idea behind machine learning
▪ Performance evaluation metrics

• Particle Identification (PID)
• Binary classification problem on a fake data set

Andrzej Kupsc: "Analysis is a matter of taste [...]"
Malachi Schram: "[...] but there are rules"

HUGS June 2024



A Particle Identification (PID) Problem
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▪ Obtained data set from experiment(s)

▪ Goal: Identify particles A and B within given 
data set

▪ Approach: Use Variable 1, 2 and 3 to identify 
each particle

• 275 k events recorded with detector
• Data set contains two particles A & B (e.g. Pions and Kaons)
• Do not know which events correspond to which particle
• Do not know exact abundancy of each particle type

• Might need only one particle type for a specific 
analysis (e.g. dalitz plot, cross section,..)

• Identified three variables suitable for PID

HUGS June 2024



What are we looking for?
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▪ We could try to solve this "by hand"
▪ Use linear cuts to separate particle (nothing 

wrong with this approach)
▪ Only drawbacks:

▪ Spend more time on tuning the cuts --> Use 
a more complex function ?

▪ What is the underlying function that helps 
us to separate the two particles ?

• Overlapping regions cause misidentification
• Do not fully utilize (unknown) variable 

correlations --> Linear cut is too simple
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What are we looking for?
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Mysterious Model

Find a model that is 
complex enough to mimic 
the underlying function

Model Input Model Output



The Model
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Input Data Model Response



The Model
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Input Data Model Response

Linear Function Decision Tree Neural Network

and many more...



The Model
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Input Data Model Response

How do we find these ?



Model Training / Fitting
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Model Training / Fitting
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Input Data Model Response

Today's focus



Training Strategy for our PID Problem
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▪ Use dedicated training data set 
where we know which event 
corresponds to what particle

▪ Data set could be MC simulations or 
well curated measured data

▪ Events in data set are labeled

▪ 50% of data correspond to particle A 
and remaining 50% to particle B

▪ Let model learn labels from training 
data

▪ Apply trained model on data set from experiment
▪ Assume that model generalizes well enough



A typical Workflow
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▪ Nearly every machine / deep learning analysis is based on these four steps

▪ Use scikit-learn for our PID example workflow

▪ Efforts in JLab Data Science group

• Standardize machine / deep learning analyses --> Enforce 
reproducibility and support collaborative efforts

• Develop generic framework

https://scikit-learn.org/stable/


A typical Workflow
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▪ Load data (from database, numpy array, ROOT-trees,…)
▪ Data types

▪ Commonly used data formats

• Digits
• Images
• Videos
• Texts

• .png files
• .npy arrays (numpy)
• .csv, .json (dataframes) 

(used for our example)



A typical Workflow
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▪ Make sure that model can use data
▪ Feature engineering
▪ For our PID problem: Scale all variables to be between 0 and 1

Processing Method Example Why?

Adjust feature ranges Do not feed vector 

(0.001,10000,40) into 

model

Model is likely to focus 

on large values

Exclude values Acceptance holes in 

detector

Model may reconstruct 

false correlations

Select features Particle energies, 

angles,...

Feed "useful" information 

to model



A typical Workflow
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▪ Use 75% of the training data for model training
▪ Keep 25% aside for validation (validation data)
▪ Train two models: scikit-learn decision tree classifier and scikit-learn MLP 

classifier

Model Average Accuracy on 

Training Data [%]

Decision Tree 100

Neural Network (MLP) 95

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html


A typical Workflow
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▪ VERY IMPORTANT
▪ Justify model to yourself, colleagues, …
▪ Evaluate model performance
▪ Try to take "black box" character out of model
▪ Use dedicated data set --> Not "seen" by model during training
▪ Evaluate our model on the validation data that we kept aside
▪ Going to spend next slides on analysis and performance evaluation

Plot taken from Brenda Ngs talk at 
deep learning for science school 
2019

https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit
https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit
https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit


Model Response on validation Data
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▪ One of the first plots to 
check!

▪ Helps to understand your 
model

▪ Decision tree show 
discrete response

▪ Translate response to 
label via threshold th
(works for binary 
classification problems)

th
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Model Response on validation Data
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▪ One of the first plots to 
check!

▪ Helps to understand your 
model

▪ Decision tree show 
discrete response

▪ Translate response to 
label via threshold th
(works for binary 
classification problems)

Model uncertain



Confusion Matrix
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Decision Tree Neural Network



Confusion Matrix
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Decision Tree Neural Network

Ideally 0



Confusion Matrix and Accuracy
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Decision Tree Neural Network

Model Average Accuracy 

on Validation Data 

[%]

Decision Tree 93

Neural Network (MLP) 95



Receiver Operating Characteristic (ROC) Curve for identifying 
Particle B
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▪ True Positive Rate: How often 
does classifier correctly identify 
particle B ?

▪ False Positive Rate: How often 
does classifier falsely identify 
particle A as B ?

▪ Each point on ROC corresponds to 
one threshold value

▪ Could also look at ROC for 
identifying particle A

▪ AUC = Area Under Curve --> Ideally 1.0
▪ Slope of ROC is ultimately defined by response distribution
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▪ True Positive Rate: How often 
does classifier correctly identify 
particle B ?
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▪ Each point on ROC corresponds to 
one threshold value

▪ Could also look at ROC for 
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▪ Slope of ROC is ultimately defined by response distribution

Just right



Receiver Operating Characteristic (ROC) Curve for identifying 
Particle B
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▪ True Positive Rate: How often 
does classifier correctly identify 
particle B ?

▪ False Positive Rate: How often 
does classifier falsely identify 
particle A as B ?

▪ Each point on ROC corresponds to 
one threshold value

▪ Could also look at ROC for 
identifying particle A

▪ AUC = Area Under Curve --> Ideally 1.0
▪ Slope of ROC is ultimately defined by response distribution

You are better off 
rolling a dice



Performance Summary
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Model Accuracy [%] AUC True Positive 

Rate [%]

False 

Positive Rate 

[%]

Decision Tree 93 0.93 93 7

Neural Newtork 95 0.99 94 5

▪ All metrics determined from validation data set
▪ Use threshold: th = 0.5
▪ Models perform similar
▪ Next step: Apply models on experimental data set



Apply Model on experimental Data Set
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Input Decision Tree Neural Network



What is left to do?

16HUGS June 2024

▪ Define metric to judge model performance on "real" data

▪ Try different settings for each model and check for improved 
performance --> Hyper Parameter Optimization (HPO)

▪ Estimate model uncertainty <--> How reliable are model predictions ?

• Use missing mass spectra to determine expected abundance
• Use curated experimental data (with known abundances)
• Compare to "conservative" analysis

• Internal parameters are found by training
• Model complexity defined by hyper parameters (e.g. size, number of training 

steps,..)

• Is model complex enough to solve given task ?
• Is training data too different from "real" data (e.g. 

detector resolution, acceptance,..)
• When and why does model fail ?
• ….



Neural Networks
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Stone-Weierstrass-Theorem (1990): "[...] there are no 
nemesis functions that can not be modeled by neural 
networks"

▪ Multilayer Perceptron (Discuss other network types later)
▪ Backpropagation
▪ Gradient Descent
▪ Network Optimizers
▪ Tensors
▪ Parameter Initialization
▪ Early stopping

HUGS June 2024



Multilayer Perceptron (MLP)
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▪ Dense neural network
▪ Network Architecture: Hidden layers + Neurons
▪ Learnable Parameters: Weights and Biases



Multilayer Perceptron (MLP)
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▪ Dense neural network
▪ Network Architecture: Hidden layers + Neurons
▪ Learnable Parameters: Weights and Biases



A single Neuron
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A single Neuron
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Information from previous Neurons



A single Neuron
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Weights and Biases --> Adjusted during training



A single Neuron
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Activation Function



Activation Functions

20HUGS June 2024

Plots taken from Mustafa Mustafas talk at deep learning for science school 2019

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view


Activation Functions
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Plots taken from Mustafa Mustafas talk at deep learning for science school 2019

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view


The XOR Problem
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▪ Left: Easily solvable by most analytical 
functions

▪ Right: Not trivially solvable --> Use MLP

Input x Expected Output y

(0.0,0.0) 0.0

(0.0,1.0) 1.0

(1.0,0.0) 1.0

(1.0,1.0) 0.0



Setting up the Neural Network
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x0
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b
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Hidden Layer:

Hidden Activation: (TanH)

Output Layer:

Output Activation: (Logistic Function)



Forward Pass
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Output Layer:

Output Activation: (Logistic Function)

▪ Pass data through network
▪ Determine network response
▪ Data flow (in this cartoon) is 

from left to right
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Finding Weights and Biases
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x0

x1

h0

h1

ypred

▪ Start with a guess
▪ Set all weights to 1.0 and all biases 

to 0.0
▪ Maybe we are lucky
▪ Use loss to measure deviation from 

expected output
▪ Are there weights and biases that 

minimize the loss?

1.0
1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

Input x Expected 

Output

Predicted Output Loss

(0.0,0.0) 0.0 0.68 0.1

(0.0,1.0) 1.0 0.5 0.25

(1.0,0.0) 1.0 0.68 0.1

(1.0,1.0) 0.0 0.72 0.52

Σ Loss = 0.98



Minimizing the Loss
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x0

x1

h0

h1

ypred
b0

b1

b

W00

W01

W11

W10

W20

W21

Hidden Layer:

Hidden Activation: (TanH)

Output Layer:

Output Activation: (Logistic Function)

Try to find Wjk and bk with:

Loss:



Computing Gradients (1)
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Use chain rule to propagate loss from output layer back to hidden layer



Computing Gradients (2)
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Use chain rule to propagate loss from hidden layer back to input layer



Computing Gradients (2)
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W00
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W21

Use chain rule to propagate loss from hidden layer back to input layer



Parameter Update via Stochastic Gradient Descent (SGD)
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1. Propagate loss back through network (backpropagation) --> Get gradients
2. Use gradients to iteratively update parameters (training)

▪ Step size is adjusted by learning rate α
▪ Large gradients <--> Large parameter 

updates
▪ Small gradients <--> Small parameter 

updates
▪ Ideally, gradients converge to 0 at the 

end of the training



Results for the XOR Network
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▪ Trained XOR network for 10k 
epochs with learning rate α = 0.1

▪ Loss curve --> Very first plot to 
check after training a network

▪ Training successful <--> Loss 
converges

▪ Network predictions look 
reasonable

Input x Expected 

Output

Predicted Output Loss

(0.0,0.0) 0.0 0.04 0.002

(0.0,1.0) 1.0 0.97 0.001

(1.0,0.0) 1.0 0.97 0.001

(1.0,1.0) 0.0 0.05 0.002

Σ Loss = 0.006

Loss Curve XOR Network



Gradient Descent and Optimizers (1)
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Plots taken from Jeremy Jordans blog

Decay learning rate over time

Setting the learning rate properly

https://www.jeremyjordan.me/nn-learning-rate/


Gradient Descent and Optimizers (2)
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Taken from On Empirical Comparisons of Optimizers for Deep Learning

https://arxiv.org/pdf/1910.05446


Tensors
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Table from tensorflow

https://www.tensorflow.org/


Parameter Initialization (1)
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▪ Defines initial state of 
network

▪ Wrong initialization 
affects training

▪ Different initialization 

types available

▪ May depend on 

activation function

▪ Typical initialization for 

bias: 0, Uniform, Normal

XOR Network

• Network starts far off 
any optimum --> No 
convergence

• Network settles in one 
optimum --> No further 
learning

Activation Function Suggested Weight 

Initialization

Linear, Sigmoid, Tanh Xavier Uniform / Normal

ReLU, Leaky ReLU Kaiming Uniform / Normal

HUGS June 2024



Parameter Initialization (2)
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Default Initialization

Kaiming Uniform Initialization

▪ Ran analysis with network that used Leaky ReLU in activation layers
▪ At first, did not check default weight initialization (provided by software that I 

was using)
▪ Adjusted initialization according to activation function

Always check the parameter initialization in your network!

HUGS June 2024



Early Stopping

35

Stop training here

Generalization gap

▪ Avoid overfitting
▪ Terminate training when generalization gap is minimal
▪ Provided by most software packages, e.g. scikit-learn early stopping

Model is 
underperforming

Model is overfitted

HUGS June 2024

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html


The Batch Size

36

▪ Determines how many data samples are seen by model during gradient 
computation

▪ Batch size too small --> Large bias and variance in gradients
▪ Batch size too large --> Computational cost / memory issues on GPU
▪ Often recommended: m ~ 16 , 32
▪ However: Some models benefit from larger batch sizes, e.g. GANs as discussed 

in this paper
▪ This paper suggest to keep the learning rate constant and increase the batch 

size

HUGS June 2024

https://arxiv.org/pdf/2201.11989
https://arxiv.org/pdf/1711.00489


Now what is Deep Learning ?

37HUGS June 2024

Machine Learning Deep Learning

▪ Variety of algorithms
▪ Multilayer perceptrons < 3 hidden 

layers
▪ Decision trees
▪ Linear classifier
▪ ...

▪ Large neural networks
▪ Multilayer perceptrons >= 3 hidden layers
▪ Convolutional neural networks (computer 

vision)
▪ Graph neural networks
▪ Language models (Chat GPT)
▪ ….



Why Deep Learning ?
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Plot taken from Mustafa Mustafas talk at deep learning for science school 2019

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view


Challenges in Deep Learning
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▪ Computationally intensive --> Many algebraic operations --> Utilize GPUs
▪ Every additional layer adds a factor to the loss derivative (chain rule!)
▪ Vanishing gradient problem --> Zero gradients --> No weight updates
▪ Overfitting --> So many parameters
▪ Larger models (e.g. Chat GPT) require distributed training across multiple GPUs

Need gradients for weight updates

No gradients, no updates



Summary & Outlook

40HUGS June 2024

▪ Machine learning workflow

▪ Neural networks

▪ Deep learning

• Same for nearly all tasks (classification, regression,…)
• Used PID on fake data as an example
• Discussed performance evaluation metrics
• More examples in "Machine Learning for Nuclear Physics: Lecture 3", Thu. 

06/06/2024, Torri Jeske

• Components of multilayer perceptron
• Backpropagation and gradient descent
• Weight initialization, learning rate, batch size
• Overfitting

• Model complexity
• Challenges in training


	Slide 1: HUGS 2024
	Slide 2: On the Menu
	Slide 3: Machine Learning Workflow
	Slide 4: A Particle Identification (PID) Problem 
	Slide 5: What are we looking for?
	Slide 6: What are we looking for?
	Slide 7: What are we looking for?
	Slide 8: The Model
	Slide 9: The Model
	Slide 10: The Model
	Slide 11: Model Training / Fitting
	Slide 12: Model Training / Fitting
	Slide 13: Model Training / Fitting
	Slide 14: Training Strategy for our PID Problem
	Slide 15: A typical Workflow
	Slide 16: A typical Workflow
	Slide 17: A typical Workflow
	Slide 18: A typical Workflow
	Slide 19: A typical Workflow
	Slide 20: Model Response on validation Data
	Slide 21: Model Response on validation Data
	Slide 22: Model Response on validation Data
	Slide 23: Model Response on validation Data
	Slide 24: Confusion Matrix
	Slide 25: Confusion Matrix
	Slide 26: Confusion Matrix and Accuracy
	Slide 27: Receiver Operating Characteristic (ROC) Curve for identifying Particle B
	Slide 28: Receiver Operating Characteristic (ROC) Curve for identifying Particle B
	Slide 29: Receiver Operating Characteristic (ROC) Curve for identifying Particle B
	Slide 30: Receiver Operating Characteristic (ROC) Curve for identifying Particle B
	Slide 31: Receiver Operating Characteristic (ROC) Curve for identifying Particle B
	Slide 32: Receiver Operating Characteristic (ROC) Curve for identifying Particle B
	Slide 33: Performance Summary
	Slide 34: Apply Model on experimental Data Set
	Slide 35: What is left to do?
	Slide 36: Neural Networks
	Slide 37: Multilayer Perceptron (MLP)
	Slide 38: Multilayer Perceptron (MLP)
	Slide 39: A single Neuron
	Slide 40: A single Neuron
	Slide 41: A single Neuron
	Slide 42: A single Neuron
	Slide 43: Activation Functions
	Slide 44: Activation Functions
	Slide 45: The XOR Problem
	Slide 46: Setting up the Neural Network
	Slide 47: Forward Pass
	Slide 48: Forward Pass
	Slide 49: Finding Weights and Biases
	Slide 50: Minimizing the Loss
	Slide 51: Computing Gradients (1)
	Slide 52: Computing Gradients (2)
	Slide 53: Computing Gradients (2)
	Slide 54: Parameter Update via Stochastic Gradient Descent (SGD)
	Slide 55: Results for the XOR Network
	Slide 56: Gradient Descent and Optimizers (1)
	Slide 57: Gradient Descent and Optimizers (2)
	Slide 58: Tensors
	Slide 59: Parameter Initialization (1)
	Slide 60: Parameter Initialization (2)
	Slide 61: Early Stopping
	Slide 62: The Batch Size
	Slide 63: Now what is Deep Learning ?
	Slide 64: Why Deep Learning ?
	Slide 65: Challenges in Deep Learning
	Slide 66: Summary & Outlook

