Exploring QCD at the Electron-Ion Collider

C. Weiss (JLab), HUGS 2024 Lectures, JLab, 30-31 May 2024

Jefferson Lab

This lecture ²

Use parton picture to view hadron as many-body system — particle content, measurable properties Focus on understanding/explaining hadrons and nuclei as emergent phenomena of QCD Develop physical picture — formal derivations can be provided

Plan ³

Concepts I

QCD as dynamical system Parton picture of hadron structure Factorization and parton densities

High-energy electron scattering

Kinematics and cross sections

Energy and luminosity

Fixed-target vs. colliding-beam

EIC physics I: Nucleon structure

Sea quark and gluon polarization

Orbital angular momentum

Transverse spatial distributions

Neutron structure from D/3He

Concepts II

Nuclear interactions and partonic structure

EIC physics II: Nuclei and hadronization

Nuclear gluon density

Shadowing and saturation

Hadronization in vacuum and in nuclei

[Accelerator and detector]

Organization

EIC User Group, ePIC Collaboration, Project Getting involved

QCD: Dynamical system ⁴

 $A_{\mu}(x), \quad \psi, \bar{\psi}(x)$ modes *e*−*ikx* gauge and matter fields particles — gluons, quarks/antiquarks modes coupled by gauge interaction quantum motion involves radiation, particle creation/annihilation

essentially relativistic: momenta $k \sim$ few 100 MeV \gg quark masses \sim few MeV

"particles" and "radiation" cannot be separated

Modes depend on resolution scale, "how much radiation is included"

Effective coupling scale-dependent

Example: Interaction of static sources

$$
V_{Q\bar{Q}}(r) = \frac{4\pi\alpha_{\text{eff}}(r)}{r} \text{ + gauge-dep.}
$$

Asymptotic freedom: Effective coupling decreases at short distances

Perturbative calculations generally applicable at short distances

distance [fm]

QCD: Larger distances ⁶

 \sim 0.3 fm

Leinweber 2003: "Cooled" lattice QCD configurations

Nonperturbative vacuum fluctuations of gauge fields - tunneling, topology

Condensate of quark-antiquark pairs chiral symmetry breaking

Dynamical mass generation: Effective degrees of freedom \leftrightarrow e.g. constituent quark picture

Hadron formation at distances \sim 1 fm

Rich spectrum of meson and baryon excitations

Hadron structure: Correlation functions ⁷

time \rightarrow

Correlation functions of color-singlet operators with meson/baryon quantum numbers

 $\langle 0 | T J(x) J(0) | 0 \rangle$ in vacuum state

Imaginary time $t \to i\tau$: Statistical mechanics Lattice simulations, analytic methods

Hadron spectrum m_h , structure $\langle h | \mathcal{O} | h \rangle$

→ Lecture Huey-Wen Lin

No concept of particle content: Cannot separate modes "belonging to hadron" from vacuum fluctuations

No notion of hadron wave function: Not a closed system

Hadron structure: Parton picture 8 8

Momentum $P \to \infty$ ($\gg \mu_{\text{vac}}$)

Separate modes: $k_{\parallel} = xP, x > 0$ "hadron"

 $k_{\parallel} \lesssim \mu_{\text{vac}}$ "vacuum"

Hadron becomes closed system: Described by wave function

Wave function has components with different particle number: $|N\rangle = |qqq\rangle + |qqq\bar{q}q\rangle + |qqqg\rangle + ...$ (schematically)

Many-body system in particle degrees of freedom

In QCD this picture emerges after factorization and renormalization: Transverse momentum cutoff $k_T \lesssim \mu$, scale dependence \rightarrow later

Hadron structure: Many-body system ⁹

Components of wave function

Few particles with large $x = O(1)$ fractional momentum

Many particles with small $x \ll 1$

Measurable properties

Particle number densities, incl. spin/flavor dependence

Transverse spatial distributions

Transverse orbital motion, spin-orbit correlations

Particle correlations

} connected by QCD interactions

Hadron structure: Quark/gluon number densities ¹⁰

 $u_0 u_\nu \equiv u - \bar{u}$ etc. NNPDFpol1.1 (NLO)
 $x f(x,\mu^2=10 \text{ GeV}^2)$ 0.4 Basic particle @@ptertt@Maucleon in QCD!

0.3

u_v

0.2

0.2

0.3

 $\mathbf{u}_{\mathbf{v}}$

Factorization: Separation of scales ¹¹

Scattering process at momentum transfer $\check{Q}^2 \gg$ hadronic scale

Separate scales:

 $k_T^2 \sim Q^2$

hard scattering process

↕ radiation

 $k_T^2 \sim \mu^2$ hadron structure

Types of final states

Hadron structure described by particle densities = reduction of "wave functions"

$$
f(x, \mu) = \langle N(P) | a^{\dagger} a (k_{\parallel} = xP, k_T < \mu) | N(P) \rangle_{P \to \infty}
$$

$$
\rightarrow \int \frac{d\lambda}{2\pi} e^{i\lambda x(Pn)} \left\langle N(P) | \bar{\psi}(\lambda n) \dots \psi(0)_{\mu} | N(P) \right\rangle_{\text{any } P}
$$

Number density of quarks *in fast-moving nucleon state*

eiλx(*Pn*) ⟨*N*(*P*)| *ψ*¯(*λn*) . . . *ψ*(0)*^μ* |*N*(*P*)⟩ *^P* Correlation function of quark fields at light-like separation $\lambda n^{\mu}, n^{\mu}n_{\mu}=0$ → Lecture Nobuo Sato

Properties

Rigorously defined: Matrix elements of 2nd quantized QCD operator, renormalized at scale μ , scale dependence described by evolution eqs

Process-independent, universal: Same distribution can appear in multiple processes as directed by factorization

Sum rules: $\int dx [f - \bar{f}](x, \mu) =$ global charges

Computable: Distributions can be computed using lattice QCD, other non-perturbative methods

Extensions: Spin-dependent distributions, transverse-momentum dependent distributions TMD, generalized parton distributions GPD with $P \neq P'$

Principal tools for characterizing hadron structure in QCD

Summary ¹³

Fast-moving hadron state ($P \gg \mu_{\text{vac}}$) decouples from vacuum fluctuations, becomes "closed system" described by wave function $P \gg \mu_{\textnormal{\scriptsize{VAC}}}$

Hadron state has components with variable particle number, connected by QCD interactions

Rigorous definition of parton densities can be provided in the context of factorization of high-momentum transfer processes: Second-quantized QCD operator, renormalization

Think of hadron as many-body system with physical characteristics: Particle content, spatial size, orbital motion, correlations…

Electron scattering: Kinematic variables ¹⁴

Particles described by 4-momenta $p_e = (E_e, \mathbf{p_e})$ etc.

 $q \equiv p_e - p_{e'} = (q^0, \mathbf{q})$ 4-momentum transfer

Inelastic scattering: Energy and momentum transfer independent

Relativistically invariant variables

$$
Q^{2} \equiv -q^{2}
$$
 invariant momentum transfer

$$
x_{B} \equiv \frac{Q^{2}}{2(p_{N}q)}
$$
 Bjorken scaling variable

Probing nucleon structure

- $x \sim x_B$ selects momentum fraction
- 1/Q sets resolution scale

Direct connection of external kinematic variables with internal variables of parton picture

Electron scattering: Cross section ¹⁵

Inclusive scattering $e + N \rightarrow e' + X$

$$
\frac{d\sigma}{dx_B dQ^2} = \text{[Flux]} \times \left[F_1(x_B, Q^2) + \dots \right]
$$

Differential cross section (1-photon exchange) parametrized by invariant structure functions

$$
F_1(x_B, Q^2) = \sum_{q=u,d,s} e_q^2 \int dx \ C_q(x_B, x; Q^2/\mu^2) \ [q(x, \mu^2) + \bar{q}(x, \mu^2)]
$$

$$
+ e_q^2 \int dx \ C_g(x_B, x; Q^2/\mu^2) \ g(x, \mu^2)
$$

Factorization: Structure function expressed through parton densities

Coefficients contains hard scattering and radiation effects (evolution)

Predict cross section from parton densities model Extract parton densities from measured cross section

Similar workflow in semi-inclusive scattering $e + N \rightarrow e' + h + X$, exclusive scattering $e + N \to e' + M + N'$

Electron scattering: Polarization ¹⁶

Inclusive scattering $\overrightarrow{e} + \overrightarrow{N} \rightarrow e' + X$, beam and target polarized

$$
\frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\downarrow\uparrow}}{dx_B dQ^2} = \text{[Flux']} \times \left[g_1(x_B, Q^2) + \dots \right]
$$

Spin difference of differential cross sections parametrized by spin structure functions

$$
g_1(x_B, Q^2) = \sum_{q=u,d,s} e_q^2 \int dx \ C'_q(x_B, x; Q^2/\mu^2) \ \left[\Delta q(x, \mu^2) + \Delta \bar{q}(x, \mu^2) \right] + e_q^2 \int dx \ C'_g(x_B, x; Q^2/\mu^2) \ \Delta g(x, \mu^2)
$$

Factorization: Structure function expressed through polarized parton densities

$$
\frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\downarrow\uparrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\downarrow\uparrow}} = \frac{\text{Flux}'}{\text{Flux}} \times \frac{g_1(x_B, Q^2)}{F_1(x_B, Q^2) + \dots}
$$

Alt. observable: Spin asymmetry of cross section, experimentally simpler than absolute cross section

Similar workflow in polarized semi-inclusive and exclusive scattering

Electron scattering: Kinematic range ¹⁷

 $s = (p_e + p_N)^2$ $=(E_e + E_p)^2_{\text{CM}}$

electron-nucleon invariant

energies of particles in CM frame

Kinematic range

 $Q^2 < x_B(s - m^2)$ kinematic limit

Experimental limitations at low \mathcal{Q}^2 and large x_B — resolution

Large *s* needed to access small x_R , high Q^2

Electron scattering: Setups ¹⁸

p, A e

Beam on fixed target

High luminosity from density of protons/nuclei in target Polarized target technology

CM energy grows as $s = 2E_e m_p + m_p^2$

Colliding beams

CM energy grows as product *s* ~ $4E_eE_p$

Energy-efficient: Beams in storage rings can collide multiple times

Clean: No target material, no scattering from atomic electrons, no dilution by other nuclei

Detection: Final-state particles can have large angles depending on energies; far-forward detection

Achieving high luminosity much more challenging: Beam quality (cooling), focusing, collision geometry

Integrated design needed: Interaction region, detector

Electron scattering: Luminosity ¹⁹

Hadron structure: Many-body system ²⁰

Measurable properties

Particle number densities, incl. spin/flavor dependence

Transverse spatial distributions

Transverse orbital motion, spin-orbit correlations

Particle correlations

 \int change with
 \int resolution scale μ

Summary ²¹

Electron scattering probes partonic structure differentially in $x \sim x_R$ (momentum fraction) and $\mu^2 \sim Q^2$ (resolution scale) $x \sim x_B$ $\mu^2\thicksim\mathcal{Q}^2$

JLab 12 GeV and EIC are complementary: JLab 12 GeV: $x\gtrsim0.1,$ valence quarks, highest luminosity EIC: $x \lesssim 0.1$, sea quarks and gluons, scale dependence

Luminosity critical for many applications

EIC: Sea quark polarization ²²

How are sea quarks polarized?

Nonperturbative interactions connecting valence and sea quarks?

Mesonic degrees of freedom?

Semi-inclusive scattering

Detect π , K from fragmentation

Determine charge/flavor of active quark Fixed-target: HERMES, COMPASS, JLab12 GeV

EIC measurements

High energy ensures independent fragmentation of active quark

Accurate extraction of sea quark polarization

EIC Yellow Report 2022

EIC: Gluon polarization ²³

How are gluons polarized?

Nonperturbative interactions creating "physical" gluon modes?

Gluon spin contribution to nucleon spin?

 Q^2 dependence of spin structure function from QCD evolution \boldsymbol{Q}^2 $g_1(x, \dot{Q}^2)$

> Heavy quark pair production $c\bar{c}$ +EIC DIS ^p*^s* = 45 140 GeV

> > Alt: Polarized *pp* scattering at RHIC

EIC measurements

extraction from evolution Wide range of x, Q^2 enables effective

 Λ ccurate determination of Λ Accurate determination of Δg

EIC: Spin sum rule and orbital angular momentum ²⁴

Nucleon spin sum rule

$$
\frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu) + \Delta G(\mu) + L_q + L_g
$$

\n
$$
\Delta\Sigma(\mu) = \sum_{q=u,d,s} \int_0^1 dx \, [\Delta q + \Delta \bar{q}](x,\mu)
$$

\n
$$
\Delta G(\mu) = \int_0^1 dx \, \Delta g(x,\mu)
$$

Nucleon spin composed of quark + gluon spins and orbital angular momentum

Determination of gluon spin by EIC measurements provide constraint on orbital angular momentum

Direct demonstration of orbital AM?

Semi-inclusive transverse single-spin asymmetries

Exclusive processes probing GPDs

Nucleon structure at $x \to 1$: PDFs, form factors JLab12 GeV + beyond

EIC: Spin-orbit interactions ²⁵

Spin-orbit interactions in QCD

Azimuthal asymmetry in semi-inclusive hadron production on transversely polarized proton \propto **e**_L · ($S_T \times p_{hT}$)

Requires orbital angular momentum $L > 0$ and QCD final-state interaction

What nonperturbative dynamics is at work?

EIC measurements

Extraction of azimuthally dependent quark distribution from semi-inclusive scattering

Wide $x, \mathcal{Q}^{\scriptscriptstyle \angle}$ coverage allows for test of reaction $\overline{}$ mechanism, QCD evolution studies x, Q^2

EIC: Transverse spatial distributions ²⁶

How are partons distributed in transverse space?

Defines "size" and "shape" of nucleon in QCD

Transverse spatial distributions change with x , nucleon polarization, quark/gluon spin

Exclusive process $e + N \rightarrow e' + (meson, \gamma) + N$

High Q^2 production process takes place in interaction with single quark/gluon

Nucleon form factor for quarks/gluons with longitudinal momentum fraction x $$ generalized parton distribution

Transverse spatial distribution of quarks/ gluons as Fourier transform $\Delta_T \rightarrow \mathbf{b}_T$

Channels sensitive to quarks and gluons: *γ* (DVCS): Quarks, gluons at NLO *J*/*ψ*, Υ : Gluons ρ^0 , ϕ : Gluons + singlet quarks

EIC: Transverse spatial distribution of gluons ²⁷

Exclusive J/ψ photo/electroproduction as clean probe of gluon GPD *J*/*ψ*

Differential measurements in $x_{\mathcal{B}}, \mathcal{Q}^2, \Delta_T^2 \sim t$

Spatial distribution broadens with decreasing *x*

- $x > 0.2$ valence-like gluons
- $x \leq 0.1$ gluons in pion cloud
- $x < 10^{-2}$ partonic diffusion

Test ideas about dynamics!

EIC: Neutron structure with spectator tagging ²⁸

Measurements on neutron essential for $u - d$ flavor separation of quark distributions

Neutron available only in scattering on nuclei: Corrections from motion, binding, polarization

Cleanest method: Scattering on deuteron with detection of spectator proton

identifies events with active neutron

controls nuclear configuration during high-energy process

only (no smearing). One sees that the dependence of Free neutron structure from "on-shell extrapolation" in spectator momentum

Uses EIC far-forward detectors

EIC: Other hadron structure measurements ²⁹

TMD evolution: Validating/testing theory of QCD radiation in TMD observables, transition from low to high p_T

Parton structure studies using QCD jets

Diffractive scattering on proton: Diffractive parton densities, quantum fluctuations of gluon density

Pion/kaon structure from peripheral scattering on nucleon

Electroweak charged-current scattering for charge/flavor separation of quarks

Many more "creative" applications…

Detailed information: EIC Yellow Report 2021 [\[INSPIRE\]](https://inspirehep.net/literature/1851258)

Summary ³⁰

EIC will answer basic questions nucleon/hadron partonic structure in region of sea quarks and gluons

Partonic structure probed in high-Q2 scattering processes directly connected with QCD effects/phenomena in perturbative and nonperturbative domains

Need for CM energy and luminosity evident in applications discussed here