JLab Science: Now and in the Future

Patrizia Rossi Jefferson Lab

HUGS 2024

Jefferson Lab - Newport News (VA-USA), May 28-29, 2024

TJNAF is managed by Jefferson Science Associates for the US Department of Energy

JLab's mission: To gain a deeper understanding of the structure of matter

Search for Physics BSM

The Long Journay through the structure of visible matter

How do we know any of this?

The power of charged particle scattering

Almost all particle physics experiments today use the same basic elements beam + target + detector

- All particles have wave properties.
- A particle can only probe distance \approx particle's λ
- $\bullet \text{ smaller scales} \Rightarrow \text{smaller } \lambda$

 quality image limited by the wavelength used

Electron scattering

Elastic Scattering the electron bounces off the proton as a whole **Deep Inelastic Scattering** The electron punches into the proton and then scatter off the proton's internal part

Deep Inelastic Scattering

The Parton Model

Infinite Momentum Frame

Each parton of charge e_i has a probability f_i (x) to carry a fraction x of the parent proton mom.

$$\sigma = \sigma_{\mathsf{M}} \cdot f[\mathsf{F}_1(\mathbf{x}), \mathsf{F}_2(\mathbf{x})]$$

$$_1(\mathbf{x}) = \frac{1}{2} \sum e_i^2 f_i(\mathbf{x}) \quad \mathbf{F}_2(\mathbf{x}) = 2\mathbf{x} \mathbf{F}_1(\mathbf{x}) \quad \mathbf{x} = \frac{1}{2} \mathbf{x} \mathbf{F}_1(\mathbf{x})$$

Quantum Chromodynamics (QCD)

Eur. Phys. J. C (2023) 83:1125 https://doi.org/10.1140/epjc/s10052-023-11949-2	THE EUROPEAN PHYSICAL JOURNAL C	
Review		
50 Voors of quantum abromodynamics	636 pages	
50 Tears of quantum chromodynamics		
Introduction and Review	4850 references	
Franz Gross ^{1,2,a} , Eberhard Klempt ^{3,b} , Stanley J. Brodsky ⁴ , And Gudrun Heinrich ⁶ , Karl Jakobs ⁷ , Curtis A. Meyer ⁸ , Kostas Or Johanna Stachel ¹⁰ , Giulia Zanderighi ^{11,12} , Nora Brambilla ^{5,12,13} , Daniel Britzger ¹¹ , Simon Capstick ¹⁵ , Tom Cohen ¹⁶ , Volker Cred Christine Davies ¹⁸ , Luigi Del Debbio ¹⁹ , Achim Denig ²⁰ , Carleton	rzej J. Buras ⁵ , Volker D. Burkert ¹ D, ginos ^{1,2} , Michael Strickland ⁹ D, Peter Braun-Munzinger ^{10,14} D, ¹⁵ O, Martha Constantinou ¹⁷ O, DeTar ²¹ O, Alexandre Deur ¹ D,	
Franz Gross ^{1,2,a} , Eberhard Klempt ^{3,b} , Stanley J. Brodsky ⁴ , And Gudrun Heinrich ⁶ , Karl Jakobs ⁷ , Curtis A. Meyer ⁸ , Kostas Or Johanna Stachel ¹⁰ , Giulia Zanderighi ^{11,12} , Nora Brambilla ^{5,12,13} , Daniel Britzger ¹¹ , Simon Capstick ¹⁵ , Tom Cohen ¹⁶ , Volker Crede Christine Davies ¹⁸ , Luigi Del Debbio ¹⁹ , Achim Denig ²⁰ , Carleton Yuri Dokshitzer ^{22,23} , Hans Günter Dosch ¹⁰ , Jozef Dudek ^{1,2} , Mon Miguel A. Escobedo ²⁶ , Harald Fritzsch ²⁷ , Kenji Fukushima ²⁸ , Pe Steven Gottlieb ³² , Per Grafstrom ^{33,34} , Massimiliano Grazzini ³⁵ Toru lijima ³⁷ , Xiangdong Ji ¹⁶ , Frithjof Karsch ³⁸ , Stefan Kluth Shunzo Kumano ^{42,43} , Derek Leinweber ⁴⁴ , Heinrich Leutwyler ⁴⁵ ,	rzej J. Buras ⁵ , Volker D. Burkert ¹ ³ , ginos ^{1,2} , Michael Strickland ⁹ ⁵ , Peter Braun-Munzinger ^{10,14} ⁶ , ¹⁵ ⁵ , Martha Constantinou ¹⁷ ⁵ , DeTar ²¹ ⁹ , Alexandre Deur ¹ ⁵ , ica Dunford ²⁴ , Evgeny Epelbaum ²⁵ , olo Gambino ^{11,29} , Dag Gillberg ^{30,31} , , Boris Grube ¹ ⁶ , Alexey Guskov ³⁶ , ¹¹ , John B. Kogut ^{39,40} , Frank Krauss ⁴¹ , Hai-Bo Li ^{46,47} , Yang Li ⁴⁸ ⁵ ,	
Franz Gross ^{1,2,a} , Eberhard Klempt ^{3,b} , Stanley J. Brodsky ⁴ , And Gudrun Heinrich ⁶ , Karl Jakobs ⁷ , Curtis A. Meyer ⁸ , Kostas Or Johanna Stachel ¹⁰ , Giulia Zanderighi ^{11,12} , Nora Brambilla ^{5,12,13} , Daniel Britzger ¹¹ , Simon Capstick ¹⁵ , Tom Cohen ¹⁶ , Volker Crede Christine Davies ¹⁸ , Luigi Del Debbio ¹⁹ , Achim Denig ²⁰ , Carleton Yuri Dokshitzer ^{22,23} , Hans Günter Dosch ¹⁰ , Jozef Dudek ^{1,2} , Mon Miguel A. Escobedo ²⁶ , Harald Fritzsch ²⁷ , Kenji Fukushima ²⁸ , Pa Steven Gottlieb ³² , Per Grafstrom ^{33,34} , Massimiliano Grazzini ³⁵ Toru Iijima ³⁷ , Xiangdong Ji ¹⁶ , Frithjof Karsch ³⁸ , Stefan Kluth Shunzo Kumano ^{42,43} , Derek Leinweber ⁴⁴ , Heinrich Leutwyler ⁴⁵ , Bogdan Malaescu ⁴⁹ , Chiara Mariotti ⁵⁰ , Pian Edward Mitch ²¹	rzej J. Buras ⁵ , Volker D. Burkert ¹ , ginos ^{1,2} , Michael Strickland ⁹ , Peter Braun-Munzinger ^{10,14} , ¹⁵ , Martha Constantinou ¹⁷ , DeTar ²¹ , Alexandre Deur ¹ , ica Dunford ²⁴ , Evgeny Epelbaum ²⁵ , olo Gambino ^{11,29} , Dag Gillberg ^{30,31} , , Boris Grube ¹ , Alexey Guskov ³⁶ , ¹¹ , John B. Kogut ^{39,40} , Frank Krauss ⁴¹ , Hai-Bo Li ^{46,47} , Yang Li ⁴⁸ , Marzani ⁵² , Wally Melnitchouk ¹ , ⁵⁴ Chendry Manda ¹⁵	
Franz Gross ^{1,2,a} , Eberhard Klempt ^{3,b} , Stanley J. Brodsky ⁴ , And Gudrun Heinrich ⁶ , Karl Jakobs ⁷ , Curtis A. Meyer ⁸ , Kostas Or Johanna Stachel ¹⁰ , Giulia Zanderighi ^{11,12} , Nora Brambilla ^{5,12,13} , Daniel Britzger ¹¹ , Simon Capstick ¹⁵ , Tom Cohen ¹⁶ , Volker Crede Christine Davies ¹⁸ , Luigi Del Debbio ¹⁹ , Achim Denig ²⁰ , Carleton Yuri Dokshitzer ^{22,23} , Hans Günter Dosch ¹⁰ , Jozef Dudek ^{1,2} , Mon Miguel A. Escobedo ²⁶ , Harald Fritzsch ²⁷ , Kenji Fukushima ²⁸ , Pa Steven Gottlieb ³² , Per Grafstrom ^{33,34} , Massimiliano Grazzini ³⁵ Toru lijima ³⁷ , Xiangdong Ji ¹⁶ , Frithjof Karsch ³⁸ , Stefan Kluth Shunzo Kumano ^{42,43} , Derek Leinweber ⁴⁴ , Heinrich Leutwyler ⁴⁵ , Bogdan Malaescu ⁴⁹ , Chiara Mariotti ⁵⁰ , Pieter Maris ⁵¹ , Simon Johan Messchendorp ⁵³ , Harvey Meyer ²⁰ , Ryan Edward Mitchell Frank Nerling ^{53,56,57} , Sebastian Neubert ³ , Marco Panpagallo ³⁸ ,	rzej J. Buras ⁵ , Volker D. Burkert ¹ , ginos ^{1,2} , Michael Strickland ⁹ , Peter Braun-Munzinger ^{10,14} , ¹⁵ , Martha Constantinou ¹⁷ , DeTar ²¹ , Alexandre Deur ¹ , ica Dunford ²⁴ , Evgeny Epelbaum ²⁵ , olo Gambino ^{11,29} , Dag Gillberg ^{30,31} , Boris Grube ¹ , Alexey Guskov ³⁶ , ¹¹ , John B. Kogut ^{39,40} , Frank Krauss ⁴¹ , Hai-Bo Li ^{46,47} , Yang Li ⁴⁸ , Marzani ⁵² , Wally Melnitchouk ¹ , ⁵⁴ , Chandan Mondal ⁵⁵ , Saori Pastore ⁵⁹ , José B. Peláez ⁶⁰ ,	
Franz Gross ^{1,2,a} , Eberhard Klempt ^{3,b} [®] , Stanley J. Brodsky ⁴ , And Gudrun Heinrich ⁶ [®] , Karl Jakobs ⁷ , Curtis A. Meyer ⁸ [®] , Kostas Or Johanna Stachel ¹⁰ [®] , Giulia Zanderighi ^{11,12} , Nora Brambilla ^{5,12,13} , Daniel Britzger ¹¹ [®] , Simon Capstick ¹⁵ , Tom Cohen ¹⁶ , Volker Crede Christine Davies ¹⁸ [®] , Luigi Del Debbio ¹⁹ , Achim Denig ²⁰ , Carleton Yuri Dokshitzer ^{22,23} , Hans Günter Dosch ¹⁰ , Jozef Dudek ^{1,2} [®] , Mass Miguel A. Escobedo ²⁶ , Harald Fritzsch ²⁷ , Kenji Fukushima ²⁸ [®] , Pa Steven Gottlieb ³² [®] , Per Grafstrom ^{33,34} , Massimiliano Grazzini ³⁵ [®] Toru lijima ³⁷ [®] , Xiangdong Ji ¹⁶ [®] , Frithjof Karsch ³⁸ , Stefan Kluth Shunzo Kumano ^{42,43} , Derek Leinweber ⁴⁴ [®] , Heinrich Leutwyler ⁴⁵ , Bogdan Malaescu ⁴⁹ [®] , Chiara Mariotti ⁵⁰ [®] , Pieter Maris ⁵¹ , Simone Johan Messchendorp ⁵³ [®] , Harvey Meyer ²⁰ , Ryan Edward Mitchell Frank Nerling ^{53,56,57} [®] , Sebastian Neubert ³ , Marco Pappagallo ⁵⁸ [®] Andrew Puckett ⁶¹ , Jianwei Qiu ^{1,2} [®] , Klaus Rabbertz ^{33,62} , Alberto J	rzej J. Buras ⁵ , Volker D. Burkert ¹ ⁽³⁾ , ginos ^{1,2} , Michael Strickland ⁹ ⁽⁵⁾ , Peter Braun-Munzinger ^{10,14} ⁽⁶⁾ , ¹⁵ ⁽⁵⁾ , Martha Constantinou ¹⁷ ⁽⁶⁾ , DeTar ²¹ ⁽³⁾ , Alexandre Deur ¹ ⁽³⁾ , DeTar ²¹ ⁽³⁾ , Alexandre Deur ¹ ⁽³⁾ , Jerar ²¹ ⁽³⁾ , Alexandre Deur ¹ ⁽³⁾ , olo Gambino ^{11,29} , Dag Gillberg ^{30,31} , , Boris Grube ¹ ⁽⁶⁾ , Dag Gillberg ^{30,31} , , Boris Grube ¹ ⁽⁶⁾ , Alexey Guskov ³⁶ , ¹¹ , John B. Kogut ^{39,40} , Frank Krauss ⁴¹ , Hai-Bo Li ^{46,47} , Yang Li ⁴⁸ ⁽⁵⁾ , Marzani ⁵² , Wally Melnitchouk ¹ , ⁵⁴ , Chandan Mondal ⁵⁵ ⁽⁶⁾ , , Saori Pastore ⁵⁹ , José R. Peláez ⁶⁰ ⁽⁶⁾ , Ramos ⁶³ , Patrizia Rossi ^{1,64} , Anar Rustamov ^{53,65} .	
Franz Gross ^{1,2,a} , Eberhard Klempt ^{3,b} , Stanley J. Brodsky ⁴ , And Gudrun Heinrich ⁶ , Karl Jakobs ⁷ , Curtis A. Meyer ⁸ , Kostas Or Johanna Stachel ¹⁰ , Giulia Zanderighi ^{11,12} , Nora Brambilla ^{5,12,13} , Daniel Britzger ¹¹ , Simon Capstick ¹⁵ , Tom Cohen ¹⁶ , Volker Crede Christine Davies ¹⁸ , Luigi Del Debbio ¹⁹ , Achim Denig ²⁰ , Carleton Yuri Dokshitzer ^{22,23} , Hans Günter Dosch ¹⁰ , Jozef Dudek ^{1,2} , Mon Miguel A. Escobedo ²⁶ , Harald Fritzsch ²⁷ , Kenji Fukushima ²⁸ , Pa Steven Gottlieb ³² , Per Grafstrom ^{33,34} , Massimiliano Grazzini ³⁵ Toru lijima ³⁷ , Xiangdong Ji ¹⁶ , Frithjof Karsch ³⁸ , Stefan Kluth Shunzo Kumano ^{42,43} , Derek Leinweber ⁴⁴ , Heinrich Leutwyler ⁴⁵ , Bogdan Malaescu ⁴⁹ , Chiara Mariotti ⁵⁰ , Pieter Maris ⁵¹ , Simond Johan Messchendorp ⁵³ , Harvey Meyer ²⁰ , Ryan Edward Mitchell Frank Nerling ^{53,56,57} , Sebastian Neubert ³ , Marco Pappagallo ⁵⁸ Andrew Puckett ⁶¹ , Jianwei Qiu ^{1,2} , Klaus Rabbertz ^{33,62} , Alberto J Andreas Schäfer ⁶⁶ , Stefan Scherer ⁶⁷ , Matthias Schindler ⁶⁸ , Steven	rzej J. Buras ⁵ , Volker D. Burkert ¹ ⁽⁵⁾ , ginos ^{1,2} , Michael Strickland ⁹ ⁽⁵⁾ , Peter Braun-Munzinger ^{10,14} ⁽⁶⁾ , ¹⁵ ⁽⁵⁾ , Martha Constantinou ¹⁷ ⁽⁶⁾ , DeTar ²¹ ⁽⁶⁾ , Alexandre Deur ¹⁶ ⁽⁶⁾ , Je Tar ²¹ ⁽⁶⁾ , Alexandre Deur ¹⁶ ⁽⁶⁾ , olo Gambino ^{11,29} , Dag Gillberg ^{30,31} , boris Grube ¹⁶ ⁽⁶⁾ , Alexey Guskov ³⁶ , ¹¹ , John B. Kogut ^{39,40} , Frank Krauss ⁴¹ , Hai-Bo Li ^{46,47} , Yang Li ⁴⁸ ⁽⁶⁾ , Marzani ⁵² , Wally Melnitchouk ¹ , ⁵⁴ , Chandan Mondal ⁵⁵ ⁽⁶⁾ , saori Pastore ⁵⁹ , José R. Peláez ⁶⁰ ⁽⁶⁾ , Ramos ⁶³ , Patrizia Rossi ^{1,64} , Anar Rustamov ^{53,65} , Schramm ⁶⁹ ⁽⁶⁾ , Mikhail Shifman ⁷⁰ ⁽⁶⁾ ,	

- Long-distance physics: the constituent QM
- Short-distance physics: the Parton Picture

QCD provides the foundation for both

When QCD was "discovered" 50 years ago, the idea that quarks could exist, but not be observed, left most physicists unconvinced. Then, with the discovery of charmonium in 1974 [...] the theory was suddenly widely accepted.

........

Success of QCD and QCD Factorization

@ High Energy Asymptotic freedom + pQCD

At low x : Gluon splitting enhances quark density \rightarrow F2 rises with Q²

At high x : Gluon radiation shifts quark to lower $x \rightarrow F2$ falls with Q^2

Measure e-p at 0.3 TeV (HERA) Predict p-p and p- \overline{p} at 0.2, 1.96, and 7 TeV

 It is the highly non-perturbative behavior that makes the study of QCD so fascinating and at the same time so challenging

QCD: QUESTIONS, CHALLENGES, AND DILEMMAS

James D. Bjorken *

arXiv:hep-ph/9611421

 \bullet \bullet endensed matter theory, chemistry, biology, and more.

Both QED and QCD have their Feynman-diagram perturbation-theory processes, leading to incisive precision tests—which work. Their coupling constants run and are seen to run. QED and QCD are very well "tested."

But just as nonperturbative QED contains very interesting phenomena, as mentioned above, nonperturbative QCD is a most interesting portion of that theory as well. To me, it is *the* most interesting and most important portion of QCD to address, despite the evident difficulty in doing so. The lectures in this school

An Asymmetric Path

How does this arise from QCD?

A detailed understanding of the way QCD generates protons, neutrons, and other strongly interacting hadrons remains elusive

~ several fm nuclear binding ~1 fm emergence hadronic structure excitation spectrum ~0.3 fm chiral symmetry breaking mass generation ~0.1 fm perturbative dynamics

Some Challenging Questions...

- How the macroscopic properties of the nucleon (mass, spin,..) emerge from QCD?
- How the fundamental particles, quarks and gluons, fit together and interact to create different types of matter in the universe?
- Why the majority of observed hadrons fall into only two very limited sets: baryons (qqq); and mesons (qq). What is the role of gluonic excitations in the spectroscopy of light mesons?
- What is the relation of short-range nuclear structure and parton dynamics? What's the hadronization mechanism?

The JLab Physics Program

60

TMDs-GPDs

Parton Distr. Functions Form Factors Spectrum Hadronizations

Nucleons in Nuclei

 \bigcirc

Explore different facets of the non-perturbative dynamics that manifest in hadron structure

Multiple observables sensitive to different characteristics of the hadron/nuclear structure

Studies requiring precise measurements

I can present only few of them!

The JLab 12 GeV program & User Community

Approved 12 GeV program by PAC days (125 Exps)

Hadron Spectra 1D-3D Nucleon Structure Hadrons & Cold Nuclear Matter Test of SM & Fundamental Sym.

- ~ 50% of the program completed
- New Experiments submitted to PAC every year

The approved program equals well beyond a decade

Supported by a vibrant user community !

Jefferson Lab and CEBAF

Equipment

Planning a future for CEBAF

Proton's Structure

Intrinsic properties: - Electric/Magnetic charge - Mass - Spin

Insights into Quarks and Gluon Dynamics

Elastic Electron Scattering & Electromagnetic Form Factors

- Elastic e p → e p scattering used for more than 60 years to investigate nucleon structure
- In 1-photon exchange approximation:

nucleon structure parameterized by two form factors

$$\begin{aligned} A^{\mu}_{\lambda\lambda'} &= \langle p + \frac{1}{2}q, \lambda' \mid J^{\mu}(0) \mid p - \frac{1}{2}q, \lambda \rangle \\ &= \bar{u}(p + \frac{1}{2}q, \lambda') \left[F_1(Q^2)\gamma^{\mu} + F_2(Q^2) \frac{i}{2m} \sigma^{\mu\nu} q_{\nu} \right] u(p - \frac{1}{2}q, \lambda) \end{aligned}$$

F₁ helicity conserving,

F₂ helicity flip form factors

In experiments we measure the Sachs form factors

 $d\sigma$

 $d\Omega$

$$\frac{G_{E}}{E}(E,\theta) = \sigma_{M} \left[\frac{G_{E}^{2} + \tau G_{M}^{2}}{1 + \tau} + 2\tau G_{M}^{2} \tan^{2}(\frac{\theta}{2}) \right] \qquad \sigma_{M} = \frac{\alpha^{2} E' \cos^{2}(\frac{\theta}{2})}{4E^{3} \sin^{4}(\frac{\theta}{2})} \qquad G_{E}(Q^{2}) = F_{1}(Q^{2}) - \tau F_{2}(Q^{2}) \\
G_{M}(Q^{2}) = F_{1}(Q^{2}) + F_{2}(Q^{2}) \\
\tau = \frac{Q^{2}}{2M}$$
FES: essential in understanding the nucleon electromagnetic structure

21

 $p - \frac{q/2}{N} + \frac{p}{N} + \frac{q}{2}$

Jefferson Lab

Nucleon's e.m. Form Factors

$$\sigma_{\mathbf{R}} = \frac{\mathbf{d}\sigma}{\mathbf{d}\Omega} / (\frac{\mathbf{d}\sigma}{\mathbf{d}\Omega})_{\mathbf{M}} \epsilon (\mathbf{1} + \tau) = \epsilon (\mathbf{G}_{\mathbf{E}}^{\mathbf{p}})^{2} + \tau (\mathbf{G}_{\mathbf{M}}^{\mathbf{p}})^{2}$$

$$\epsilon = [1 + 2(1 + \tau)tan^{2} \frac{\theta_{e}}{2}]^{-1}$$

$$\epsilon = [1 + 2(1 + \tau)tan^{2} \frac{\theta_{e}}{2}]^{-1}$$

Measure angular dependence of cross section at fixed Q² ϵ -dependence of "reduced" cross section σ_R is linear with slope G²_E and intercept τ G²M.

Rosenbluth separation

22

$$G_{Ep} = -\frac{P_t}{P_l} \frac{(E_{beam} + E_e)}{2M_p} \tan \frac{\vartheta_e}{2}$$

• Polarization transfer technique gives different results!

• All double polarization experiments are consitents

Double polarization experiments only possible with high intensity, high polarized beam

Jefferson Lab

Nucleon's Form Factors @ High Q²

Complementary equipment/capabilities of Halls A, B, C allow optimal matching of (Luminosity x Acceptance) of the detectors to the luminosity capabilities of the targets, including state-of-the-art polarized target technology.

Proton's FF @ Very Low Q²:Proton's Charge Radius

- A fundamental quantity for understanding how QCD works in the nonperturbative regime
- Has major impact on atomic physics
- Two methods to measure it:
 - Hydrogen spectroscopy (atomic physics)
 - Lepton-proton el. scattering (nuclear physics)

Proton's charge radius puzzle

Proton's FF @ Very Low Q²:Proton's Charge Radius

- The <u>first new method</u> in half a century for measuring the size of the proton via ep scattering
 - Scattered electrons in e.m. calorim.
 - Windowless hydrogen gas target
- The <u>first high-precision</u> e p experiment since the emergence of the "proton radius puzzle"
 - Very low Q² (2.4x10⁻⁴ 6x10⁻²)GeV²/c²
 - e-p events normalized to e-e events

 $r_p = 0.831 \pm 0.007_{stat} \pm 0.012_{syst}$ Nature volume 575, pages147-150(2019)

PRad-II: A New Upgraded High Precision Measurement of the Proton Charge Radius

Jefferson Lab

Unified View of Nucleon Structure

Proton's Mass

- How much quark and how much gluon is a proton?
- How do massless gluons provide for the large proton mass?

- Electromagnetic charge and spin of the proton well-studied through electron scattering
- Gluons are harder to directly access, as they do not carry electromagnetic charge
- Description of mass still in infancy, as most energy (and hence mass) carried by the gluons

• How is the proton mass distributed inside its confinement size?

PROTON MASS: REST-FRAME DECOMPOSITION

X. Ji PRL 74, 1071 (1995) & PRD 52, 271 (1995)

Accessing the Proton Color Charge Distribution

GFFs are the form factors (matrix elements) of the QCD EMT for quarks and gluons

$$\langle N' \mid T_{q,g}^{\mu,\nu} \mid N \rangle = \overline{u}(N') \left(\frac{A_{g,q}(t)}{M} \gamma^{\{\mu}P^{\nu\}} + \frac{B_{g,q}(t)}{2M} \frac{iP^{\{\mu}\sigma^{\nu\}}\rho\Delta_{\rho}}{2M} + \frac{C_{g,q}(t)}{M} \frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{M} + \frac{\overline{C}_{g,q}(t)}{M} g^{\mu\nu} \right) u(N)$$

- $A_{g,q}(t)$: Related to quark and gluon momenta, $A_{g,q}(0) = \langle x_{q,g} \rangle$
- $J_{g,q}(t) = 1/2 \left(A_{g,q}(t) + B_{g,q}(t) \right)$: Related to angular momentum, $J_{\text{tot}}(0) = 1/2$ •
- $D_{g,q}(t) = 4C_{g,q}(t)$: Related to pressure and shear forces

$$\left\langle r_m^2 \right\rangle = \frac{6}{A_g(0)} \left. \frac{dA_g(t)}{dt} \right|_{t=0} - \frac{6}{A_g(0)} \frac{C_g(0)}{M_N^2}$$
 28

• Formation of J/ψ via hadronization of cc pair

t

- The reaction is expected to be dominated by two-gluon exchange
- Assuming factorization (coupling of the gluons to the proton is described by local gluonic operator) the process involves the gluonic Generalized Parton Distributions (GPDs)
- The gluonic GPD in can be related to the gluonic Gravitational Form Factors (gGFFs)

12 GeV J/ψ Experiments @ Jefferson Lab

Hall D - GlueX observer the first J/ψ at JLab A. Ali *et al.*, PRL 123, 072001 (2019)

Hall A has experiment E12-12-006 at SoLID to measure J/ψ in electro- and photoproduction, and an LOI to measure double polarization using SBS

Hall C has the J/ψ-007 experiment (E12-16-007) LHCb hidden-charm pentaquark search

Hall B - CLAS12 has experiments to measure TCS + J/ψ in photoproduction as part of Run Groups A (hydrogen) and B (deuterium): E12-12-001, E12-12-001A, E12-11-003B

Proton's Mass Radius

Proton's Mass Radius

- This work paves the way for a deeper understanding of the salient role of gluons
- Detailed studies of the reaction $\gamma p \to J/\psi p$ are needed in order to verify the validity of the assumptions

Jefferson Lab

J/ψ photoproduction: GlueX Results

- Exponential slopes indicating t-channel generally consistent with the gluonexchange mechanism
- Enhancement of dσ/dt for lowest energy > other mechanisms into the game

PHYSICAL REVIEW C 108, 025201 (2023)

- Cusps at the thresholds of $\Lambda_c \overline{D}$, $\Lambda_c \overline{D}^*$
- Production via open-charm and rescattering?

• This mechanism is not a 2-gluon exchange and may reduce the relation between $\gamma p \rightarrow J/\psi p$ and GFF of the nucleon

J/ψ photoproduction with GlueX @ 22 GeV

Energy upgrade gives significant increase of polarization FOM, allowing unique studies of the gluon exchange for J/ψ and higher charmonium states

 Any deviation from the expected naturality (+ or -1) indicates contribution of mechanism different from what is needed to study mass properties of the proton

Hadron/Nuclear 3D Imaging

Nucleon Gravitational FFs

Matrix elements of DVCS	QCD EMT $\langle P' T$	$\Gamma^{\mu\nu} P\rangle = \bar{u}(P') \left[A(t)\gamma^{(\mu}\bar{P}^{\nu)} + B(t)\frac{\bar{P}^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}}{2M} + \frac{D(t)}{4M}\frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{4M} \right] u(P)$
e t y x+E GPDs	graviton*	 A massless spin-2 field would couple to the stress-energy tensor in the same way that gravitational interactions do → D -term accessible through DVCS measurements Related to Pressure and Shear Forces
^Ρ Η, Ε, Η , Ε	t = (p' –p)2 ξ = x _B /(2–x _B), x integrated over	 The leading contribution to DVCS is described in terms of four GPDs.
		 Two of them, Hq(x, ξ, t) and Eq(x, ξ, t), give access to quark GFFs as follows
		$\int_{-1}^{1} \mathrm{d}x x H_q(x,\xi,t) = A_q(t) + \xi^2 D_q(t), \int_{-1}^{1} \mathrm{d}x x E_q(x,\xi,t) = B_q(t) - \xi^2 D_q(t),$
The actual observables in (CFFs), complex-valued o	n DVCS are Compto convolution integra	$\mathcal{H}(\xi,t) = \int_{-1}^{+1} dx H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right)$
Unpol. DVCS x-sectior $\Delta\sigma_{ m LU}$ ~ sin ϕ Im {F1 ${\cal H}$	n: Re <i>H</i> (ξ, t) (ξ, t) +)	related by the fixed-t dispersion relation $\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{C}_{\mathcal{H}}(t) + \frac{1}{\pi} \operatorname{P.V.} \int_{0}^{1} \mathrm{d}\xi' \left[\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right] \operatorname{Im}\mathcal{H}(\xi',t),$
$\mathcal{C}_{\mathcal{H}}(t) = 2\sum_{q} e_q^2 \int_{-1}^{1} \mathrm{d}z \frac{D_{\text{ter}}^q}{1}$	$\sum_{rm}(z,t) = z$, $P_{term}^q(z,t)$	$ t) = (1 - z^2) \sum_{\text{odd } n} d_n^q(t) C_n^{3/2}(z) \blacklozenge \text{In the limit of renormalization scale} \blacklozenge D_q(t) = \frac{4}{5} d_1^q(t) \\ dq \ 1(t) dq \ 1(t) $

Mechanical Properties of the Proton

PRESSURE

-1.5

-0.5

0.5

-1.5

1.5

X (fm)

-0.5

0.5

0

1.5

-1

3D Picture of the Nucleon in Momentum Space (TMD)

Multi-dimentional analysis mandatory ! High luminosity experiments mandatory!

a key for understanding

long-range quark-gluon

dynamics

TMDs

Upolarized proton: indications (from exp data and lattice calc.) that the up-quarks are closer to the center than the down-quarks. [PLB, 665 (2008) 20 - PRD 83 (2011) 094507]

Transversely polarized proton:

Polarization-averaged distributions not anymore cylindrically symmetric. Images show that the distortion for up- and downquarks is opposite [Images elaborated from data: EPJA (2009) 89 -PRL107 (2011) 212001]

38

TMD: High Statistics Crucial!

SIDIS Enhanced Multi-D Phase Space @ 22 GeV

The Nucleon Structure in 3D

At large x fixed target experiments are sensitive to ALL Structure Functions

Spectroscopy

- Study of the interaction between matter and electromagnetic radiation
- Precision measurements of the hydrogen atom spectrum ultimately led to the development of QED
- The study of the empirical spectrum of the hadrons first introduced the concept of quarks and their threefold color charge → experimental foundation of QCD
- An important area of exploration in the field of spectroscopy is to create in the lab hadrons not excluded by QCD but that do not fall neatly into two limited set: qqq, $q\bar{q}$
- Mesons in quark model have P = (-1)^{l+1} and C = (-1)^{l+s}
 - Some J^{PC} combinations are forbidden for qq⁻ states, (0⁻⁻,0⁺⁻,1⁻⁺,2⁺⁻...)
 - \circ The forbidden J^{PC} can be accessed if there are additional d.o.f. in the final state
 - Additional quarks: tetraquarks or molecular mesons
 - Gluonic excitations: glueball state or a hybrid meson
- Study of the missing resonances

Search for Hybrids

...aka flushing out the hidden gluons

K-Long Facility (KLF)

The Hall B Spectroscopy Program

BARYON SPECTROSCOPY

N* degrees of freedom??

The N* program is one of the key physics foundations of Hall B

 CLAS12 is designed to study exclusive reaction channels over a broad kinematic range:

πN, ωN, φN, ηN, η'N, ππN, KY, K*Y, KY*

 Goal is to explore the *spectrum* and *structure* of N* states

- Search for "missing" states, studying poorly known or rare decay modes (strangeness-rich)
- Probe their underlying degrees of freedom via studies of the Q² evolution of the electroproduction amplitudes

MESON SPECTROSCOPY

MesonEx:

- Detailed mapping of the meson spectrum up to masses of 2.5 GeV
- Search for rare or poorly known states (strangeness-rich, scalars, ...)
- Search states with unconventional quark-gluon configurations

Measure exclusive electroproduction final states from unpolarized proton target with <u>longitudinally</u> <u>polarized electron beam</u> 45

Jefferson Lab

More Exotics Configurations with and Energy Upgrade

A unique production environment of charmed exotic states can be probed that should help to demystify some puzzles

Photoproduction of Hadrons with Charm Quarks

JLab @ 22 GeV: Potentially decisive information about the nature of some 4-quark (XYZ) candidates

- Many "XYZ" states observed in B decays, e⁺e- colliders
- Scarce consistency between various production mechanisms - internal structure not understood yet
 47

Interpretation of data is complicated by nonresonant $D^{*-}D \rightarrow J/\psi\pi^-$ scattering that can produce peaks in invariant mass spectra for certain choices of $E_{\rm cm}$ and π^+ momentum that result in a $D^{*-}D$ interaction. These peaks are effects of initial state kinematics and do not require a resonance in π^-J/ψ .

Projections

M²(J/ψ π⁻) or M²(ψ(2S) π⁻) [GeV²]

 Nuclear forces dominated by nuclear repulsion – short space-time separation in nuclei

Nuclear Dynamics

• Nuclear-medium modifications of hadronic structure

Modification of Nucleon Structure in Nuclei

Quark momentum distributions in nucleons bound inside nuclei are different from those of free nucleons.

- Fermi motion: bound nucleons moving in nuclear medium
- EMC ??
- Antishadowing ??
- Shadowing: multiplescattering (diffractive)

Modification of Nucleon Structure in Nuclei

Extensive Program at Jlab to measure F2 in different nuclei

DIS regime: $Q^2 > 2$

J. Arrington et al. Phys. Rev. C 104, 065203 (2021)

³He

0.7

Nuclear Forces at Short N-N Separation

Extensive sets of data related to SRCs have become available from our experimental program

The size of the EMC effect in different nuclei correlates linearly with the density of SRC pairs.

Jefferson Lab

52

Nuclear Dynamics at Extreme Conditions

Anti-shadowing: solving a multi-decade puzzle

With a 22 GeV e- beam JLab can access the antishadowing region (x~0.1-0.3) at moderate Q²

- Region extremely interesting, near-equally dominated by valence quarks, sea-quarks, and gluons → many many models!!
- Anti-Shadowing is the <u>least studied</u> nuclear structure function effect experimentally – <u>small effect requiring precision and</u> <u>high luminosity</u>
 - flavor dependence essentially uncharted
 - spin dependence essentially uncharted (~50% differences in predictions)
 - no tagged measurements
 - no L/T separations

A rigorous testing ground between shadowing, EMC regimes – models and theory must describe ALL

Color Transparency: new nuclear data challenge theory

55

• Fundamental prediction of QCD : a small size color singlet has vanishing interaction in a nucleus when it is produced at high transverse momentum, Q.

Both energy and A dependence of TA consistent with models inclusive of CT effects!

Onset of CT for mesons and absent protons (at >> Q²) may provide strong clues regarding the differences between two- and three-quark systems.

Jefferson Lab

Jefferson Lab: Present and Future

- The approved experimental program will be 86% complete by FY29 without SoLID, 70% complete with SoLID ...not including new proposals
- We are working on a CEBAF energy upgrade and a positron beam

RECOMMENDATION 1

The highest priority of the nuclear science community is to capitalize on the extraordinary opportunities for scientific discovery made possible by the substantial and sustained investments of the United States. We must draw on the talents of all in the nation to achieve this goal.

.

 Continuing effective operation of the national user facilities ATLAS, CEBAF, and FRIB, and completing the RHIC science program, pushing the frontiers of human knowledge.

....

... <u>The staged upgrade plan for CEBAF foresees a first phase to establish</u> <u>intense polarized positron beam</u> capability at 12 GeV, allowing for new measurements in nucleon tomography and providing precision extraction of contributions from higher order electromagnetic processes. The nontrivial operation with positron beams (polarized and unpolarized) will open a new area of study for CEBAF in the future. <u>The</u> <u>subsequent phase is an energy upgrade of CEBAF</u> to more than 20 GeV. Recently, the Cornell Brookhaven Electron Test Accelerator (CBETA) facility demonstrated eight-pass recirculation of an electron beam with energy recovery employing arcs of fixed-field alternating gradient magnets. <u>This exciting new technology could enable a cost-effective</u> <u>method to double the energy of CEBAF</u>, allowing wider kinematic reach for nucleon femtography studies in the existing tunnels and with no new <u>cryomodules required</u>.

56

RECOMMENDATION 4

We recommend capitalizing on the unique ways in which nuclear physics can advance discovery science and applications for society by investing in additional projects and new strategic opportunities.

....

1.3 STRATEGIC OPPORTUNITIES

Strategic investments in forward-thinking projects and cross-cutting opportunities are important to ensure that the field continues to advance. They enable capitalization on emerging technologies and help ensure that the United States continues to maintain competitiveness and leadership throughout the next decade.

1.3.1. Opportunities to Advance Discovery

Strategic opportunities exist to realize a range of projects that lay the foundation for the discovery science of tomorrow. These projects include the 400 MeV/u energy upgrade to FRIB (FRIB400), the <u>Solenoidal Large Intensity Device (SoLID) at Jeffer</u>son Lab, targeted upgrades for the LHC heavy ion program, emerging technologies for measurements of neutrino mass and electric dipole moments, and other initiatives that are presented in the body of this report.

Future advances in nuclear physics rely upon a vibrant program of detector and accelerator R&D, pushing for instance the current limits on detector sensitivity and on accelerator beam transport technology. R&D for novel nuclear physics detector and accelerator ideas influence fields such as medicine and national security. Such developments must continue.

....

JLab Present & Future Physics Programs

CEBAF @ 22 GeV

- Program developed through a series of workshops in 2022-2023
- Next one at LNF-INFN (Italy) December 9-13,2024

Cornell University		We gratefully acknowledge member inst
BIXIV > nucl-ex > arXiv:2306.09360	Accepted for publication in EPJA	Search Help Advanced
Nuclear Experiment		
[Submitted on 13 Jun 2023 (v1), last revised 24 Aug 2023 (this version	v2)]	

Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

A. Accardi, P. Achenbach, D. Adhikari, A. Afanasev, C.S. Akondi, N. Akopov, M. Albaladejo, H. Albataineh, M. Albrecht, B. Almeida-Zamora, M. Amaryan, D. Androić, W. Armstrong

CEBAF @ 12 GeV

D.S. Armstrong, M. Arratia, J. Arrington, A. Asaturyan, A. Austregesilo, H. Avagyan, T. Averett, C. Ayerbe Gayoso, A. Bacchetta, Bashir, M. Battaglieri, V. Bellini, I. Belov, O. Benhar, B. Benkel, F Benmokhtar, W. Bentz, V. Bertone, H. Bhatt, A. Bianconi, L. Bibrz S.A. Bogacz, M. Boglione, M. Bondí, E.E. Boos, P. Bosted, G. Bozzi, E.J. Brash, R. A. Briceño, P.D. Brindza, W.J. Briscoe, S.J Brodsk Cardman, D.S. Carman, M Carpinelli, G.D. Cates, J. Caylor, A. Celentano, F.G. Celiberto, M. Cerutti, Lei Chang, P. Chatagnon, C. Chudakov, E. Cisbani, I. C. Cloët, J.J. Cobos-Martinez, E. O. Cohen, P. Colangelo, P.L. Cole, M. Constantinou, M. Contalbrigo, G. Dusa, V. Crede, Z.-F. Cui, A. D'Angelo, M. Döring, M. M. Dalton, I. Danilkin, M. Davydov, D. Day, F. De Fazio, M. De Napoli, R. D authors not shown)

2306.09360 [nucl-ex] 444 authors

Progress in Particle and Nuclear Physics Volume 127, November 2022, 103985

Review

Physics with CEBAF at 12 GeV and future opportunities

57

Conclusions and Outlook

- QCD manifests fascinating complexity and facility at luminosity frontier are required to understand the implications of QCD in experiments
- At CEBAF a groundbreaking experimental program has been developed stretching well into the 2030s with existing or planned new equipment

58

- A new round of upgrades to CEBAF are presently under technical development: an energy upgrade to 22 GeV and an intense polarized positron beams
 - This scientific program can provide a unique insight into the non-pQCD dynamics
 - It is complementary to the envisioned EIC program
 - Strong support by a Broad Community

THANK YOU!

