Hall C Status

Hall C science of the currently running experiments

E12-13-007 & E12-23-014

E12-13-007 goal: Measure the basic SIDIS cross sections of π° production off the proton, including a map of the P_T dependence (P_T ~ Λ < 0.5 GeV), to validate^(*) flavor decomposition and the k_T dependence of (unpolarized) up and down quarks

Linked to framework of *Transverse Momentum Dependent Parton Distributions* Transverse momentum widths of quarks with **different flavor (and polarization)** can be different

PR12-23-014 expands on 12-13-007 (24 days) to include

- All three beam energies (not just 10.6 GeV)
- Both proton and deuteron targets

What it adds to JLAB12 SIDIS program:

- Precision measurement of R_{SIDIS} on π^0
- Precision proton/deuteron $\pi^{\rm 0}$ multiplicity ratios
- Larger Q² compared to CLAS12 for beam asymmetries, etc. April 5th 2024

Simplest process: $e + p \rightarrow e' + p + \gamma$ (DVCS)

E12-13-010 DVCS measurements follow up on measurements in Hall A:

- Scaling of the Compton Form Factor
- Rosenbluth-like separation of DVCS: $\sigma = |BH|^2 + \operatorname{Re}\left[DVCS^{\perp} BH\right] + |DVCS|^2$ $\sim E_{L_{max}}^2$
- > L/T separation of π^0 production

DVCS NPS/HallC/JLab 2023-2024

Projected Impact on flavor dependence of CFFs

- Simultaneous fit of E12-13-010 (p) and E12-22-006 (n) \sim
- Real and imaginary parts of CFFs H and \widetilde{H} and E (u & d)
- as free parameters (nDVCS not sensitive to $ilde{E}$)

$\pi^{\rm 0}$ Exclusive Cross Sections

- Relative L/T contribution to π⁰ cross section important in probing transversity
- Results from Hall A at 6 GeV Jlab suggest that the longitudinal cross section in π^0 production is non-zero up to $Q^2=2 \text{ GeV}^2$ 12 GeV projections: confirm Q^2/t dependence $q_1(GK)$ $q_2(GK)$ $q_2(GK)$ q

E12-13-010 provides also data on σ_1 and σ_L at higher Q² for reliable interpretation of 12 GeV GPD data

Neutral Particle Spectrometer (NPS)

- 1080 PbWO₄ crystals ٠
- •
- 0.6 Tm sweeping magnet F250ADC sampling electronics ٠
- Large opening angle beam pipe
- SHMS as carriage for rotation •

Ongoing Hall C experiments using NPS

• E12-13-010 and E12-22-006

- Exclusive Deeply Virtual Compton on proton and neutron
- The exclusive π^0 electroproduction cross section and a longitudinal/transverse separation.

• E12-13-007 and E12-23-014

- SIDIS p(e,e',π⁰) cross section. Map the transverse momentum dependence and test of factorization.
- Measure $R = \sigma_L / \sigma_T$ in SIDIS p(e,e', π^0) cross section.

NPS experiments are running well

- Big effort to get all 1080 NPS blocks ready.
 - Large group installed the DAQ hardware, cabling, NPS hardware.
 - Needed modification to all HV/LV/signal distribution boards.
- Commissioning went well.
 - Software and calibration tools were ready.
 - First time in Hall C using CODA3 with FADC trigger for NPS in coincidence with HMS.
 - As always there are difficulties running experiments, but all encountered so far have been useful learning opportunities.

NPS calorimeter resolution

NPS energy resolution at 7.3 GeV, elastic runs 1974 to 1982

- Waveform analysis of PMT signals is crucial to obtain good energy resolution
- \blacktriangleright Clean invariant and exclusive peaks for π^{0} production
- Analysis of DVCS channel ongoing

April 5th 2024

From elastic calibration (with p' in HMS and e' in calorimeter):

- 1.3% Energy resolution at 7.3 GeV
- Compatible with previous PrimEx results:

 $\sigma/\textit{E}{=}~0.009 \oplus 0.025/\sqrt{\textit{E}} \oplus 0.010/\textit{E}$

Upcoming Experiments

E12-11-107 LAD experiment

- •Spectator tagged DIS d(e,e'ps)
 - Install Large Angle Detector
 - HMS/SHMS detect electron
- Does the EMC Effect depend on nucleon virtuality?
- Measure Bound F₂ by tagging the SRC proton in D(ee'p) DIS and look for nuclear effects
- Will provide crucial information needed for identifying the origin of the EMC Effect

E12-06-107 Complete CT experiment

No Sign of Color Transparency for Protons Traversing Nuclei

- Unique prediction of QCD is that hadrons can be produced as a point like configurations in nuclei.
- CT is seen in other reactions.
- Phys. Rev. Lett. 126, 082301 (2021).

- Complete the experiment
- Measure Color Transparency in A(e,e π)
- Will the trend from earlier data continue?

$R{=}\sigma_{L}/\sigma_{T}$ in SIDIS charge pions

- Verify whether $R_{SIDIS} = R_{DIS}$.
- Check the z-dependence of R from the semi-inclusive to the exclusive region.
- Verify that R_{SIDIS} anneals to R_{DIS} at large p_T .
- Verify if R_{SIDIS} follows the Q^2 dependence of R_{DIS} , at two values of x.
- Verify that $R_{SIDIS}^{\pi^+} = R_{SIDIS}^{\pi^-}$ and $R_{SIDIS}^H = R_{SIDIS}^D$.
- With a factor of ten reduced statistics: map R_{SIDIS}^{K+} and R_{SIDIS}^{K-} .
- Map $R_{SIDIS}^{H} + R_{SIDIS}^{D}$ as function of z at x = 0.2 and $Q^{2} = 2.0 \text{ GeV}^{2}$ (168 Hours)
- Map R_{SIDIS}^H as a function of z at x = 0.4 and $Q^2 = 4.0 \text{ GeV}^2$ (319 Hours)
- Map R_{SIDIS}^H as a function of p_T^2 at x = 0.3 and $Q^2 = 3.0 \text{ GeV}^2$ (311 Hours)
- Add kinematics to map R_{SIDIS}^H for $Q^2 = 1.5-5.0 \text{ GeV}^2$ (88 Hours)

Thank you for your time

Backup Slides

Radiation damage

- Radiation damage identified to the LV regulators on the PMT divider pre-amps
- Damaged amplifiers cause instability in the LV power supply for all channels in the column
- Regions at beam height die faster (by December ≈1/3 of the detector was damaged)
- Accumulated anode charge provides information on when bases will die

Detector status before Winter down

Run status

Kinematic Setting	Pass	SHMS Theta (deg)	NPS Theta (deg)	Revised Coulomb Goal Per Target
KinC x36 1	3			1.20
KinC x36 2	4	30.66	14.36	1.10
KinC_x36_2'	4	28.76	12.46	1.10
KinC_x36_2"	4	32.90	16.60	1.10
KinC_x36_3	5	32.26	15.96	0.60
KinC_x36_4	4			2.70
KinC_x36_5	5	28.42	12.12	1.40
KinC_x36_5'	5	30.30	14.00	0.50
KinC_x36_6	5	23.70	7.40	4.30
KinC_x50_0a	3	30.300	14.00	2.00
KinC_x50_0b	3	33.91	17.61	2.00
KinC_x50_0	3			
KinC_x50_1	4	35.29	18.99	1.90
KinC_x50_1'	4	33.38	17.08	1.90
KinC_x50_2	5	36.88	20.58	1.94
KinC_x50_2'	5	35.446	19.15	0.57
KinC_x50_2"	5	38.310	22.01	0.61
KinC_x50_3	5	31.75	15.45	4.76
KinC_x50_3'	5	30.32	14.02	0.68
KinC_x50_3"	5	33.179	16.88	0.70
KinC_x60_1	3	30.70	14.40	10.00
KinC_x60_2	4	32.87	16.57	4.75
KinC_x60_2'	4	28.76	12.46	4.75
KinC_x60_3	5	35.02	18.72	3.17
KinC_x60_3'	5	34.02	17.72	1.26
KinC_x60_3a	5	33.02	16.72	1.83
KinC_x60_3b	5	36.45	20.15	1.83
KinC_x60_4a	5	30.38	14.08	3.88
KinC_x60_4b	5	33.81	17.51	3.88
KinC_x25_1	3			1.30
KinC_x25_2	4			2.60
KinC_x25_3	5	28.92	12.62	2.60
KinC_x25_4	5	27.50	15.20	2.60

- Charges goals have been slightly revised based on actual running conditions (luminosity limit of NPS) and downtime for repairs
- Reasonably well on track to achieve revised goals by the end of the run

