

FIRST INTERNATIONAL SCHOOL OF HADRON FEMTOGRAPHY

Jefferson Lab | September 16 - 25, 2024

GPDs from Single-Diffractive Hard Exclusive Processes (SDHEP)

Zhite Yu (Jefferson Lab, Theory Center)

□ Introduce SDHEP
 □ Rethink DVCS as an SDHEP
 □ Sensitivity to GPD x-dependence
 □ Briefly on factorization
 □ Go beyond 2 → 3 SDHEPs

In collaboration with Jianwei Qiu and Nobuo Sato

JHEP 08 (2022) 103 PRD 107 (2023) 014007 PRL 131 (2023) 161902 PRD 109 (2024) 074023 arXiv: 2409.06882

Sep/24/2024 JLab CEBAF

ENOMENOLO

ATTICE OCD

Recap

U Why GPDs?

- Tomography
- Spin and mass decomposition
- Internal pressure, shear force, ...

How to obtain GPDs?

- Model
- Factorization theorem
 - + experimental exclusive processes
- ----> Marija
 - - Charles and Francois-Xavier

Physical features for GPD processes

$$F^{q}(x,\xi,t) = \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \left\langle p' \left| \bar{q} \left(z^{-}/2 \right) \gamma^{+} q \left(-z^{-}/2 \right) \right| p \right\rangle$$
$$= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u} \left(p' \right) \gamma^{+} u(p) - E^{q}(x,\xi,t) \, \bar{u} \left(p' \right) \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right]$$

> Amplitude nature \longrightarrow Hadron is unbroken $\longrightarrow \underline{Exclusive}$ process

Collinear factorization property
$$\mathcal{M} = \int_{-1}^{1} d\mathbf{x} F(\mathbf{x}, \xi, t) C(\mathbf{x}, Q) + \mathcal{O}(\sqrt{-t}/Q)$$

- The scale *t* is unconstrained in the GPD definition itself
- But the GPD factorizability requires a hard scale $Q \gg \sqrt{-t}$

Single-Diffractive Hard Exclusive Process (SDHEP)

• Soft **t**

Single-Diffractive Hard Exclusive Process (SDHEP)

"Golden" example: Rethinking DVCS as an SDHEP

DVCS

 $N(p) + \gamma^*(q) \to N(p') + \gamma(q')$

NOT a physical process!

From DVCS to SDHEP (single-diffractive real photon electroproduction)

DVCS

Bethe-Heitler (BH) process

From DVCS to SDHEP (single-diffractive real photon electroproduction)

What is the **A***? --- channel expansion

 $+\cdots (n>3)$

Channel expansion and power counting

 $\overline{N(p)}$ $\gamma(q_2)$ $\gamma(q_2)$ $\sqrt{-t}/q_T^2$

Exercise: Show the γ^* channel scales as $1/\sqrt{-t}$.

 $+\cdots$ (n>3) $\mathcal{O}\left(-t/q_T^3\right)$

Channel expansion and power counting

+ ··· (n > 3) $\mathcal{O}\left(-t/q_T^3\right)$

Two-stage kinematic description

 $\hat{x}_D - \hat{y}_D - \hat{z}_D$: varying coordinate system

Hard scattering $A^*(\Delta) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

Two-stage kinematic description

Diffractive subprocess $N(p) \rightarrow N(p') + A^*(\Delta = p - p')$

Describe in diffractive frame: $\hat{x}_D \parallel \vec{\Delta}_T$ (varying event by event) Trade azimuthal angle of the diffraction for ϕ_s (Jacobian = 1)

Kinematic variables:

$$n = (1, 0, 0, -1)/\sqrt{2}$$
 $t = \Delta^2, \ \xi = \frac{(p - p') \cdot n}{(p + p') \cdot n}, \ \phi_S$

$$igstarrow$$
 determine $\hat{s}\simeq 2m{\xi}s/(1+m{\xi})$ of the hard scattering

□ Hard scattering $A^*(\Delta) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

 $\hat{x}_D - \hat{y}_D - \hat{z}_D$: varying coordinate system

Diffractive subprocess $N(p) \rightarrow N(p') + A^*(\Delta = p - p')$

Describe in diffractive frame: $\hat{x}_D \parallel ec{\Delta}_T$ (varying event by event)

Trade azimuthal angle of the diffraction for ϕ_S (Jacobian = 1)

Kinematic variables:

$$n = (1, 0, 0, -1)/\sqrt{2}$$
 $t = \Delta^2, \ \xi = \frac{(p - p') \cdot n}{(p + p') \cdot n}, \ \phi_S$

determine
$$\hat{s} \simeq 2 \xi s / (1 + \xi)$$
 of the hard scattering

Hard scattering $A^*(\Delta) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

Describe in SDHEP frame --- (A^*e) c.m. frame: $\hat{z}_S \parallel \vec{\Delta}$

Kinematic variables:
$$\theta, \phi$$
 $q_T = (\sqrt{\hat{s}/2}) \sin \theta$

 $\hat{x}_S - \hat{y}_S - \hat{z}_S$: SDHEP frame coordinate system

 $\Box \phi_{S} \text{ in diffraction } N(p) \to N(p') + A^{*}(\Delta = p - p')$ $F_{N \to NA^{*}}(t, \xi, \phi_{S}) \propto e^{-i\lambda_{N}\phi_{S}}$

 $\Box \phi$ in hard scattering $A^*(\Delta) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

□ ϕ_S in diffraction $N(p) \rightarrow N(p') + A^*(\Delta = p - p')$ $F_{N \rightarrow NA^*}(t, \xi, \phi_S) \propto e^{-i\lambda_N \phi_S}$ $\lambda_N = \pm 1/2$ can interfere to give $\cos \phi_S$, $\sin \phi_S$ ↓ transverse spin $s_T \neq 0$

 $\Box \phi$ in hard scattering $A^*(\Delta) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

 $\Box \phi_{S} \text{ in diffraction } N(p) \to N(p') + A^{*}(\Delta = p - p')$ $F_{N \to NA^{*}}(t, \xi, \phi_{S}) \propto e^{-i\lambda_{N}\phi_{S}}$

 $\lambda_N = \pm 1/2$ can interfere to give $\cos \phi_S$, $\sin \phi_S$ transverse spin $s_T \neq 0$

 $\Box \phi$ in hard scattering $A^*(\Delta) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

$$\mathcal{M}(t,\xi,\phi_{S},\theta,\phi) = \sum_{A^{*}} F_{N\to NA^{*}}(t,\xi,\phi_{S}) \otimes G_{A^{*}e\to e\gamma}(\hat{s},\theta,\phi)$$
$$= \sum_{A^{*}} \left[e^{-i\lambda_{N}\phi_{S}} F_{N\to NA^{*}}(t,\xi) \right] \otimes \left[e^{i(\lambda_{A}-\lambda_{e})\phi} G_{A^{*}e\to e\gamma}(\hat{s},\theta) \right]$$

 ϕ_S in diffraction $N(p) \rightarrow N(p') + A^*(\Delta = p - p')$ $F_{N \to NA^*}(t, \xi, \phi_S) \propto e^{-i\lambda_N \phi_S}$ $\lambda_N = \pm 1/2$ can interfere to give $\cos \phi_S$, $\sin \phi_S$ transverse spin $s_T \neq 0$

 ϕ in hard scattering $A^*(\Delta) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

$$\mathcal{M}(t,\xi,\phi_{S},\theta,\phi) = \sum_{A^{*}} F_{N\to NA^{*}}(t,\xi,\phi_{S}) \otimes G_{A^{*}e\to e\gamma}(\hat{s},\theta,\phi)$$
$$= \sum_{A^{*}} \left[e^{-i\lambda_{N}\phi_{S}} F_{N\to NA^{*}}(t,\xi) \right] \otimes \left[e^{i(\lambda_{A}-\lambda_{e})\phi} G_{A^{*}e\to e\gamma}(\hat{s},\theta) \right]$$

Interference of (λ_A, λ'_A) channels

$$\Delta \lambda_A = \lambda_A - \lambda'_A$$

Advantage: the quasi-real state A^* has well-defined helicity for all n = 1, 2, 3, ...

• The longitudinal polarization γ_L^* is at NLP $\mathcal{O}(1/q_T)$ \checkmark Combine with n = 2 (DVCS)

•

Advantage: the quasi-real state A^* has well-defined helicity for all n = 1, 2, 3, ...

• The longitudinal polarization γ_L^* is at NLP $\mathcal{O}(1/q_T)$ \checkmark Combine with n = 2 (DVCS)

Difference from Breit frame: (1) Regular ϕ dependence; (2) γ^* goes from N to e (causality flip: space-like)

Advantage: the quasi-real state A^* has well-defined helicity for all n = 1, 2, 3, ...

Difference from Breit frame treatment

- Not separate at virtual photon $\gamma^*(q)$. Assign it to the hard part.
- In a coherent framework with BH --- "one higher twist" w.r.t. $A^* = \gamma^*$ channel
- Choose $n \propto p_2$

 $\begin{array}{ll} \mathsf{LP} & \mathcal{M}_{\mathrm{I}}: & A^{*} = \boldsymbol{\gamma}_{T}^{*} \; (\lambda_{A}^{\gamma} = \pm 1) \\ \mathsf{NLP} & \mathcal{M}_{\mathrm{II}}: & (1) \; A^{*} = \boldsymbol{\gamma}_{L}^{*} \; (\lambda_{A}^{\gamma} = \mathbf{0}); & (2) \; A^{*} = [q\bar{q}] \; (\lambda_{A}^{q} = \mathbf{0}) & + [gg] \; (\text{high order}) \\ \mathsf{NNLP:} \dots \end{array}$

Cross section level

$$|\mathcal{M}_{\mathrm{I}} + \mathcal{M}_{\mathrm{II}} + \cdots|^{2} = \underbrace{|\mathcal{M}_{\mathrm{I}}|^{2}}_{\mathrm{LP}} + \underbrace{2\operatorname{Re}\left(\mathcal{M}_{\mathrm{I}}\mathcal{M}_{\mathrm{II}}^{*}\right)}_{\mathrm{NLP}} + \cdots$$

 $\begin{array}{lll} \mathsf{LP} & \mathcal{M}_{\mathrm{I}}: & A^{*} = \boldsymbol{\gamma}_{T}^{*} \; (\lambda_{A}^{\gamma} = \pm 1) \\ \mathsf{NLP} & \mathcal{M}_{\mathrm{II}}: & (1) \; A^{*} = \boldsymbol{\gamma}_{L}^{*} \; (\lambda_{A}^{\gamma} = \mathbf{0}); & (2) \; A^{*} = [q\bar{q}] \; (\lambda_{A}^{q} = \mathbf{0}) & + [gg] \; (\text{high order}) \\ \mathsf{NNLP:} \dots \end{array}$

Cross section level

$$|\mathcal{M}_{\mathrm{I}} + \mathcal{M}_{\mathrm{II}} + \cdots|^{2} = \underbrace{|\mathcal{M}_{\mathrm{I}}|^{2}}_{\mathrm{LP}} + \underbrace{2\operatorname{Re}\left(\mathcal{M}_{\mathrm{I}}\mathcal{M}_{\mathrm{II}}^{*}\right)}_{\mathrm{NLP}} + \cdots$$

$$\mathsf{LP} \qquad |\mathcal{M}|^{2}_{\mathrm{LP}} = |\mathcal{M}_{\mathrm{I}}|^{2} \qquad \mathsf{No} \ \phi \text{ modulation. } \lambda^{\gamma}_{A} = +1 \text{ and } \lambda^{\gamma}_{A} = -1 \text{ do NOT interfere until NNLP.}$$

 $\begin{array}{lll} \mathsf{LP} & \mathcal{M}_{\mathrm{I}}: & A^{*} = \boldsymbol{\gamma}_{T}^{*} \; (\lambda_{A}^{\gamma} = \pm 1) \\ \mathsf{NLP} & \mathcal{M}_{\mathrm{II}}: & (1) \; A^{*} = \boldsymbol{\gamma}_{L}^{*} \; (\lambda_{A}^{\gamma} = \mathbf{0}); & (2) \; A^{*} = [q\bar{q}] \; (\lambda_{A}^{q} = \mathbf{0}) & + [gg] \; (\text{high order}) \\ \mathsf{NNLP:} \dots \end{array}$

Cross section level

 $|\mathcal{M}_{\mathrm{I}} + \mathcal{M}_{\mathrm{II}} + \cdots|^{2} = \underbrace{|\mathcal{M}_{\mathrm{I}}|^{2}}_{\mathrm{LP}} + \underbrace{2 \operatorname{Re} \left(\mathcal{M}_{\mathrm{I}} \mathcal{M}_{\mathrm{II}}^{*}\right)}_{\mathrm{NLP}} + \cdots$ $\mathsf{LP} \qquad |\mathcal{M}|^{2}_{\mathrm{LP}} = |\mathcal{M}_{\mathrm{I}}|^{2} \qquad \mathsf{No} \ \phi \ \mathsf{modulation.} \ \lambda^{\gamma}_{A} = +1 \ \mathsf{and} \ \lambda^{\gamma}_{A} = -1 \ \mathsf{do} \ \mathsf{NOT} \ \mathsf{interfere until NNLP.}$ $\mathsf{NLP} \qquad |\mathcal{M}|^{2}_{\mathrm{NLP}} = 2 \operatorname{Re} \left(\mathcal{M}_{\mathrm{I}} \mathcal{M}_{\mathrm{II}}^{*}\right) \qquad \Longrightarrow \qquad \cos\phi \ \mathsf{or} \ \mathsf{sin}\phi \ \mathsf{modulation.}$

 $\begin{array}{lll} \mathsf{LP} & \mathcal{M}_{\mathrm{I}}: & A^{*} = \boldsymbol{\gamma}_{T}^{*} \; (\lambda_{A}^{\gamma} = \pm 1) \\ \mathsf{NLP} & \mathcal{M}_{\mathrm{II}}: & (1) \; A^{*} = \boldsymbol{\gamma}_{L}^{*} \; (\lambda_{A}^{\gamma} = \mathbf{0}); & (2) \; A^{*} = [q\bar{q}] \; (\lambda_{A}^{q} = \mathbf{0}) & + [gg] \; (\text{high order}) \\ \mathsf{NNLP:} \dots \end{array}$

Cross section level

$$\frac{d\sigma}{dt\,d\xi\,d\phi_S\,d\cos\theta\,d\phi} = \frac{1}{(2\pi)^2} \frac{d\sigma^{\text{unpol}}}{dt\,d\xi\,d\cos\theta} \cdot \left[1 + \lambda_e \lambda_N A_{LL}^{\text{LP}} + \lambda_e s_T A_{TL}^{\text{LP}}\cos\phi_S + \left(A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}\right)\cos\phi + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}\right)\sin\phi + s_T \left(A_{TU,1}^{\text{NLP}}\cos\phi_S\sin\phi + A_{TU,2}^{\text{NLP}}\sin\phi_S\cos\phi\right) + \lambda_e s_T \left(A_{TL,1}^{\text{NLP}}\cos\phi_S\cos\phi + A_{TL,2}^{\text{NLP}}\sin\phi_S\sin\phi\right) \right]$$

In the experimental setting (fixed lab frame),

- Nucleon spin vector $ec{s}_N = (s_T, 0, \lambda_N)$
- Electron spin vector $ec{s_e} = (0,0,\lambda_e)$

Subscripts: (nucleon, electron)

- **U** = **U**npolarized
- L = Longitudinally polarized
- **T** = **T**ransversely polarized

$$\frac{d\sigma}{dt\,d\xi\,d\phi_{S}\,d\cos\theta\,d\phi} = \frac{1}{(2\pi)^{2}} \underbrace{\frac{d\sigma^{\text{unpol}}}{dt\,d\xi\,d\cos\theta} \cdot \left[1 + \lambda_{e}\lambda_{N}A_{LL}^{\text{LP}} + \lambda_{e}s_{T}A_{TL}^{\text{LP}}\cos\phi_{S}}\right] \\ + \left(A_{UU}^{\text{NLP}} + \lambda_{e}\lambda_{N}A_{LL}^{\text{NLP}}\right)\cos\phi + \left(\lambda_{e}A_{UL}^{\text{NLP}} + \lambda_{N}A_{LU}^{\text{NLP}}\right)\sin\phi \\ + s_{T}\left(A_{TU,1}^{\text{NLP}}\cos\phi_{S}\sin\phi + A_{TU,2}^{\text{NLP}}\sin\phi_{S}\cos\phi\right) \\ + \lambda_{e}s_{T}\left(A_{TL,1}^{\text{NLP}}\cos\phi_{S}\cos\phi + A_{TL,2}^{\text{NLP}}\sin\phi_{S}\sin\phi\right)\right]$$

- Control the rate (unpolarized cross section). No ϕ modulation.
- Only a $\cos \phi_s$ modulation
- No single spin asymmetry, only double spin asymmetries

$$\frac{d\sigma}{dt \, d\xi \, d\phi_S \, d\cos\theta \, d\phi} = \frac{1}{(2\pi)^2} \underbrace{\frac{d\sigma^{\text{unpol}}}{dt \, d\xi \, d\cos\theta} \cdot \left[1 + \lambda_e \lambda_N A_{LL}^{\text{LP}} + \lambda_e s_T A_{TL}^{\text{LP}} \cos\phi_S\right]}_{+ \left(A_{UU}^{\text{NLP}} + \lambda_e \lambda_N A_{LL}^{\text{NLP}}\right) \cos\phi + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}\right) \sin\phi}_{+ ST} \left(A_{UU}^{\text{NLP}} + \lambda_e \lambda_N A_{LU}^{\text{NLP}}\right) \cos\phi + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}\right) \sin\phi}_{+ s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \sin\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{+ \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)_{- \lambda_e s_T} \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \cos\phi\right)_{- \lambda_e s_T} \left(A$$

Jefferson Lab

 $A_{TL}^{\rm LP} = \frac{1}{\Sigma_{UU}^{\rm LP}} \cdot \frac{\Delta_T}{2m} \left[\frac{1}{\sin^2(\theta/2)} - \sin^2(\theta/2) \right] (F_1 + F_2) \left[-4F_1 + \frac{1+\xi}{\xi} \frac{-t}{m^2} F_2 \right]$

$$\frac{d\sigma}{dt\,d\xi\,d\phi_S\,d\cos\theta\,d\phi} = \frac{1}{(2\pi)^2}\frac{d\sigma^{\rm unpol}}{dt\,d\xi\,d\cos\theta}\,.$$

NLP: from $\gamma_T^* - \gamma_L^*$ and $\gamma_T^* - [q\overline{q}]$ interference

$$+ \lambda_e \lambda_N A_{LL}^{\text{LP}} + \lambda_e s_T A_{TL}^{\text{LP}} \cos \phi_S$$

$$+ \left(A_{UU}^{\text{NLP}} + \lambda_e \lambda_N A_{LL}^{\text{NLP}} \right) \cos \phi + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}} \right) \sin \phi$$

$$+ s_T \left(A_{TU,1}^{\text{NLP}} \cos \phi_S \sin \phi + A_{TU,2}^{\text{NLP}} \sin \phi_S \cos \phi \right)$$

$$+ \lambda_e s_T \left(A_{TL,1}^{\text{NLP}} \cos \phi_S \cos \phi + A_{TL,2}^{\text{NLP}} \sin \phi_S \sin \phi \right)$$

• No contribution to the rate,

 \Rightarrow only to azimuthal modulations $(\cos\phi, \sin\phi)$

• Unpolarized part A_{UU} , SSA, and DSA

1

 $\Sigma_{TU,1}^{\text{NLP}} = \frac{4 + (1 - \cos \theta)^2}{\sin \theta \cos^2(\theta/2)} \left(M_3 \cdot \text{Im} V_{\mathcal{F}} \right),$

 $\Sigma_{TU,2}^{\text{NLP}} = \frac{4 + (1 - \cos \theta)^2}{\sin \theta \cos^2(\theta/2)} \left(M_4 \cdot \text{Im} V_{\mathcal{F}} \right).$

• 8 asymmetries ⇔ 8 (real) GPD moments

Comparison between SDHEP frame and Breit frame

D Breit frame: centered around $\gamma^*(q)$

"Incoherent" treatments for DVCS and BH

DVCS-square is in fact the least important!

SDHEP frame: centered around $A^*(\Delta)$

- Clear physical picture: scale separation
- $A^* = \gamma^*$, $[q\overline{q}]$, [gg], $[q\overline{q}g]$, [ggg], ...
- Azimuthal distribution is *dynamical* when initial-state || z
- Unique frame for a coherent azimuthal description

x-dependence

No matter which frame to work in, sensitivity to GPD is the same:

Unknown but does not affect θ shape

- > Advantage: Helps to experimentally confirm parton-dominated dynamics (i.e., parton model)
- **Disadvantage:** Difficult to extract *x*-dependence of GPDs

Shadow GPD problem

 $\int_{-1}^{1} dx \frac{S(x,\xi,t)}{x-\xi+i\epsilon} = 0$ See Eric's lecture $S(\pm\xi,\xi,t) = S(x,0,0) = 0$

Classification of SDHEPs

□ Electro-production (JLab, EIC, ...)

□ Photo-production (JLab, EIC, …)

□ Meso-production (AMBER, J-PARC, ...)

Generic discussion

[Qiu, Yu, PRD 107 (2023), 014007]

Classification of SDHEPs

 $^{+}(q_{2})$

□ Electro-production (JLab, EIC, ...)

 $\mathbf{r}\gamma(q_2)$

Where does the *x*-sensitivity come from?

 \Box x-sensitivity \Leftrightarrow 2 \rightarrow 2 hard scattering

Kinematics:

1.
$$\hat{s} = 2 \xi s / (1 + \xi)$$

2. θ or $q_T = (\sqrt{\hat{s}}/2) \sin \theta$
3. ϕ
(A*B) spin states

 $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx F_{A}(x) C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] > Moment-type sensitivity $C(x;Q) = G(x) \cdot T(Q) \implies F_{G} = \int_{-1}^{1} dx G(x) F(x,\xi,t)$ Independent of Q. Scaling for F_{G} . Inversion problem: shadow GPD $S_{G} = \int_{-1}^{1} dx G(x) S(x,\xi) = 0$ [Bertone et al. PRD '21] > Enhanced sensitivity $C(x;Q) \neq G(x) \cdot T(Q) \implies d\sigma/dQ \sim |C(x;Q) \otimes_{x} F(x,\xi,t)|^{2}$

42

Scaling *breaking* at LO

Scaling kernels and moment sensitivity

Origin of scaling: massless parton approximation + massless external states.

$$q'^{2} = 0 \qquad k^{2} = \left[q' + (x - \xi)\hat{P}\right]^{2}$$
$$= (x - \xi)(2\hat{P} \cdot q')$$
$$\longrightarrow \qquad \int_{-1}^{1} dx \frac{F(x, \xi, t)}{x - \xi + i\epsilon}$$

Exercise: Show for DVCS (at leading power) $2\hat{P} \cdot q' = \frac{Q^2}{2\xi}$

Enhancing sensitivity by breaking the scaling

Origin of scaling: massless parton approximation + massless external states.

Two new example processes with enhanced *x*-sensitivity

J-PARC, AMBER

Qiu & Yu, JHEP 08 (2022) 103 Qiu & Yu, PRD 109 (2024) 074023

JLab Hall D

G. Duplancic et al., JHEP 11 (2018) 179
G. Duplancic et al., JHEP 03 (2023) 241
G. Duplancic et al., PRD 107 (2023), 094023
Qiu & Yu, PRD 107 (2023), 014007
Qiu & Yu, PRL 131 (2023), 161902

Enhanced *x*-sensitivity: (1) diphoton mesoproduction

[Qiu & Yu, JHEP 08 (2022) 103; PRD 109 (2024) 074023]

In addition to

$$F_0(\xi, t) = \int_{-1}^{1} \frac{dx F(x, \xi, t)}{x - \xi + i\epsilon}$$

 $i\mathcal{M}\,$ also contains

$$I(t,\xi;z,\theta) = \int_{-1}^{1} \frac{dx F(x,\xi,t)}{x - \rho(z;\theta) + i\epsilon \operatorname{sgn}\left[\cos^2(\theta/2) - z\right]}$$

$$\rho(z;\theta) = \xi \cdot \left[\frac{1-z+\tan^2(\theta/2) z}{1-z-\tan^2(\theta/2) z}\right] \in (-\infty,-\xi] \cup [\xi,\infty)$$

Enhanced *x*-sensitivity: (1) diphoton mesoproduction

[Qiu & Yu, PRD 109 (2024) 074023]

Diphoton process:
$$N\pi \to N'\gamma\gamma$$
: (1) $p\pi^- \to n\gamma\gamma$; (2) $n\pi^+ \to p\gamma\gamma$

$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} = 2\pi \left(\alpha_e \alpha_s \frac{C_F}{N_c}\right)^2 \frac{1}{\xi^2 s^3} \cdot \left[(1-\xi^2) \sum_{\alpha=\pm} \left(|\mathcal{M}_{\alpha}^{[\widetilde{H}]}|^2 + |\widetilde{\mathcal{M}}_{\alpha}^{[H]}|^2 \right) - \left(\xi^2 + \frac{t}{4m^2}\right) \sum_{\alpha=\pm} |\widetilde{\mathcal{M}}_{\alpha}^{[E]}|^2 - \frac{\xi^2 t}{4m^2} \sum_{\alpha=\pm} |\mathcal{M}_{\alpha}^{[\widetilde{E}]}|^2 - 2\xi^2 \sum_{\alpha=\pm} \operatorname{Re}\left(\widetilde{\mathcal{M}}_{\alpha}^{[H]} \widetilde{\mathcal{M}}_{\alpha}^{[E]*} + \mathcal{M}_{\alpha}^{[\widetilde{H}]} \mathcal{M}_{\alpha}^{[\widetilde{E}]*} \right) \right]$$

Nucleon transition GPDs

Jefferson Lab

Enhanced *x*-sensitivity: (1) diphoton mesoproduction (at J-PARC or AMBER)

[Qiu & Yu, PRD 109 (2024) 074023]

Enhanced x-sensitivity: (2) γ - π pair photoproduction

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at JLab Hall D)

Polarization asymmetries

$$\frac{d\sigma}{d|t| d\xi d\cos\theta d\phi} = \frac{1}{2\pi} \frac{d\sigma}{d|t| d\xi d\cos\theta} \cdot \left[1 + \lambda_N \lambda_\gamma A_{LL} + \zeta A_{UT} \cos 2\left(\phi - \phi_\gamma\right) + \lambda_N \zeta A_{LT} \sin 2\left(\phi - \phi_\gamma\right)\right]$$
$$\frac{d\sigma}{d|t| d\xi d\cos\theta} = \pi \left(\alpha_e \alpha_s\right)^2 \left(\frac{C_F}{N_c}\right)^2 \frac{1 - \xi^2}{\xi^2 s^3} \Sigma_{UU}$$

$$\begin{split} \Sigma_{UU} &= |\mathcal{M}_{+}^{[\widetilde{H}]}|^{2} + |\mathcal{M}_{-}^{[\widetilde{H}]}|^{2} + |\widetilde{\mathcal{M}}_{+}^{[H]}|^{2} + |\widetilde{\mathcal{M}}_{-}^{[H]}|^{2}, \\ A_{LL} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} \right], \\ A_{UT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\widetilde{\mathcal{M}}_{+}^{[H]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} - \mathcal{M}_{+}^{[\widetilde{H}]} \, \mathcal{M}_{-}^{[\widetilde{H}]*} \right], \\ A_{LT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Im} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} \right]. \end{split}$$

Neglecting: (1) E and \widetilde{E} ; (2) gluon channel

[Qiu & Yu, PRL 131 (2023) 161902]

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at JLab Hall D)

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at JLab Hall D)

Brief mention of factorization

Exclusive factorization: large-angle $2 \rightarrow 2$ scattering

$$\xrightarrow{\pi^+}_{\overline{p}} \underbrace{f_{\overline{q}}}_{\overline{d}(1-z)p} = D_{u/\pi^+}(z) = \int_{-\infty}^{\infty} \frac{dy^-}{4\pi} e^{izp^+y^-} \langle 0|\overline{d}(0)\gamma^+\gamma_5 W_n(0,y^-)u(y^-)|\pi^+(p)\rangle$$

$$\stackrel{\text{"Lightcone wavefunction"}}{=} U_{u/\pi^+}(z) = \int_{-\infty}^{\infty} \frac{dy^-}{4\pi} e^{izp^+y^-} \langle 0|\overline{d}(0)\gamma^+\gamma_5 W_n(0,y^-)u(y^-)|\pi^+(p)\rangle$$

SDHEP factorization: generic consideration

Soft gluons cancel when coupling to mesons!

□ From single-diffractive to double-diffractive process?

Glauber pinch for diffractive scattering

Both k_s^+ and $k_s^$ are pinched in Glauber region!

Non-factorizable even with hard scale

□ How to generalize? --- Beyond two to three!

 $h(p) + B(p_2) \to h'(p') + C(q_1) + D(q_2) + E(q_3)$

Examples: DDVCS, diphoton electroproduction, ...

$\square \ 2 \rightarrow 3 \text{ vs. } 2 \rightarrow 4$

- $\geq 2 \rightarrow 3$:
 - simpler kinematics
 - straightforward formulation of factorization
 - mostly scaling propagators

$\square \text{ Some } 2 \rightarrow 4 \text{ processes}$

\succ 2 \rightarrow 4:

- more intricate kinematics
- more likely to have enhanced sensitivity
- lower rate

Exercises:

- 1. Do they carry enhanced sensitivity?
- 2. Where is it?
- 3. Do they have Bethe-Heitler channels?
- 4. What are the QCD and QED couplings of GPD and BH channels?
- 5. How do the amplitudes scale?
- 6. How to formulate the phase space?

Reference: Qiu and Yu, PRD 2023, Sec. VI F.

Summary: towards a global fit

□ Single-diffractive hard exclusive process (SDHEP)

- Generic kinematic description
- Encompasses all GPD-related processes
- Clear factorization structure
- Straightforward to generalize

Towards a global fit

- Sensitivity to the *x*-dependence
- Separation of flavor dependence
- Separation of GPD spin structure
- Extending ξ and t coverage

Thank you!

