

Jefferson Lab | September 16 - 25, 2024

Experimental Methods Sep 21st 2024

F.-X. Girod

Lecture 4 with Charles Hyde

EIC Kinematics and the QCD Landscape

The Science Pillars at the EIC

as outlined in the NAS NSAC

SPIN is one of the fundamental properties of matter. All elementary particles. but the Higgs carry spin. Spin cannot be explained by a static picture of the proton It is the interolay between the intrinsic properties and interactions of quarks and gluons

The EIC will unravel the different contribution from the quarks, gluons and orbital angular momentum.

Does the mass of visible matter emerge from quark-gluon interactions?

Atom: Binding/Mass = 0.0000001 Nucleus: Binding/Mass = 0.01 Proton: Binding/Mass = 100

For the proton the EIC will determine an important term contributing to the proton mass, the socalled "QCD trace anomaly

How are the quarks and gluon distributed in space and momentum inside the nucleon & nuclei? How do the nucleon properties emerge from them and their interactions? How can we understand their dynamical origin in $OCD2$ What is the relation to Confinement

Is the structure of a free and hound nucleon the same? How do quarks and gluons, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quarkgluon interactions create nuclear binding?

How many gluons can fit in a proton?

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy?

EIC Design Overview

- Existing RHIC complex at BNL
- superconducting magnets 275 GeV polarized protons
- \blacktriangleright Add an electron accelerator in the same tunnel
- \triangleright 25 mrad crossing angle with crab cavities
- IP6 (location of STAR)
- I Forward Hadron instrumentation

Full luminosity achieved in phases

Legacy and the place of the EIC

The ePIC detector collaboration

ePIC non-

US Institutions

Poland

Humaan Equat

ePIC is now 171 (+) institutions

Representing 24 countries and 500+ participants

ePIC Spokesperson: John Lajoie (lowa State) ePIC Deputy Spokesperson: Silvia Dalla Torre (INFN Trieste)

Interlude: my opinion on known unknowns

Yuri L. Dokshitzer, (CERN-Dubna School Pylos August 2002)

In the late 1970s one could say "QED was 30 years old". In 2003 we cannot but state that "QCD is 30 years young".

Confinement Mechanism(s?)

Hadrons are singlets under $SU(3)_{color}$: No net color charge in asymptotic particle states

- \blacktriangleright Linear growth of the static quark-antiquark pair Area-law falloff for the Wilson loop
- \blacktriangleright Gribov Confinement for light quarks Analytical properties of the propagators in the infrared Instability of the vacuum above a supercritical charge

$$
\alpha_{\text{QED}}^{\text{crit}}\quad =\quad 137\text{ for a point-like nucleus}
$$

$$
\approx 180 \text{ for a finite size nucleus}
$$

 $\frac{\alpha_{\text{QCD}}^{\text{crit}}}{\pi} = C_F^{-1}$ $\left[1-\sqrt{\frac{2}{3}}\right]$ 3 $\Big] \approx 0.137$

\blacktriangleright Light-Front AdS/QCD

quark and gluon chiral condensates confined! \rightarrow condensates contribution to the cosmological constant already included in hadron mass

Mass-Gap Millenium problem and Yang-Mills existence \$1M from the Clay Mathematical Institute

Collider Energy Scenarios

 Q^2 vs x_R landscape

Build on knowledge from

other colliders HERA, RHIC, LHC

Fixed targets SLAC, HERMES, COMPASS, JLab

Crucial ingredients: polarizations luminosity

Complementarity of energy runs

Kinematic reach and QCD Landscape

Rich physics program

Position, Spin, Energy, Momentum distributions of quarks and gluons

Origin Mass, Confinement, χSM QCD and Gravity

Gluon saturation, jet radiophysics QCD Bremsstrahlung

Nuclear Modifications EMC Effect, SRC

Kinematics reconstruction strategies at the EIC

U. Bassler and G. Bernardi, NIM A361 (1995) 197.

$$
\Sigma = \sum_h (E_h - p_{z,h}) \qquad T = \sqrt{\left(\sum_h p_{x,h}\right)^2 + \left(\sum_h p_{y,h}\right)^2} \qquad \tan\frac{\gamma}{2} = \frac{\Sigma}{T}
$$

*

Resolutions for these different strategies

U. Bassler and G. Bernardi, NIM A361 (1995) 197:

*

Exclusive Reactions at the EIC A brief overview of the detector design

Conceptual Design of a detector package for EIC

Large acceptance package: Ideally "100% acceptance" 1.7 T solenoid magnet

Notion of rapidity related to $\overline{\text{the polar angle}}$ $\eta = -$ In tan $\left(\frac{\theta}{2}\right)$

Notion of diffractive event Rapidity gap between jets and recoil target Pomeron exchange in Regge theory

Kinematical coverage in terms of rapidity

20 GeV on 100 GeV, $3 < Q^2 < 20$ GeV², $1.10^3 < x < 8.10^3$

- ► The DIS cross section falls-off as $\sim 1/Q^4$
- High momenta are associated with high x_B processes
- In general correlation between p and η

20 GeV on 100 GeV, 200 < Q² < 1000 GeV², 0.1 < x < 1

Typical topology of a diffractive event

Additional detectors in the far-forward and far-backward regions at \pm 40 m Crossing angle provides beam separation and space for detectors Operation over large range of energies and luminosities Design integrated into the beamline!

Some Far Forward Processes at the EIC

Some Far Forward Physics at the EIC

Central Detector Overview

General purpose detector Coverage: $-4 < \eta < 4$ PID: DIRC, dual-radiator RICH, pfRICH

How to design a general purpose spectrometer

Limited number of "stable" final state particles: only 13 have CT > 500um

- Flectrons
- Photons/Gammas
- Tet/Tets
- Individual hadrons ($\pi \pm$, K \pm , p) \bullet
- Muons (absorber and muon chamber)
- Neutrinos (missing PT in EM+HCAL)
- Neutral hadrons (n.K^o) (HCAL)
- Electrons: EMCAL cluster + track pointing to cluster
- Gammas (y) : EMCAL cluster, no track pointing to cluster
- Neutrinos (ν): missing P_T ٠
- Muons: track, min. energy in EMCAL, min. energy in HCAL, track in muon det.(if any)

For all particles emerging in the collision we would like to measure:

- Momentum (px,py,pz), charge
- Origination (vertex)
- \cdot Energy (E)
- Type of the particle: PID (Mass)

New EIC solenoid

Calorimeter Design Requirements

h-endcap

Barrel Forward

Rockup

 $\frac{(10-12)\%}{\sqrt{2}}\oplus (1-3)\%$

 $0.1 - 100$ GeV

Up to $10⁴$

Up to 50 GeV/c

Generalities on EM Shower: e vs γ

Notation: scale variables $t = x/X_0$, $y = E/E_c$ distance in units of R.L. energy in units of critical e.

ref: sect. 34.5 PDG 2020

Longitudinal profile of e. dep.

$$
\frac{1}{E_0}\frac{\mathrm{d}E}{\mathrm{d}t}=\frac{b}{\Gamma(a)}\left(bt\right)^{a-1}\mathrm{e}^{-bt}
$$

Parameters given by: $b \approx 0.5$ (above Fe) $\frac{a-1}{b}$ = lny \pm 0.5

Toy Sampling Fraction: integrate profile over (arbitrary?) samples N.B: for illustration of e vs γ only not meant as a serious estimate

Generalities on EM Shower: e vs γ

Notation: scale variables $t = x/X_0$, $y = E/E_c$ distance in units of R.L. energy in units of critical e.

ref: sect. 34.5 PDG 2020

Longitudinal profile of e. dep.

$$
\frac{1}{E_0}\frac{\mathrm{d}E}{\mathrm{d}t}=\frac{b}{\Gamma(a)}\left(bt\right)^{a-1}\mathrm{e}^{-bt}
$$

Parameters given by: $b \approx 0.5$ (above Fe) $\frac{a-1}{b}$ = lny \pm 0.5

Toy Sampling Fraction: integrate profile over (arbitrary?) samples N.B: for illustration of e vs γ only not meant as a serious estimate

Hadronic Calorimeters

detector solenoid coil

>Jet energy measurement

- > Tag jets with a neutral component
- >DIS kinematics reconstruction
	- \triangleright Hadronic method
- >Solenoid flux return
- >Additional capability: muon ID

Proximity Focusing RICH

> Aerogel

IP.

- \triangleright Three radial bands
- \triangleright Opaque dividers
- \geq 2.5 cm thick, 42 tiles total

≽ Vessel

- > Lightweight structure
- \triangleright Reinforced carbon fiber and 3D printed materials
- \triangleright Filled with nitrogen

> HRPPD photosensors

- ≥ 120 mm size
- \triangleright Tiled with a 1.5mm gap
- ≥ 68 sensors total

pfRICH PID and $e/\pi/K/p$ separation

Far- Forward/Backward Instrumentation

Far-Forward Detectors

Streaming DAQ

Triggerless streaming architecture gives much more flexibility to do physics

Allows to integrate AI/ML as close as possible to subdetectors

Event selection with data from all detectors

Data volume is reduced as much as possible at each stage

Expectation for O(100) PB per run, feasible to store for analysis

RF clock is used to make a physics synchronization with beam bunches

10GB/s \sim 2-3 DVD movies (DVD \sim 4.7 Gigabytes) per second

72

Installation Schedule

with the understanding that this is an evolving, current draft

CFF local Fits at EIC

EIC proton DVCS Observables

$$
\begin{array}{l} N_{events}=\int \mathcal{L}\times \sigma \times \text{KPS} \\ \text{KPS}=\Delta x_B \Delta Q^2 \Delta t \Delta \phi \end{array}
$$

$$
\tfrac{\Delta\sigma}{\sigma} = \tfrac{1}{\sqrt{\mathrm{N_{events}}}} \oplus 5\%
$$

$$
\begin{array}{l} \Delta A_{LU}=\frac{1}{P_e}\sqrt{\frac{1-P_e^2A_{LU}^2}{\hbar}}\oplus3\%_{relative}\hspace{0.3cm}P_e=70\%\\ \\ \Delta A_{UL}=\frac{1}{P_p}\sqrt{\frac{1-P_p^2A_{UL}^2}{\hbar}}\oplus3\%_{relative}\hspace{0.3cm}P_p=70\%\\ \\ \Delta A_{LL}=\frac{1}{P_eP_p}\sqrt{\frac{1-P_e^2P_p^2A_{LL}^2}{\hbar}}\oplus3\%_{relative}\oplus3\%_{relative}\\ \\ \Delta A_C=\sqrt{\frac{1-A_C^2}{\hbar}}\oplus3\%_{relative}\\ \\ \Delta A_{LC}=\frac{1}{P_e+}\sqrt{\frac{1-P_{e}^2+A_{LC}^2}{\hbar}}\oplus3\%_{relative}\hspace{0.3cm}P_{e^+}=70\%\\ \end{array}
$$

N.B. assumption on the luminosity

1 year $=365$ days \times 24 hours/day \times 3600 s/hour $=3.15\times10^7$ s $\approx\frac{1}{2}$ $\frac{1}{3} \times 10^8$ s

$$
\mathcal{L}=10^{34}~\text{cm}^{-2}\text{s}^{-1}=10^{38}~\text{m}^{-2}\text{s}^{-1}
$$

$$
\int \mathcal{L}=10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}\times 1~\mathrm{year} \approx \frac{1}{3}\times 10^{46}~\mathrm{m}^{-2}
$$

100 fb⁻¹
$$
\iff
$$
 1 year at 10³⁴ cm⁻²s⁻¹ with contingency (\approx 3)
 \iff 10 years at 10³³ cm⁻²s⁻¹

Luminosity is a potential challenge for exclusive reactions

275 GeV \times 18 GeV σ

275 GeV \times 18 GeV A_{LU}

275 GeV \times 18 GeV A^C

275 GeV \times 18 GeV $\times_B = 0.08 \pm 0.02$ $Q^2 = 329 \pm 175$ GeV²

Not shown here: A_{LL} A_{LT} A_{LT} are small

note: statistics and systematics included

Locally extracted Im CFF 275×18 GeV²

Locally extracted Re CFF 275×18 GeV²

High and Low energies runs

Kinematical coverage complementarity

Local extraction results:

Better Strategy:

global fit using DR and parameterizations for $Im\mathcal{H}$ and $D(t)$ note: subtraction constant: same for H and $\mathcal E$, none for $\tilde{\mathcal H}$ and $\tilde{\mathcal E}$

Towards Ji's sum rule

$$
J^q(t) = \frac{1}{2} \int_{-1}^1 dx \, x \, [H^q(x,\xi,t) + E^q(x,\xi,t)]
$$

independent of ξ but at fixed ξ

DVCS measures

$$
\mathcal{I}m\mathcal{H}(\xi,t)=\pi H(\xi,\xi,t)
$$

need another process to access the skewness \rightarrow especially crucial at large x_B

> DDVCS? JLab 12 luminosity upgrade?

Impact of the positron beam

Enhanced sentivity to the Real part of the amplitude

Local extraction results:

low $F: 40$ GeV \times 5 GeV

Improved sensitivity, and systematic checks Also, in general opens up access to new physics (\cdots)

Pressure and Shear Sensitivities

Propagate uncertainties estimated with local fits using dispersion relation

Relevance of the large x_B region to the dispersion analysis

Nucleon structure for hadron-hadron colliders

- \blacktriangleright MultiParton Interaction first suggested in 1975 (Landshoff & Polkinghorne)
- \blacktriangleright Evidence in :
	- \blacktriangleright high p_{t} at the CERN/ISR and Tevatron
	- intermediate p_T : underlying event in Dijet and Drell-Yann at CFD Run I and II, and at CMS
	- Found to be necessary to tune low p_T Pythia and **Herwig**
- \triangleright MPI more important at LHC is expected to challenge many new physics search
- MPI can also be better studied at LHC for itself!

C. Weiss, L. Frankfurt, M. Strikman, Ann.Rev.Nucl.Part.Sci. 55 (2005) 403-465 Diehl, Ostermeier, Schäfer, "Elements of MPI in QCD", DESY 11-196

Summary / Outlook

- \blacktriangleright Rich physics program envisioned at the future EIC
- \triangleright Today: just a sample in the school context, and with my personal biais
- \blacktriangleright Many aspects we did not discuss: computing, AI, accelerator physics...
- Synergy between:
	- \blacktriangleright Fixed target experiments at JLab
	- \blacktriangleright Future EIC at BNL
	- I Hadron hadron colliders
- Exciting opportunities for you!

