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• Want to describe hadrons in a theory of quarks and gluons


• Feynman Path Integral for vacuum expectation values 
 
 

•  is any function of the fields at a fixed time 

• Maybe it can create/annihilate a nucleon or pion or it 

represents a series of effective Weak or EM interactions 

O(t1)

Path integral is beginning of QFTs
Lattice QCD reminder

⟨O(t1)…O(tN)⟩conn =
∫ d[Aμ]d[ψ]d[ψ̄] O(t1)…O(tN) eiSQCD[Aμ,ψ,ψ̄]

∫ d[Aμ]d[ψ]d[ψ̄] eiSQCD[Aμ,ψ,ψ̄]

SQCD[Aμ, ψ, ψ̄] = ∫ d4x ∑
f

ψ̄ f
i(x)[iDij − mf δij] ψ f

j (x) −
1
4

Fa
μν(x)Fμν

a (x)
Gauge Action

Dirac Matrix Dμ
ij = ∂μδij + gAμ

a ta
ij

Minkowski



• Want to describe hadrons in a theory of quarks and gluons


• Feynman Path Integral for vacuum expectation values 
 
 

•  is any function of the fields at a fixed time 

• Maybe it can create/annihilate a nucleon or pion or it 

represents a series of effective Weak or EM interactions 

• I will always assume products of operators in VEV will have explicit and fixed 
times to simplify time ordering and Wick rotations.

O(t1)

Path integral is beginning of QFTs
Lattice QCD reminder

⟨O(t1)…O(tN)⟩conn =
∫ d[Aμ]d[ψ]d[ψ̄] O(t1)…O(tN) e−SE

QCD[Aμ,ψ,ψ̄]

∫ d[Aμ]d[ψ]d[ψ̄] e−SE
QCD[Aμ,ψ,ψ̄]

SQCD[Aμ, ψ, ψ̄] = ∫ d4x ∑
f

ψ̄ f
i(x)[iDij − mf δij] ψ f

j (x) −
1
4

Fa
μν(x)Fμν

a (x)
Gauge Action

Dirac Matrix Dμ
ij = ∂μδij + gAμ

a ta
ij

Euclidean



• For Numerical Evaluation, we start in Euclidean time and Wick rotate 
to Minkowski at later step (IF POSSIBLE!)


• We want to evaluate a lattice regulated path integral for any action at 
any coupling 
 
 

• Sample variables (the fields on lattice sites)  with probability 
 

 

• Apply measurement to the samples and average to approximate 
path integral

{ϕx}
P[ϕ] = e−SE[ϕ]/Z

A very large dimension integral to do
Markov Chain Monte Carlo Recap

⟨O⟩ = Z−1 ∫ d[ϕ] O(ϕ)e−SE[ϕ] ≈ N−1
N

∑
i

O(ϕi)

⟨O⟩ = ∫ d[ϕ] O(ϕ)
e−SE[ϕ]

Z



• Feynman Path Integral for vacuum expectation values 
 
 
 

• Philosophy: After discretizing infinite field of operators to finite grid, replace operators with actual 
numbers and matrices.


• Generate random values of field with probability

• Free Scalar Lagrangian 
 
 
 
 

• Average  as function of variables from each random sample O1…ON

Free Scalar fields as random Gaussian variables
Discretizing the Path Integral

⟨O1…ON⟩E
conn =

∫ d[ϕ] O1…ON e−SE[ϕ]

∫ d[ϕ] e−SE[ϕ]

P[ϕ] =
1
Z

exp[−SE[ϕ]]

SE(ϕ) = a4 ∑
x∈Λ

1
2

4

∑
μ=1

(ϕ(x + a ̂μ) − ϕ(x − a ̂μ)
2a )

2
+

m2

2
ϕ2(x) =

a4

2 ∑
x,y∈Λ

ϕxMxyϕy

LE(ϕ) =
1
2

∂μϕ∂μϕ +
m2

2
ϕ2

Gaussian Random Number 
for each grid point

Allow field to only be on  
a 4-d grid with spacing a

d[ϕ(x)] → ∏
x

dϕx

For quarks in QCD,  has dimension M V × Nc × Ns ∼ (483 × 96) × 3 × 4 ≈ 127M



• What is Euclidean time dependence of correlator


• Insert complete set of energy Eigen states (sum in finite volume)


• Low Energy spectrum dominates the large Euclidean time limit

Times are important to fix for translation to Minkowski space
2 point functions in Euclidean time

⟨O(T )O(0)⟩E
conn =

∫ d[ϕ] O(T )O(0) e−SE[ϕ]

∫ d[ϕ] e−SE[ϕ]

⟨O(T )O(0)⟩E
conn = ⟨Ω |O(T )O(0) |Ω⟩ = ∑

n

1
2En

⟨Ω |O(T ) |n⟩⟨n |O(0) |Ω⟩ = ∑
n

|Zn |2 e−EnT

O(T ) = eHTO(0)e−HT Zn =
1
2En

⟨Ω |O(0) |n⟩

 is any operator of interest from a fixed timeslice. 
 Could be  or  or 

O
O(t) = ϕ(0⃗, t) O(t) = ∑⃗

x

ei ⃗p⋅ ⃗xϕ( ⃗x, t) O(t) = ∑⃗
x, ⃗y

ei ⃗p⋅( ⃗x− ⃗y)ϕ( ⃗x, t)ϕ( ⃗y, t)

∑
n

1
2En

|n⟩⟨n |

H |n⟩ = En |n⟩ H |Ω⟩ = 0 |Ω⟩
Time translation in Euclidean spacetime

O(T ) = eiHTO(0)e−iHT

Time translation in Minkowski spacetime



• Interpolator field  has quantum numbers of desired hadron


•  

• Wick’s Theorem contracts spin-color-space matrices 
 
 

• Simply for light quarks 

Oh(t)

C2 = ⟨Tr[D−1(t; 0)γ5D−1(0; t)γ5]⟩

Just like in PT, but only done for quarks
Wick’s theorem makes graphs 

uα′ 
a′ 

d̄β′ 
a′ 

ūα
a

dβ
a

t = T t = 0

t = T t = 0

[γ5]αβ

[D−1
u ]a′ a

α′ α(x, t; 0,0)
[γ5]αβ

[γ5]α′ β′ 
C2(T ) = a3 ∑⃗

x

⟨Oπ+( ⃗x, T )Ōπ+(0,0)⟩
Any operator 

with right 
flavor and  

will do
JPC

[D−1
d ]aa′ 

ββ′ 
(0,0; x, t)

[γ5]α′ β′ 

Trace spin and color

Oπ+ = uγ5d̄ : JPC = 0−+

Propagators are 
inverse Dirac 

matrix are 
functions of 

gauge links and 
contain info on 

quark/gluon 
interactions and 
quark loops from 

determinant

⟨O(t1)…O(tN)⟩conn =
∫ d[Aμ]∏q [d[q]d[q̄]] O(t1)…O(tN) e−SE

g [Aμ]−∑q q̄Dqq

∫ d[Aμ]∏q [d[q]d[q̄]] e−SE
QCD



• Interpolator field  has quantum numbers of desired hadron


• Wick’s Theorem 

Oh(t)
Just like in PT, but these include all gluon interactions
Wick’s theorem makes graphs 

u

d

ū

d̄

t = T t = 0

t = T t = 0

ūu

u

d

ū

d̄

ūu

u

d

ū

d̄

ūu

Interpolators can define specific 
spin and color combinations to 

make a Nucleon

Any operator 
with right 

flavor and  
will do

JPC

Propagators are 
inverse Dirac 

matrix are 
functions of 

gauge links and 
contain info on 

quark/gluon 
interactions and 
quark loops from 

determinant

D−1
u

D−1
u

D−1
d

D−1
d

D−1
u

D−1
u



HadSpec Collaboration
Hadron Spectrum

• Studying correlation matrix access 
higher states with GEVP


• PRD 82 (2010) 034508

Cij(T ) = ⟨Oi(T )Ōj(0)⟩ = ∑
n

Zi
nZ*j

n e−EnT

JPC

Spin, Parity,  
Charge Conjugation



• 3 operators: 


• Expand with complete set of states 
 
 
 

• Wick contractions: Connect quarks in all possible ways

Matrix elements of hadrons

⟨O(T ) J(τ) Ō(0)⟩ = ∑
n,m

ZnZ*me−En(T−τ)−Emτ⟨n |J |m⟩

u

d̄

ūα
a

dβ
a

t = T t = 0

[γ5]αβ

t = τ

[γ5]αβ

d d̄[Γ]αβ

O(T ) = eHTO(0)e−HT Zn =
1
2En

⟨Ω |O(0) |n⟩
Time translation in Euclidean space

J(τ) = ∑⃗
x

[d̄Γd]( ⃗x, τ)



• 3 operators:  
 
Disconnected 
 
 
 
 
 
 
 
Connected

THESE ARE NOT FEYNMAN DIAGRAMS WHERE DISCONNECTED DIAGRAMS ARE 0.
Matrix elements of hadrons

u

d̄

ūα
a

dβ
a

t = T t = 0

[γ5]αβ

t = τ

[γ5]αβ

d d̄[Γ]αβ

A(τ) = ∑⃗
x

[d̄Γd]( ⃗x, τ)

u

d̄

ūα
a

dβ
a

t = T t = 0

[γ5]αβ

t = τ

[γ5]αβ

d d̄[Γ]αβ

Disconnected 
diagrams are 
noisier. Avoid 

with iso-vector 
 quarksu − d

⟨O(T ) J(τ) Ō(0)⟩ = ∑
n,m

ZnZ*me−En(T−τ)−Emτ⟨n |J |m⟩

⟨O(t1)…O(tN)⟩conn =
∫ d[Aμ]d[ψ]d[ψ̄] O(t1)…O(tN) eiSQCD[Aμ,ψ,ψ̄]

∫ d[Aμ]d[ψ]d[ψ̄] eiSQCD[Aμ,ψ,ψ̄]



Many ways to describe a hadron
Overview of Objects in Hadron Structure

Fig from EIC white paper

Charges and Mellin Moments

gV,A,T , an

t = 0∫ dx xn−1

t = 0



• Matrix Elements from ratios of 3pt and 2pt functions at large 
Euclidean times


• Directly calculable from local operators matched the MS-bar 
scheme / scheme independent ratios

• Charges

• Form Factors

• PDFs’ Mellin Moments

• GPDs’ Mellin Moments

• Ratios of (G)TMDPDFs’ Mellin Moments


• Indirectly calculable from non-local operators after a factorization

• PDFs

• GPDs

• TMDPDFs and the Collins-Soper Kernel

Lattice Structure Overview



• Finite lattice spacing  fm


• Finite volumes  fm and 


• Heavy quarks / pions  MeV


• Excited state control  MeV


• Statistics

a ∼ 0.045 − 0.1

L ∼ 3 − 5 mπL ∼ 4 − 6

mπ ∼ 140 − 600

Δ ∼ 140 − 500

All systematics are improvable, but at what cost?
Catches of a lattice calculation

Polynomial of  to modela

Single hadron: Exponential 
decay in  to model 

Multi-hadron: 
Polynomial in  which 

Luscher method removes

mπL

L−1

Chiral PT gives polynomials 
and logs of  to modelmπ

Use larger T and do better fits 
Variational can separate lowest states

Always there 
Beg the DOE for bigger computer



• Smearing interpolating operator for high overlap and signal 

• Momentum smearing


• Distillation smears the operators 


• Excited state energy gap shrinks 
• Larger times needed for ground state


• (Summed) GEVP techniques can remove lowest states and 
suppress remaining


• Exponentially suppressed signal-to-noise ratio 

• Lanczos approach to separate noise and signal modes of transfer 
matrix

Difficulty Reaching High Momentum

G. Bali et al Phys. Rev. D 93 (2016) 9, 094515

J. Bulava, M. Donnellan, R. Sommer  JHEP 01 (2012) 140

M. Peardon, et al,  Phys. Rev. D 80 (2009) 054506

C. Egerer et al  Phys. Rev. D 103 (2021) 3, 034502

M. Wagman 2406.20009 
D. Hackett and M. Wagman 2407.21777

⟨O(T ) J(τ) Ō(0)⟩ = ∑
n,m

ZnZ*me−En(T−τ)−Emτ⟨n |J |m⟩ Zn = ⟨Ω |O(0) |n⟩



Simple for testing, but still important for structure

Local Charges
⟨O(T ) J(τ) Ō(0)⟩ = ∑

n,m

ZnZ*me−En(T−τ)−Emτ⟨n |J |m⟩

JΓ
qq′ 

= q̄Γq′ 

• Ratios of 3pt 
and 2pt give 
series of matrix 
elements 

• Near 
 

excited states 
give curvature 

• Model plateau 
and leading 
excited states

τ = T or 0

C. Egerer et al  Phys. Rev. D 103 (2021) 3, 034502

Γ = 1
⟨O(T )Ō(0)⟩ = ∑

n

|Zn |2 e−EnT

C3(T, τ)
C2(T )

= ⟨0 |J |0⟩ + O(e−(E1−E0)T, e−(E1−E0)(T−τ), e−(E1−E0)τ)



• FLAG Review 2021 (hopefully 2024 will appear)

• Green means continuum, pion 

mass, infinite volume and excited 
states all under some control


• Connected only u − d

http://flag.unibe.ch/2021/Nucleon%20matrix%20elements

Flavour Lattice Averaging Group

http://flag.unibe.ch/2021/Nucleon%20matrix%20elements


• Tensor Charge and 
Transversity PDF 
 
 

• Initially appear to have 
tension


• Adding Lattice QCD 
charges to analysis 
removes tension and 
improves precision

Use of charges in global fits

gu−d
T = ∫ dx hu−d

1 (x)

C. Cocuzza et al JAM Collab PRL 132 091901 (2024)



Form Factors
⟨p′ |Jμ(q = p′ − p) |p⟩ = ūN(p′ )(γμF1(t) +

iσμq

2m
F2(t))uN(p)

σμq = σμνqν
NME Collaboration PRD 105 (2021) 054505

• Electromagnetic Form Factors


• Accurate lattice results require 
high precision control over all 
systematics 

• FFs are integrals of GPDs 
 
 
 
 

F1(t) = ∫ dx H(x, ξ = 0,t)

F2(t) = ∫ dx E(x, ξ = 0,t)

GM = F1 + F2

GE = F1 +
t

4m2
F2



Axial Form Factors

⟨p′ |Jμ |p⟩ = ū(p′ )(γμγ5FA(t) +
qμγ5

m
FP(t))u(p)

A. Meyer, A. Walker-Loud, C. Wilkinson 

Annu. Rev. Nucl. Part. Sci (2022) 72 205-232

• Axial Form Factors 
needed for 
Neutrino studies 
 

• Strong agreement 
amongst lattice 
groups 

• Discrepancy could 
be nuclear effects 
in experiment



Why no PDFs from the lattice
• Parton Distributions are defined by 

operators with light-like separations 
 

• Fourier transformations of matrix 
elements give PDF 
Cannot integrate light cone separation if 
no light cone! 
 
 

• Spoiler: 
Embrace space-like separations

X. Ji Phys Rev Lett 110 (2013) 262002

z2 ≠ 0

M(p, z) = ⟨p | ψ̄(z)γαW(z; 0)ψ(0) |p⟩



• OPE of Hadronic Tensor showed leading  is from operators 
 
 

• PDF is function whose Mellin moments are those matrix elements 


• Local charges are just  

• Lorentz invariant definition of PDF without need of light cone on 
the lattice

1/Q2

n = 1

Mellin Moments of PDF

O{μ1,μ2,…μn}
n = q̄γ{μ1Dμ2…Dμn}q

{ Traceless and Symmetric indices } 
You’ll See why later in the Lattice Cross Section example

⟨p |On |p⟩ = an = ∫
1

−1
dx xn−1f(x)



Continuous symmetry  
 
 
 
 
 
 
 
 
 
 
 

Infinite number of Irreducible 
Representations (irreps) labeled by 
integers/half integers called spin


Spin is conserved since different 
irreps don’t mix

O(4) Discrete and Finite symmetry  
 
 
 
 
 
 
 
 
 
 
 

Hypercube symmetry group has 
192 Elements with 13 irreps


Each irrep has contributions from 
many, but not all, spins

H(4)
Continuum rotation vs Lattice rotation
Symmetries of the lattice



• Symmetric and Traceless operators have twist  = 2


• Bare Operators of same irrep mix under renormalization


• Bare Operators with lower  mix with higher , but larger  needs 
factors of  to compensate mass dimension


• Bare Operators with higher  mix with lower with powers of  


• Different choices of indices are in different irreps and mix differently

τ = J − M

J J M
a

J a−1

“No free lunch” theorem
Mixing of spin states

Mass dimension of operator

Spin of operator

[O43
2 ]latt

b (a) = Zlatt(a2μ2)[q̄γ4D3q]cont
μ2 + O(a)

[Oμνρ
3 ]latt

b (a) = Zlatt
1 (a2μ2)[q̄γμDνDρq]cont

μ2 +
1
a2

Z latt
2 (a2μ2)gνρ[q̄γμq]cont

μ2 + O(a)

S. Capitani, G. Rossi (1995) arXiv:9401014

G. Beccarini, et al (1995) arXiv:9506021



• Quarks with  and 


• Gluons with  and 


• “Sum rules” are conservation of linear and angular momentum

q̄γ{μDν}q q̄γ5γ{μDν}q

FμνFρσ FμνF̃ρσ

Local Moment calculations

ETM Collaboration PRD 1010 (2020) 9,094513



Local Operator calculations
ETM Collaboration PRD 1010 (2020) 9,094513



• Local Calculations are well understood numerically and 
theoretically


• High precision and control of systematic errors


• Direct relation to observables matched to MS-bar scheme

Summary of local calculations



• Minkowski Hadronic Tensor is QCD part of DIS cross section


•

Hadronic Tensor

Wμν(q, p) = ⟨p |∫ d4x eiq⋅xJμ(x)Jν(0) |p⟩

K.-F. Liu et al Phys. Rev. Lett. 72 1790 (1994)

                      Phys. Rev. D 62 (2000) 074501

E′ 
dσDIS

d3l′ 
=

2α2

sQ4
LμνWμν Lμν(l, l′ ) =

1
2

Tr [γνlγμl′ ]

Fig from “Foundations of Perturbative QCD” J. Collins



• Minkowski Hadronic Tensor is QCD part of DIS cross section


• In Euclidean space, fix the times!


• Inverse Laplace Transform to get Minkowski HT 
 
 

• Requires 4 point functions!


• Large  limit gives PDF information, Smaller  to 
get resonances

Q2 = ν2 − ⃗q2 Q2

Hadronic Tensor

Wμν(q, p) = ⟨p |∫ d4x eiq⋅xJμ(x)Jν(0) |p⟩

K.-F. Liu et al Phys. Rev. Lett. 72 1790 (1994)

                      Phys. Rev. D 62 (2000) 074501

W̃μν( ⃗q, τ, p) = ⟨p |∫ d3x ei ⃗q⋅ ⃗xJμ(x, τ)Jν(0) |p⟩

Wμν( ⃗q, ν, p) = − i∫
c+i∞

c−i∞
dτ eντ W̃( ⃗q, τ, p)

E′ 
dσDIS

d3l′ 
=

2α2

sQ4
LμνWμν Lμν(l, l′ ) =

1
2

Tr [γνlγμl′ ]



• Hand Bag: currents directly connected by quark line which cares 
hard momentum transfer in/out of currents


• Cat Ears: Currents not directly connected

Hadronic Tensor Diagrams
K.-F. Liu et al Phys. Rev. Lett. 72 1790 (1994)

                      Phys. Rev. D 62 (2000) 074501

W̃μν( ⃗q, τ) = ⟨p |∫ d3x ei ⃗q⋅ ⃗xJμ(x, τ)Jν(0) |p⟩



Hadronic Tensor
QCD Collaboration PRD 101 (2020) 11, 114503χ

Eu
cl

id
ea

n 
Ti

m
e

M
in

ko
w

sk
i E

ne
rg

y 
Tr

an
sf

er

W
μν

(q
2 ,ν

)=
−

i ∫c+
i∞

c−
i∞

dτ
eντ

W̃
(

⃗q,
τ)



Many non-local approaches
• Wilson line operators 

• LaMET


• Pseudo-PDF


• Two current correlators 

• Hadronic Tensor


• HOPE


• Short distance OPE 


• OPE-without-OPE


• Good Lattice Cross Sections

OWL(x; z) = ψ̄(x + z)ΓW(x + z; x)ψ(x)

OCC(x, y) = JΓ(x)JΓ′ (y)

X. Ji Phys. Rev. Lett. 110 (2013) 262002

A. Radyushkin Phys. Rev. D 96 (2017) 3, 034025

K.-F. Liu et al Phys. Rev. Lett. 72 1790 (1994)

                      Phys. Rev. D 62 (2000) 074501

Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018) 2, 022003

W. Detmold and C.-J. D. Lin, Phys. Rev. D 73 (2006) 014501

V. Braun and D. Muller Eur. Phys. J. C 55 (2008) 349

A. Chambers et al, Phys. Rev. Lett. 118 (2017) 242001

6



• Short Distance OPE / Good Lattice Cross 
Sections


• Expand in small Lorentz invariant 
separation between currents


• Hadronic Tensor / OPE without OPE 


• Expand in the momentum transferred in/
out of currents  

• Heavy-Quark Operator Product expansion 
(HOPE)


• Expand in the mass of a heavy quark 
between currents

Two Current choices
Which scale and which OPE



• Short Distance OPE / Good Lattice Cross 
Sections 

• Expand in small Lorentz invariant 
separation between currents


• Hadronic Tensor / OPE without OPE 


• Expand in the momentum transferred in/
out of currents  

• Heavy-Quark Operator Product expansion 
(HOPE)


• Expand in the mass of a heavy quark 
between currents

zμ

Two Current choices
Which scale and which OPE

z2



• Short Distance OPE / Good Lattice Cross 
Sections


• Expand in small Lorentz invariant 
separation between currents


• Hadronic Tensor / OPE without OPE  

• Expand in the momentum transferred in/
out of currents  

• Heavy-Quark Operator Product expansion 
(HOPE)


• Expand in the mass of a heavy quark 
between currents

Which scale and which OPE
Two Current choices

qμ qμ

Q2 = − q2



• Short Distance OPE / Good Lattice Cross 
Sections


• Expand in small Lorentz invariant 
separation between currents


• Hadronic Tensor / OPE without OPE 


• Expand in the momentum transferred in/
out of currents  

• Heavy-Quark Operator Product expansion 
(HOPE) 

• Expand in the mass of a heavy quark 
between currents

m2
Q

Q̃2 = − q2 + m2
Q

Two Current choices
Which scale and which OPE

qμ qμ



• To lose indices consider scalar current  


• The matrix element can be expanded if  is sufficiently small


• OPE looks like Taylor expansion in z 
 
 
 
 
Local matrix elements proportional to  and other ``trace 
terms’’ with  factors


• Rearrange to see leading twist dominance when  is small 
 
                                                      

j

z

pμ1…pμn

gμiμj

z2

Expansion in Separation

M(p, z) = ⟨p | j(z)j(0) |p⟩

M(p, z) = ∑
n

Cn(μ2z2)
n!

zμ1
…zμn

⟨p | ψ̄(0)Dμ1…Dμnψ(0) |p⟩2
μ

M(p, z) =
∞

∑
n=0

⌊n/2⌋

∑
l=0

Cn(μ2z2)(iν)n−2l( z2m2

4 )l

n!
An,l(μ2)  comes from traceless 

symmetric operator
l = 0

Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018) 2, 022003
V. Braun and D. Muller Eur. Phys. J. C 55 (2008) 349

M(p, z) = ⟨p | ψ̄(z)ψ(z)ψ̄(0)ψ(0) |p⟩

All of this holds for pseudo-PDF



• Matching to “PDF” in different spaces


• Mellin Space


• Ioffe time Space


• Momentum Fraction Space 
                                                      

Expansion in Separation

M(p, z) = M(ν, z2) =
∞

∑
n=0

⌊n/2⌋

∑
l=0

Cn(μ2z2)(iν)n−2l( z2m2

4 )l

n!
An,l(μ2)

Cn(μ2z2) = ∫
1

−1
du un−1C(u; μ2z2)

Cn(μ2z2) = 1 + O(αs) → K(xν, μ2z2) = exp[ixν] + O(αS) = ∫
1

−1
du exp[ixuν]C(u, μ2z2)

M(p, z) = M(ν, z2) = ∫
1

−1
dx K(xν; μ2z2)q(x, μ2) + O(z2)

M(p, z) = M(ν, z2) = ∫
1

−1
du C(u; μ2z2)I(uν, μ2) + O(z2)

I(ν, μ2) = ∫
1

−1
dxeiνxq(x, μ2) Cn(μ2z2) = 1 + O(αs) → C(u; μ2z2) = δ(1 − u) + O(αS)

An,0(μ2) = ∫
1

−1
dxxn−1q(x, μ2)

All of this holds for pseudo-PDF

Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018) 2, 022003
V. Braun and D. Muller Eur. Phys. J. C 55 (2008) 349



• Two Current objects can be factorized to parton structure


• Renormalization and Perturbatively clean


• Choices of which scales to expand in


• Hadronic Tensor could give information outside DIS regime

Pause for two current summary



• In quasi-PDF/LaMET and pseudo-PDF/Short distance, 
separation and momentum swap roles

Wilson Line Matrix Elements

• Matrix element  
 

M(p, z) = ⟨p | ψ̄(z)γαW(z; 0)ψ(0) |p⟩
= 2pαℳ(ν, z2) + 2zα𝒩(ν, z2)

ν = p ⋅ z



• In quasi-PDF/LaMET and pseudo-PDF/Short distance, 
separation and momentum swap roles

Wilson Line Matrix Elements

• Matrix element  
 

• Quasi-PDF: 

• Large Momentum Effective Theory: 
 
 

M(p, z) = ⟨p | ψ̄(z)γαW(z; 0)ψ(0) |p⟩
= 2pαℳ(ν, z2) + 2zα𝒩(ν, z2)

q̃(y, p2
z ) = ∫

dx
|x |

K( y
x

,
μ2

(xpz)2 )q(x, μ2) + O( Λ2
QCD

(xpz)2
,

Λ2
QCD

((1 − x)pz)2 )

z2 ≠ 0

X. Ji Phys. Rev. Lett. 110 (2013) 262002

ℳ(z, pz) = ∫
∞

−∞

pzdy
2π

eiypzz q̃(y, p2
z )

ν = p ⋅ z



• In quasi-PDF/LaMET and pseudo-PDF/Short distance, 
separation and momentum swap roles

Wilson Line Matrix Elements

• Matrix element  
 

• Quasi-PDF: 

• Large Momentum Effective Theory: 
 
 

• Pseudo-ITD:

M(p, z) = ⟨p | ψ̄(z)γαW(z; 0)ψ(0) |p⟩
= 2pαℳ(ν, z2) + 2zα𝒩(ν, z2)

q̃(y, p2
z ) = ∫

dx
|x |

K( y
x

,
μ2

(xpz)2 )q(x, μ2) + O( Λ2
QCD

(xpz)2
,

Λ2
QCD

((1 − x)pz)2 )

ℳ(ν, z2) = ∫ dx C(xν, μ2z2)q(x, μ2) + O(Λ2
QCDz2)

A. Radyushkin Phys. Rev. D 96 (2017) 3, 034025

X. Ji Phys. Rev. Lett. 110 (2013) 262002

ν = p ⋅ z

z2 ≠ 0ℳ(z, pz) = ∫
∞

−∞

pzdy
2π

eiypzz q̃(y, p2
z )



• In quasi-PDF/LaMET and pseudo-PDF/Short distance, 
separation and momentum swap roles

Wilson Line Matrix Elements

• Matrix element  
 

• Quasi-PDF: 

• Large Momentum Effective Theory: 
 
 

• Pseudo-ITD:

M(p, z) = ⟨p | ψ̄(z)γαW(z; 0)ψ(0) |p⟩
= 2pαℳ(ν, z2) + 2zα𝒩(ν, z2)

q̃(y, p2
z ) = ∫

dx
|x |

K( y
x

,
μ2

(xpz)2 )q(x, μ2) + O( Λ2
QCD

(xpz)2
,

Λ2
QCD

((1 − x)pz)2 )

ℳ(ν, z2) = ∫ dx C(xν, μ2z2)q(x, μ2) + O(Λ2
QCDz2)

A. Radyushkin Phys. Rev. D 96 (2017) 3, 034025

X. Ji Phys. Rev. Lett. 110 (2013) 262002

• Integral inverse problem like global analysis

ν = p ⋅ z

z2 ≠ 0ℳ(z, pz) = ∫
∞

−∞

pzdy
2π

eiypzz q̃(y, p2
z )



● Some are Lorentz invariant interpretations

● These interpretations nor the functions’ bounds require small  , only 

relation to light cone PDF with  and some other regulation
z2

z2 = 0

Other Faces of WL Matrix Element

Review: A. Radyushkin (2019) 1912.04244

xdi
=

Bsdi
(α) − Budi

(α)

Adi
(α) + Bsdi

(α) + Budi
(α)

σdi
=

Adi
(α) + Bsdi

(α) + Budi
(α)

Ddi
(α)

iχ(k, p) = ∫
∞

0
dσ∫

1

−1
dxeiσ[k2 − 2x(k ⋅ p) + iϵ]V(x, σ)

ℳ(ν, z2) = ∫
1

−1
dxeiνx ∫

∞

0
e−iσ(z2−ϵ)V(x, σ)

Fourier transform to 
position space

 are positive numbers 
and  are 
sums of products of 

αj

A, Bu, Bs, C, D
αj



● Some are Lorentz invariant interpretations

● These interpretations nor the functions’ bounds require small  , only 

relation to light cone PDF with  and some other regulation
z2

z2 = 0

Straight Link / Primordial TMD

Frame dependent picture with nice interpretation


 pole gives log 1/k2
T z2

pseudo-PDF

Lorentz invariant picture


log  divergence from poles of TMD/VDFz2

Virtuality Distribution Function

Lorentz invariant picture


 pole gives log 

Limits from nature of Feynman diagrams

σ−1 z2

Other Faces of WL Matrix Element

Review: A. Radyushkin (2019) 1912.04244
Musch, Hagler, Negele, Schafer PRD 83 (2011) 094507

ℳ(ν, z2) = ∫
1

−1
dxeiνx ∫

∞

0
e−iσ(z2−ϵ)V(x, σ)

ℳ(ν, z2) = ∫
1

−1
dxeiνxP(x, z2)

ℳ(ν, z2) = ∫
1

−1
dxeiνx ∫ d2kTeikT⋅zTF(x, k2

T)

z = (0,z−, zT) p = (p+,
m2

p+
,0T)

q̃(y, p2
z ) = ∫ dz∫

1

−1
dxeipzz(x−y)P(x, z2)

f(x, μ2) = ∫
μ2

d2kTF(x, k2
T) = ∫

∞

0
dσ [1 − e− i

σ (μ2−iϵ)] V(x, σ)

Light cone PDF from regulated integral of TMD

Relate to the Lorentz invariant VDF


 or  poles generate  divergence1/k2
T σ−1 log μ2



• In quasi-PDF, pseudo-PDF, and Structure Functions, variables 
have common roles

The Role of Separation and Momentum

Scale: 
  / /   

•Scale for factorization to PDF 

•Scale in power expansion  

•Keep away from  

•Technically only requires 
single value

p2
z z2 Q2

Λ2
QCD

Dynamical variable:  
 /  , or  ,  

•Variable describes non-perturbative 
dynamics 

•Can take large or small value


•Want as many as are available


•Wider range improves the inverse 
problem 

z pz ν = p ⋅ z xB



• Mimics PDF’s original definition but embrace space-like


• Primary advantage is 3-point function not 4-point function


• Two parameters  and choose one large or other smallp, z

Pause for Wilson Line summary



• Limited range of  and  
cannot approach  
to integrate inverse

z p
ν → ∞

Inverse Problems for pseudo-PDFs

JK, K. Orginos, A. Rothkopf, S. Zafeiropoulos JHEP 04 (2019) 057

q(x) = ∫
∞

0
dν C−1(xν)𝔐(ν)



• Limited range of  and  
cannot approach  
to integrate inverse


• Forward integral to an ill- 
posed matrix equation 

z p
ν → ∞

Inverse Problems for pseudo-PDFs
q(x) = ∫

∞

0
dν C−1(xν)𝔐(ν)

𝔐(ν) = ∫
1

0
dx C(xν) q(x) → [C][q]

JK, K. Orginos, A. Rothkopf, S. Zafeiropoulos JHEP 04 (2019) 057



• Limited range of  and  
cannot approach  
to integrate inverse


• Forward integral to an ill-
posed matrix equation 

z p
ν → ∞

Inverse Problems for pseudo-PDFs

JK, K. Orginos, A. Rothkopf, S. Zafeiropoulos JHEP 04 (2019) 057
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• Limited range of  and  
cannot approach  to 
integrate inverse


• Forward integral to an ill-
posed matrix equation 

• Must be regulated by 
additional information


• Restricted functional form


• Constraints on the PDF or 
parameters


• Assumptions of 
smoothness, continuity, ….

z p
ν → ∞

Inverse Problems for pseudo-PDFs

JK, K. Orginos, A. Rothkopf, S. Zafeiropoulos JHEP 04 (2019) 057
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q(x) = ∫
∞

0
dν C−1(xν)𝔐(ν)

𝔐(ν) = ∫
1

0
dx C(xν) q(x) → [C][q]



• Structure Functions (from pheno) 




• LaMET (on the lattice) 




• pseudo-Distributions / Good 
Lattice Cross Sections 

F2(x, Q2) = ∑
i

∫
1

x
dξ C(ξ,

μ2

Q2
) q(

x
ξ

, μ2)

M(pz, z) = ∫
∞

−∞
pzdy eiypzz q̃(y, p2

z )

𝔐(ν, z2) = ∫
1

−1
dx C(xν, μ2z2) q(x, μ2)

Inverse Problems for Parton Physics
 

• Local Matrix elements / 
HOPE / OPE-without-OPE 
 




• Hadronic Tensor 

an(μ2) = ∫
1

−1
dx xn−1 q(x, μ2)

W̃μν(τ) = ∫ dν e−ντ Wμν(ν)



• Parametric 
• Fit a phenomenologically motivated function


• Method used by global fits


• Potentially significant, but controllable model bias


• Fit to a neural network 


• Non-Parametric 
• Backus Gilbert


• Maximum Entropy Method / Bayesian Reconstruction 


• Bayes-Gauss-Fourier transfrom


• Gaussian Process Regression

Approaches to inverse problem

Y. Burnier and A. Rothkopf (2013) 1307.6106, J. Liang et al (2019) 1906.05312

S. Forte, L. Garrido, J. Latorre, A. Piccione  (2002) 0204232 
K. Cichy, L. Del Debbio, T. Giani (2019)  1907.06037
L. Del Debbio, T. Giani, JK, K. Orginos, A. Radyushkin, S. Zafeiropoulos (2020) 2010.03996

J. Liang, K-F. Liu, Y-B. Yang (2017) 1710.11145

C. Alexandrou, G. Iannelli, K. Jansen, F. Manigrasso (2020) 2007.13800

For NN/BG/MEM/BR: JK, K. Orginos, A. Rothkopf, S. Zafeiropoulos  (2019) 1901.05408

A. Candido, L. Del Debbio, T. Giani, G. Petrillo (2024) 2404.07573



• Inverse Problem Definition: Want to understand a larger possibly infinite 
amount of information, such as functions, from a finite amount of data


• Integral Inverse problems are interpolations and/or extrapolations 
 

• We regulate problem by having some prior information and some data 
on what that function


• Bayes’s theorem  

• For Regression we want ⟨q⟩ = ∫ Dq q P[q |M, I]

Bayesian Solutions

M(ν) = ∫ dxB(ν, x)q(x)

P[A |B, C] =
P[B |A] P[A |C]

P[B |C]

•  is the function  we want to infer

•  is the data  we want to inform our inference

•  is the prior information  we wish to use to constrain the result

A q
B M
C I



• The inverse we wish to understand  M(ν) = ∫ dxB(ν, x)q(x)

Components of the Posterior

P[q |M, I] =
P[M |q] P[q | I]

P[M | I]

Posterior

Data Likelihood: assumed by Central Limit Theorem

P[M |q] ∝ exp[−
1
2 ∑

νν′ 

(Mν − M(ν))C−1
νν′ 

(Mν′ − M(ν′ ))] = exp[−
1
2

χ2]

Prior Distribution:

Choice here decides 
how problem is 
regulated Evidence: Normalizing factor independent of q

P[M | I] = ∫ Dq P[M |q]P[q | I]

“Not using priors and 
minimizing ” is actually 
setting the uniform prior 

χ2

P[q | I] = 1



• Use physics or math to justify a tractable form


• Prior information us a -function in function space 

• Can include priors on the parameters 
 
 

• Maximize the posterior to get most likely parameters

δ

Parameterized fits

P[q | I ] = ∫ dNdαdβ δ(q − Q( . ; N, α, β)) P[N, α, β | I ]

Q(x; N, α, β) =
Nxα(1 − x)β

B(α + 1,β + 1)

P[q |M, I] =
P[M |q] P[q | I]

P[M | I]

⟨q(x)⟩ = ∫ dqq(x)P[q |M, I] = ∫ dNdαdβ Q(x; N, α, β)P[N, α, β |M, I]

Q(x; α, β, θ) = xα(1 − x)βNN(x; θ)



Obtaining  a PDF
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C. Egerer et al (HadStruc) 2107.05199

1. Calculate matrix 
elements with 
many p and z


2. Model (quasi-)PDF 
and its corrections 


3. If doing LAMET, 
match quasi-PDF

Re 𝔐(ν, z2) = ∫
1

0
dxC(νx, μ2z2)q(x, z2) + O(z2) + O(a /z) + …



Nucleon Unpolarized Quark PDF
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• Approaching a decade since first calculations

• Systematics have been continually improved

• Lattice spacing

• Pion mass

• Excited States

• Finite Volume

• Higher order matching

• Power Corrections

• Model dependence



Nucleon Helicity Quark PDF

C. Alexandrou et al (ETMC) 2106.16065

C. Egerer et al (HadStruc) 2211.04424

• Approaching a decade since first calculations

• Systematics have been continually improved



Nucleon Transversity Quark PDF

C. Alexandrou et al (ETMC) 2106.16065

C. Egerer et al (HadStruc) 2111.01808

• Approaching a decade since first calculations

• Systematics have been continually improved

X. Gao et al (ANL/BNL) 
2310.19047



• Factorization of hadronic  
cross sections 

If PDFs are universal….

dσh = dσq ⊗ fh/q + P . C . Mh = Mq ⊗ fh/q + P . C .

If the same PDFs are factorizable from lattice and experiment,  
and if power corrections can be controlled for both  

Why not analyze both simultaneously?

• Factorization of Lattice  
observables

Consider Lattice as a theoretical prior 
 to the experimental Global Fit



LATTICE 

• Lattice limited to low , sensitive 
to , but high sensitivity to 
large 


• Lattice matching relation is 
integral over all 


• Low  data can reach high 
signal-to-noise compared to 
experiment


• Lattice can evaluate 
independently each spin, flavor, 
and even hadron

ν
x ≳ 0.2

x

x

pz

Complementarity in Lattice and Experiment

EXPERIMENT 
• Cross Sections limited to specific 

max but can reach very low 


• Cross Section matching is 
integral from  to 1


• Creates sensitively to hard 
kernel in large  region


• Wealth of decades of 
experimental data outweigh 
modern lattice 

xB

xB

x



First combined lattice PDF and 
experiment global analysis (unpol)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)

• First study by ETMC and 
JAM collaborations 

• Lattice data provide 
independent 

measurements of PDFs 

• Can study discrepancies 
to understand 

systematic errors 



First combined lattice and 
experiment global analysis (unpol)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)



First combined lattice and 
experiment global analysis (heli)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)

• Lattice matrix elements 
can give direct 

independent information 
on different spins without 

major modifications 

• Some datapoints can be 
more precise than 

experiment and give 
constraining power



First combined lattice and 
experiment global analysis (heli)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)



• Lattice can directly 
access individual quark 
flavors almost 
independently


• Flavor decomposed 
matrix elements have 
noisy “disconnected” 
contributions


• Studies of strange and 
charm PDFs have begun 
and give promising 
precision

Strange quark distributions
Hou et al arXiv 2204.07944

s−(x) = s(x) − s̄(x)



Complementarity in pion PDF

P. Barry et al,  Phys. Rev. D 105 (2022) 11, 114051

• Lattice can directly 
access different 
hadrons


• Lattice lacks sensitivity 
to threshold logs and 
can be used to test 
theoretical kernels


• Improves precision in 
large  where 
experimental data 
does not exist


• Low momentum pion 
data are extremely 
precise

x
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P. Barry et al,  Phys. Rev. D 105 (2022) 11, 114051

• Lattice can directly 
access different 
hadrons


• Lattice lacks sensitivity 
to threshold logs and 
can be used to test 
theoretical kernels


• Improves precision in 
large  where 
experimental data 
does not exist


• Low momentum pion 
data are extremely 
precise

x

Complementarity in pion PDF


