Exclusive processes and generalized parton distributions

C. Weiss (JLab), Lectures at International School of Hadron Femtography, JLab, 16-25 Sep 2024 [[Webpage\]](https://www.jlab.org/conference/HadronFemtographySchool)

I) Exclusive processes in lepton-hadron scattering

Kinematic variables Collinear frames and light-cone components L/T currents Cross section Meson production and Virtual Compton Scattering VCS

II) Asymptotic behavior and factorization

Bjorken regime QCD factorization Quantum correlation functions DVCS factorization from collinear expansion Generalized parton distributions

III) Meson production and phenomenology

Meson production factorization and GPDs

Characteristics of large and small x

Large x: DVCS, pseudoscalar mesons, JLab results

Small x: Diffractive processes, space-time picture, vector meson production, DVCS

"kinematics"

"dynamics"

←

Notice ²

Slides are work in progress Several references to literature still missing; will be added

Recap 3

Factorization of DVCS at tree level $Q^2 \gg \mu_{\rm had}^2$

Computed "handbag" amplitude containing leading asymptotic contribution

Considered process in collinear frame of external momenta $P = [P^+, P^-, \mathbf{0}], \ \ q = [q^+, q^-, \mathbf{0}]$

Performed collinear expansion of loop integral, obtained light-cone correlation function of quark fields

Obtained DVCS amplitude in "convolution" form

$$
Amp = \int_0^1 dx \frac{1}{x \pm \xi \pm i0} \text{ GPD}(x, \xi, t)
$$

QCD subprocess requires perturbative interaction to produce collinear $q\bar{q}$ pair, interaction to produce collinear $q\bar{q}$
has amplitude $\mathcal{O}(g^2)$

Amplitude involves meson distribution amplitude $\langle M|\bar{\psi}\psi|0\rangle$

Here: Explain DVMP factorization by analogy with DVCS

Go to collinear frame

Inspect +, - momentum flow

Virtual photon injects large "minus" momentum *q*[−] ∼ *Q*²

DVCS: q^- carried away entirely by outgoing real photon $q'^- \approx q^-$

DVMP: q^- split between quark and antiquark of outgoing meson *q*−

Virtuality in handbag graph reduced by factors $(1 - u)$ or *u* compared to DVCS

$$
\frac{1}{(x-\xi+i0)\frac{Q^2}{2\xi} + \text{[transverse]}}
$$

$$
\frac{1}{(1-u)(x-\xi+i0)\frac{Q^2}{2\xi}} + [\text{transverse}]
$$

or *u*

$$
\int_0^1 du \int d^2p_T \, [\ldots]
$$

 $u, p_T =$ internal longitudinal and transverse momentum in $q\bar{q}$ pair

DVMP: End-point singularities, L vs T 7

Problem: Collinear factorization of DVMP amplitude leads to integrals of type

$$
\int_0^1 du \int d^2p_T \frac{1}{(1-u)Q^2 + p_T^2} \quad \text{or} \quad \frac{1}{uQ^2 + p_T^2}
$$

 $u, p_T =$ internal longitudinal and transverse momentum in $q\bar{q}$ pair

End points $u \to 1,0$: Factors $(1 - u)$, u "neutralize" hard scale Q^2 Integral can become IR divergent ("end-point singularities")

L virtual photon T virtual photon

Regions $u \rightarrow 1,0$ suppressed by numerators

 p_T integral not IR sensitive

factorization possible

 p_T integral IR divergent

Regions $u \to 1,0$ not suppressed

factorization not possible (at least not without further approximations)

Transverse coordinate representation

 = transverse separation of $q\bar{q}$ **pair**

End-point singularities = contributions of large-size pairs $|\mathbf{y}_T| \gg 1/Q$

L virtual photon

DVMP amplitude dominated by small-size pairs $|\mathbf{y}_T| \sim 1/Q$

QCD subprocess can be limited to production of bare $q\bar{q}$ pair. Radiation suppressed by small size (color dipole)

Collinear expansion approximation is self-consistent, leads to factorization

T virtual photon

DVMP amplitude receives contributions from large-size pairs $|\mathbf{y}_T| \sim 1/\mu_{\text{had}} \gg 1/Q$

QCD radiation not suppressed. Large-size $q\bar{q}$ pair dressed up with gluons. Standard collinear expansion is not self-consistent, does not permit factorization

Factorization can be achieved only with separate treatment of large-size configurations: QCD Sudakov form factor, light-cone sum rules, matching with hadronic amplitudes…

DVMP: Amplitude ⁹

 $l + N \rightarrow l' + M + N$ *M* = longitudinal vector meson, pseudoscalar meson

$$
e_L^{\mu} \langle MN'|J_{\mu}|N\rangle = \qquad \text{factor} \times \frac{\alpha_s}{Q^2} \times f_M \int du \left(\frac{1}{\mu} \pm \frac{1}{1-\mu}\right) \Phi_M(u)
$$

$$
\times \int dx \left(\frac{1}{x-\xi+i0} \pm \frac{1}{x+\xi-i0}\right) \text{GPD}(x,\xi;t)
$$

$$
f_M \Phi_M(u) = \int \frac{dy^-}{2\pi} e^{i(u-\frac{1}{2})\frac{p^+y^-}{2}} \langle M(p) | \bar{\psi}(y/2) \Gamma^+ \psi(-y/2) | 0 \rangle_{y^+,y_T=0} \qquad \int_0^1 du \, \Phi_V(u) = 1
$$

meson distribution amplitude / decay constant

 $M =$ longitudinal vector meson: $\Gamma^+ = \gamma^+$ GPD = *H*, *E*

M = pseudoscalar meson: $\Gamma^+ = \gamma^+ \gamma_5$ GPD = \tilde{H}, \tilde{E}

DVMP: Amplitude ¹⁰

- DVMP amplitude is $\mathcal{O}(\alpha_s)$ because of QCD interaction in subprocess
- DVMP amplitude is $\propto 1/Q^2$. Factor results from "additional" hard quark/gluon propagator in QCD subprocess compared to DVCS
- Integrals over momentum fractions x (parton in nucleon) and u (quark/antiquark in meson) are independent; see discussion of end-point singularities
- Transverse momenta of parton in nucleon and quark/antiquark in meson are integrated over; integrals are independent; contained in definition of GPD and DA
- Convolution integral of GPDs arising from DVMP factorization has the same form as the Compton form factors arising from DVCS factorization

DVMP: Channels ¹¹

$$
\mathcal{H}(\xi, t) = \frac{4\pi\alpha_s}{27} f_M \left[\int_0^1 du \frac{1}{u(1-u)} \Phi_M(u) \int_{-1}^1 dx \frac{2H(x, \xi, t) + H(-x, \xi, t)}{\xi - x - i0} - \int_0^1 du \frac{2u - 1}{u(1-u)} \Phi_M(u) \int_{-1}^1 dx \frac{2H(x, \xi, t) - H(-x, \xi, t)}{\xi - x - i0} \right]
$$

+ same expressions

$$
\mathcal{E} \to E
$$
, $\mathcal{H} \to \tilde{H}$

$$
\rho^{+}n \t2[H^{u}-H^{d}] - [H^{\bar{u}} - H^{\bar{d}}]
$$

\n
$$
\rho^{0}p \t \frac{1}{\sqrt{2}}\Big([2H^{u} + H^{d}] + [2H^{\bar{u}} + H^{\bar{d}}] + \frac{9}{4}x^{-1}H^{g} \Big)
$$

\n
$$
\omega p \t \frac{1}{\sqrt{2}}\Big([2H^{u} - H^{d}] + [2H^{\bar{u}} - H^{\bar{d}}] + \frac{3}{4}x^{-1}H^{g} \Big)
$$

\n
$$
K^{*+}\Lambda \t - \frac{1}{\sqrt{6}}\Big(2[2H^{u} - H^{d} - H^{s}] - [2H^{\bar{u}} - H^{\bar{d}} - H^{\bar{s}}] \Big)
$$

\n
$$
K^{*+}\Sigma^{0} - \frac{1}{\sqrt{2}}\Big(2[H^{d} - H^{s}] - [H^{\bar{d}} - H^{\bar{s}}] \Big)
$$

\n
$$
\phi p \t - \Big([H^{s} + H^{\bar{s}}] + \frac{3}{4}x^{-1}H^{g} \Big)
$$

\n
$$
\pi^{+}n \t 2[\tilde{H}^{u} - \tilde{H}^{d}] + [\tilde{H}^{\bar{u}} - \tilde{H}^{\bar{d}}]
$$

\n
$$
\pi^{0}p \t \frac{1}{\sqrt{2}}\Big([2\tilde{H}^{u} + \tilde{H}^{d}] - [2\tilde{H}^{\bar{u}} + \tilde{H}^{\bar{d}}] \Big)
$$

\n
$$
K^{+}\Lambda \t - \frac{1}{\sqrt{6}}\Big(2[2\tilde{H}^{u} - \tilde{H}^{d} - \tilde{H}^{s}] + [2\tilde{H}^{\bar{u}} - \tilde{H}^{\bar{d}} - \tilde{H}^{\bar{s}}] \Big)
$$

\n
$$
K^{+}\Sigma^{0} \t - \frac{1}{\sqrt{2}}\Big(2[\tilde{H}^{d} - \tilde{H}^{s}] + [\tilde{H}^{\bar{d}} - \tilde{H}^{\bar{s}}] \Big)
$$

\n
$$
K^{0}\Sigma^{+} \t [\tilde{H}^{
$$

Compact form obtained combining $\pm u, \pm x$ [M. Diehl 2003]

GPD spin/flavor components sampled in $\gamma^* p \to MB$ given in table

$$
H^{\bar{q}}(x,\xi,t) \equiv -H^{q}(-x,\xi,t)
$$

$$
\tilde{H}^{\bar{q}}(x,\xi,t) \equiv \tilde{H}^{q}(-x,\xi,t)
$$

DVMP: Channels ¹²

- Quantum numbers of produced meson (parity, C-parity, isospin) select spin/flavor components of GPDs in amplitude
- DVMP can be used to separate the spin-flavor components of the GPDs
- Gluon GPD contributes to amplitude of neutral vector meson production $(\rho^0, \omega, \phi, J/\psi)$ at LO. These vector mesons have the same C and P quantum numbers as the virtual photon.

DVMP: Cross section ¹³

$$
F_L(x_B, Q^2, t) \equiv \frac{d\sigma_L}{dt} (\gamma^* p \to MB)
$$

=
$$
\frac{\alpha_{em}}{Q^6} \frac{x_B^2}{1 - x_B} \left[(1 - \xi^2) \mathcal{H}^2 - \left(\xi^2 + \frac{t}{4M^2} \right) \mathcal{H}^2 - 2\xi^2 \text{Re}(\mathcal{E}^* \mathcal{H}) \right]
$$

Expression for vector meson, for pseudoscalar $\mathcal{H}, \mathcal{E} \rightarrow \tilde{\mathcal{H}}, \tilde{\mathcal{E}}$

Expression neglects baryon mass differences $M_B=M_p\equiv M$

Exclusive cross sections decrease strongly with increasing Q^2 (here x_B fixed)

DVMP:

\n
$$
\frac{d\sigma_L}{dt}(\gamma^* p \to MB) \sim Q^{-6}
$$
\n
$$
\frac{d\sigma}{dx_B dQ^2 dt}(lp \to l'MB) \sim Q^{-8}
$$
\nDVCS:

\n
$$
\frac{d\sigma_L}{dt}(\gamma^* p \to \gamma p) \sim Q^{-2}
$$
\n
$$
\frac{d\sigma}{dx_B dQ^2 dt}(lp \to l'\gamma p) \sim Q^{-4}
$$

Low rates in asymptotic regime. Exclusive cross section is small fraction of total (inclusive) cross section

Apply asymptotic expressions to real processes at finite energy/momentum transfer

Proceed in two steps

I) Test approach to asymptotic regime, applicability of expressions, size of corrections

II) Extract information on GPDs / DAs from experimental data

Step I: Focus on model-independent qualitative features of asymptotic regime: O^2 scaling, L/T ratio, relative kinematic dependences, comparison of channels

It is difficult to test the approach to the asymptotic regime using absolute cross sections depending on subprocess amplitudes and GPD/DA models. Large variations in predictions. Cannot separate: Shape of GPD/DA \leftrightarrow higher-order perturbative corrections \leftrightarrow power corrections

Onset of asymptotic regime depends on channel and kinematics. Assessment needs to be made case-by-case

←

Large vs. small x_R 15

 $x_R \geq 0.1$ "large"

Valence quarks, large-x gluons

Spin-flavor quantum numbers Singlet dominance

Small phase space for radiation, evolution minor

Non-perturbative dynamics: Vacuum fields, chiral symmetry breaking, confinement

 $x_R \ll 0.1$ "small"

Gluons and sea quarks

Large phase space for QCD radiation, evolution essential

Non-perturbative dynamics: Regge-type dynamics hadronic/partonic

Space-time picture: Dipole model, aligned-jet model

• Fundamental distinction in analysis of exclusive processes in lepton-hadron scattering

• Recruit knowledge/experience about specifics of dynamics at large and small x_B gained from theory and "other" experiments (inclusive, diffractive, photon/hadron-hadron)

Large x_B : General features **16**

• Spin-flavor dependent structures generally $\mathcal{O}(1)$

e.g. $|E| > |H|$ because of nucleon anomalous magnetic moment $|E^{u-d}| \gg |E^{u+d}|$ because of isovector anomalous magnetic moment

• Skewness effects large $\xi \sim x_B/2$. GPDs far from forward PDFs, behavior unknown

• DVCS and DVMP behave very differently re applicability of asymptotic approximations

DVCS: Quark subprocess = handbag graph $\mathcal{O}(g^0)$. Quality of asymptotic approximation expected to be similar to inclusive DIS (g^0)

DVMP: Quark subprocess = perturbative one-gluon exchange $\mathcal{O}(g^2)$. Not relevant at $Q^2\sim$ few GeV², overwhelmed by strong nonperturbative interactions. Application of asymptotic approximation questionable. (g^2) Q^2 \sim few GeV 2

JLab 6 GeV Hall A DVCS measurement 2006

DVCS amplitudes show Q^2 scaling consistent with approach to asymptotic regime

Expected size of power corrections $~\sim$ M_ρ^2 $\frac{\rho}{Q^2}$ *t* \mathcal{Q}^2

Further experimental results : Lecture Charles Hyde

Large x_R : Pseudoscalar mesons **18**

 $σ$ ^{+*T*} $γ_5$

 $l + p \rightarrow l' + M + p$ $M = \pi^0, \eta \, \,$ pseudoscalar Asymptotically leading amplitude

Chiral-even pion DA γ^+ γ_5

Chiral-even nucleon GPD $\gamma^+ \gamma_5 =$ quark helicity conserving *L* current only

Frankfurt, Pobylitsa, Polyakov, Strikman 1998

Subleading amplitude

Chiral-odd pion DA $γ₅$

Chiral-odd nucleon GPD $\sigma^{+T}\gamma_5$ = quark helicity flipping

T and *L* currents

Chiral-odd pion DA is numerically large because of chiral symmetry breaking - nonperturbative dynamics

Subleading amplitude is numerically dominant at momentum transfers $Q^2\sim$ few GeV 2

Goldstein, Liuti et al. 08+; Goloskokov, Kroll 11+

Large x_B : Pseudoscalar mesons **19**

Practical implementation

Invoke QCD Sudakov form factor to suppress large-size $q\bar{q}$ pairs

Include finite-size corrections from intrinsic p_T of $q\bar{q}$ pair

Goloskokov, Kroll 11+ Approximations beyond strict asymptotics

Comparison with data

Predictions of chiral-odd mechanism $\,$ consistent with JLab 6 GeV π^0,η data

Possible to sample chiral-odd GPDs in pseudo scalar DVMP at JLab

Properties of chiral-odd GPDs: Active area of theoretical research Properties of chiral-odd GPDs: Active area of theoretical research $1/N_c$ expansion: Schweitzer, Weiss 2016 $\,$

> **COMPASS exclusive** π **0 data. EIC** Will chiral-even mechanism become relevant at higher W^2 and/or Q^2 ?

Large x_B : Vector mesons **20**

Description of vector meson production at large x_B in context of GPDs and factorization still not well understood

Asymptotically leading expressions not adequate, qualitative discrepancies

Large subleading contributions: Chiral-odd structures? Nonperturbative interactions? Goloskokov, Kroll 2008+

Small x_R : General features **21 B**

- Processes without quantum number exchange between target and virtual photon (diffractive processes) dominate in limit $W \to \infty$ at fixed Q^2
	- *γ** → *ρ*⁰ , *ϕ*,*ω*, *J*/*ψ*, *γ* diffractive dominant $\gamma^* \to \pi, \eta, K, \rho^+, K^*$ nondiffractive - suppressed
- 0^{++}
- In factorized description, diffractive processes couple to the gluon and/or singlet quark GPDs
- All diffractive processes are "similar", differ only in relative coupling to gluon and singlet quark GPDs

J/w: *G* only ρ^0 : *G* and $q + \bar{q}$ *y*: $q + \bar{q}$ at LO, *G* at NLO

- Evolution essential, determines behavior of gluon and singlet quark GPDs at $x, \xi \to 0$
- Skewness effect can be implemented theoretically. GPDs can be reconstructed from $\xi = 0$ functions in controlled approximation

Shuvaev, Golec-Biernat, Martin 1999. Polyakov, Shuvaev 2002. GUMP → Lecture Yuxun Guo

Small *x*_B: Space-time picture in target rest frame 22

Virtual photon fluctuates into quark-antiquark pair which then interacts with target

Coherence length $\sim 1/x_R M \gg 1$ fm for $x_R \ll 0.1$

L photon: $u, 1 - u \sim 1/2$. Quark/antiquark share momentum equally. "Color dipole", transverse size $r_T^{} \sim 1/Q$

T photon: $u, 1 - u \rightarrow 0, 1$. Quark/antiquark share momenta unequally, fast + slow. "Aligned jet", transverse size $r_T^{} \sim \, 1/\mu$

Small x_R : Space-time picture in target rest frame **23**

Correspondence with GPDs and factorization

Gluon GPD determines dipole-target scattering amplitude: $A(dp \rightarrow dp) \propto r_T^2\ G(x,\xi,t),\;\; x,\xi \sim x_B$

Scale set by inverse dipole size $\mathcal{Q}^2_{\mathsf{eff}} = \mathsf{const} \times r_T^{-2}$

Collinear factorization can be discussed/understood in space-time picture: L vs. T, end-point singularities, size of power corrections, …

Very useful representation~

Baym, Blaettel, Frankfurt, Strikman 1993. Brodsky, Frankfurt, Union, Strikman 1994. Frankfurt, Strikman, Köpf 1996+. Frankfurt, Radyushkin, Strikman 1998.

Test approach to asymptotic regime, applicability of factorization?

dσ dt

 \propto exp *Bt* t -dependence of differential cross section

Slope B measures transverse radius of dipole-proton interaction

 \approx proton's gluonic size + dipole size

HERA vector meson data

Dipole size decreases with increasing \mathcal{Q}^2 , becomes pointlike

All diffractive channels show same *t*−slope = t-slope of gluon GPD

Confirms approach to asymptotic regime

Small x_B : Vector meson production **25**

Transverse distribution of gluons in proton extracted from *J*/*ψ* production data

Transverse size grows with decreasing *x*

Dynamical mechanisms: Bound-state dynamics, parton diffusion at small *x*

Gluon imaging of nucleon, quantitative

Frankfurt, Strikman, Weiss 2011

DVCS analysis at small x_R well established

 \rightarrow Lecture Marija Cuic

Gluon GPD enters at NLO: Large effect, cancellations between singlet quark and gluon GPD amplitudes

Need model of singlet quark and gluon GPDs at input scale based on nonperturbative dynamics

Aligned-jet model based on "soft" hadronic high-energy scattering dynamics Frankfurt, Strikman, Guzey 1997. Freund, Strikman 2003

String-based "holographic" model Mamo, Zahed 2024

Analysis can determine transverse distributions of singlet quarks and gluons in nucleon

