FIRST INTERNATIONAL SCHOOL OF HADRON FEMTOGRAPHY

Jefferson Lab | September 16 - 25, 2024

Physics From Deep Virtual Exclusive Data

Charles Hyde

A few starting thoughts

- Our analysis methods could probably be improved
- Most experiments analyzed by binning data, and then fitting distributions
- Possibilities to use Maximum Likelihood methods on un-binned data
 - Very computationally intensive
 - Opportunities for AI/ML?

Radiative Corrections

- Higher order in $\alpha_{QED} \approx 1/137$
 - Not small! Parametrically $\frac{\alpha_{QED}}{\pi} \ln[Q^2/m_e^2] \sim 0.1$
 - Radiation of soft photons
 - Virtual photon loop coupling across (e,e') vertex
 - Vacuum polarization: e^+e^- loop in virtual photon propagator
- Must be incorporated into experimental analysis
- More on DVCS Radiative Corrections later.

Electroproduction

- "Trento Convention" for ϕ_h
 - A. Bacchetta, et al., Phys.Rev.D70, 117504 (2004).
- (e,e'h)X
 - D. Drechsel and L. Tiator, J. Phys. G 18, 449 (1992).

•
$$\frac{d^{5}\sigma}{d\Omega dk' dt d\phi_{h}} = \frac{d^{3}\Gamma}{d\Omega dk'} \left[\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{h} \frac{d\sigma_{TL}}{dt} + \epsilon \cos(2\phi_{h}) \frac{d\sigma_{TT}}{dt} + h\sqrt{2\epsilon(1+\epsilon)} \sin \phi_{h} \frac{d\sigma_{TL'}}{dt} \right]$$

• $d\Gamma$ = "Virtual Photon Flux" *L. N. Hand, Phys. Rev.* **129**, 1834 (1963).

- Vector Meson Production : K.Schillilng, G.Wolf, Nucl. Phys. B 61 (1973) 381-413
 - Analyze the decay angular distribution e.g. $\phi \rightarrow K^+ K^-$
 - Extract polarization density matrix of phi-meson (about 28 terms!)
 - R4_00 term: L \rightarrow L polarization \rightarrow d σ_{L}
 - + QCD factorization predicts dominance of $d\sigma_L$ over $d\sigma_T$ for **light** mesons

9/20/24

Vector Meson Electroproduction

• K.Schillilng, G.Wolf, *Nucl.Phys.B* **61** (1973) 381-413

- Example: two-body decay of vector-meson production $(e, e'\phi \rightarrow K^+K^-)$
 - Analyze the decay angular distribution e.g. $\phi \rightarrow K^+ K^-$ or $\rho \rightarrow \pi^+ \pi^-$
 - Extract polarization density matrix of vector-meson
 - Decay angular distribution of Wigner d-functions of J =0,1,2 → 20 structure functions!

 r_{00}^{04} from $\cos(2\theta)$ term in polar decay-angle distribution

$$R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{(1 - r_{00}^{04})}, \qquad \text{SCHC}$$

9/20/24

Exclusive Vector Meson Production at HERA

- Summary talk from Diffraction2004

 A. Levy / Nuclear Physics B (Proc.
 Suppl.) 146 (2005) 92–101,
 arXiv:0501008
- Ratio grows slower than Q^2
 - Factorization of $\sigma_{\rm L}$ and $\sigma_{\rm T}$ can be considered separately

C.Hyde Femtography

Deep Virtual π^0 and η Production

- Naïve QCD Factorization, asymptotic behavior:
 - $d\sigma_L \sim 1/Q^6$,
 - $d\sigma_T \sim 1/Q^8$
- Initial Hall A / CLAS experiments suggested d σ_T dominant at Q² \leq 2 GeV²

x +

GPDs

- S. Ahmad, G. R. Goldstein and S. Liuti, Phys. Rev. D 79, 054014 (2009)
 - Helicity flips via $\sigma^{\mu\nu}$ operator at π^0 and N vertices \rightarrow nominally suppressed by $\sqrt{\Lambda^2/Q^2}$
- S. V. Goloskokov and P. Kroll, Eur. Phys. J.A 47, 112 (2011),
 - "Generalized Perturbative Approach", account for "finite-size" of meson vertex
- Chiral Symmetry breaking leads to strong helicity flip pseudo-scalar distribution amplitude (DA): $q\bar{q} \rightarrow \pi^0$, η

C.Hyde Femtography

Invariants $Q^2 = -(k - k')^2$

 $W^2 = (a + p)^2$

Hall-A Rosenbluth Separation: $H(e,e'\pi^0)p$

- M.Defurne, et al., PRL 117, 262001 (2016)
 - $\langle x_B \rangle = 0.36, Q^2 = 1.5, 1.75, 2.0 \, \text{GeV}^2$

FIG. 3. $2\pi(d^2\sigma/dtd\phi)$ for $Q^2 = 1.5$ (triangles), 1.75 (squares), and 2 GeV² (circles) at $x_B = 0.36$ and $t_{\min} - t = 0.025$ GeV². The cross sections extracted at low (high) ϵ are shown in open (solid) symbols [and dashed (solid) lines].

Long Dashed: Goldstein, Hernandez, Liuti, Phys. Rev. D **84**, 034007 (2011). Solid: S. Goloskokov and P. Kroll, Eur. Phys. J. A **47**, 112 (2011).

FIG. 4. $d\sigma_T$ (full circles), $d\sigma_L$ (open circles), $d\sigma_{TL}$ (triangles), and $d\sigma_{TT}$ (squares) as a function of $t_{\min} - t$ for $Q^2 = 1.5$ (left), 1.75 (center), and 2 GeV² (right) at $x_B = 0.36$. The full lines are predictions from Ref. [16] and the long-dashed lines from Ref. [25]. The short-dashed line show the VGG model [2] for $d\sigma_L$. Solid boxes around the points show normalization systematic uncertainties; for $d\sigma_L$ and $d\sigma_T$, these uncertainties are strongly anticorrelated. Previous unseparated measurements ($\sigma_U = \sigma_T + \epsilon\sigma_L$) at similar, but not equal, kinematics are also shown and described in the text.

Transversity GPDs

- Light cone matrix elements of $\sigma^{\mu \nu}$
 - Tensor charge is a `macroscopic' property of the nucleon
 - S. Ahmad, G. R. Goldstein and S. Liuti, Phys. Rev. D **79**, 054014 (2009)
- Combined analysis of $\pi^0 \, \mathrm{d}\sigma_{\mathrm{T}}$, p & n \rightarrow
 - $\langle x_B \rangle = 0.36$, $Q^2 = 1.75$ GeV²
 - Systematic errors can be reduced with inclusion of CLAS η data
 - Resolve signs of GPD_T

FIG. 6. Magnitude of the nucleon helicity-flip $\langle H_T \rangle$ (top) and nonflip $\langle \bar{E}_T \rangle$ (bottom) transversity terms for *u* (squares) and *d* (circles) quarks assuming no relative phase between them. The boxes around the points represent the variation of the results when their relative phase varies between 0 and π . Bars show the quadratic sum of the statistical and systematic uncertainties of the data. Solid (dashed) lines are calculations from the Goloskokov-Kroll model [14] for *u* (*d*) quark.

Deep Virtual η

- I.Bedlinsky *et al* [CLAS] Phys.Rev.C 95 (2017) 3, 035202
 - 6 GeV cross sections
 - Curves from GK ($d\sigma_T \gg d\sigma_L$)
 - $d\sigma_{TT} \gg d\sigma_{LT}$

FIG. 13. The structure functions vs t for the different (Q^2, x_B) bins, extracted from the present experiment. Black circles: $d\sigma_U/dt$. Red squares: $d\sigma_{LT}/dt$. Blue triangles: $d\sigma_{TT}/dt$. The black, red, and blue curves are the corresponding results of the handbag-based calculation of Ref. [8]. The inset is an enlarged view of the bin with $x_B = 0.17$ and $Q^2 = 1.87$ GeV². The error bars are statistical only.

Comparison of Deep π^0 and η

- I.Bedlinsky *et al* [CLAS] Phys.Rev.C 95 (2017) 3, 035202
- Curves of Goloskokov & Kroll qualitatively accurate

Hall C data in analysis

- Rosenbluth separations
- H, D targets

DVCS: What do we measure?

- Cross sections and asymmetries
 - Linked to CFFs, not GPDs
 - Very complicated structure of cross section
 - Need polarization observables to extract CFFs
- Azimuthal distribution analyzes polarization of virtual photon
- Longitudinal and transverse polarized targets
 - Longitudinal is hard
 - Transverse is extremely hard (except at EIC!)
 - Only existing data are from HERMES

DVCS Analysis Techniques

- Monte Carlo simulation of the full DVCS amplitude → cross section and/or Asymmetries. Adjust model to fit data.
 - Mostly used only when allows restriction to just one GPD
 - H_{glue} for HERA
 - Isoscalar H for coherent ⁴He
- Simplistic Fourier analysis (recommended by Kumericki & Mueller)
 - Works well in domains where BH is weak
- Fit semi-empirical forms
 - BSA = $\alpha \sin \phi / [1 + \beta \cos \phi]$
- Monte Carlo simulation of the structure of DVCS observables (perhaps neglecting a few "kinematically suppressed" terms

Also need to include "radiative effects"

"BMK"

- A.Belitsky, D.Mueller, PhysRev D 82, 074010 (2010)
- Kinematic factors
- Bilinear CFF terms
- Linear CFF terms times elastic FF

$$\begin{split} d\sigma &= \frac{\alpha^3 x_{\rm B} y^2}{8 \,\pi \, \mathcal{Q}^4 \sqrt{1 + \epsilon^2}} \left| \frac{\mathcal{T}}{\epsilon^3} \right|^2 dx_{\rm B} d\mathcal{Q}^2 d|t| d\phi \,. \\ &\quad \epsilon^2 \equiv 4 x_{\rm B}^2 \frac{M^2}{\mathcal{Q}^2} \,, \\ \mathcal{T}^2 &= |\mathcal{T}^{\rm BH}|^2 + |\mathcal{T}^{\rm DVCS}|^2 + \mathcal{I} \\ |\mathcal{T}^{\rm DVCS}|^2 &= \frac{e^6}{y^2 \mathcal{Q}^2} \left\{ c_0^{\rm DVCS} + \sum_{n=1}^2 \left[c_n^{\rm DVCS} \cos(n\phi) + s_n^{\rm DVCS} \sin(n\phi) \right] \right\} \\ &\quad c_{0,\rm unp}^{\rm DVCS} = \underbrace{2 \frac{2 - 2y + y^2 + \frac{\epsilon^2}{2} y^2}{1 + \epsilon^2}} c_{\rm unp}^{\rm DVCS} (\mathcal{F}, \mathcal{F}^*) + \dots \\ &\quad \left\{ c_{1,\rm unp}^{\rm DVCS} \right\} = \frac{8K}{(2 - x_{\rm B})(1 + \epsilon^2)} \left\{ -\frac{(2 - y)}{\lambda y \sqrt{1 + \epsilon^2}} \right\} \left\{ \frac{\Re e}{\Im m} \right\} \mathcal{C}_{\rm unp}^{\rm DVCS} (\mathcal{F}_{\rm eff}, \mathcal{F}^*) \\ &\quad \mathcal{I} = \frac{\pm e^6}{x_{\rm B} y^3 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^T + \sum_{n=1}^3 \left[c_n^T \cos(n\phi) + s_n^T \sin(n\phi) \right] \right\} \,, \\ &\quad c_n^T = \underbrace{C_{++}(n)}_{S_{++}(n)} \Re e^{\mathcal{I}}_{++}(n|\mathcal{F}) + C_{0+}(n) \Re e \mathcal{C}_{0+}^T (n|\mathcal{F}_{\rm eff}) + C_{-+}(n) \Re e \mathcal{C}_{-+}^T (n|\mathcal{F}_T) \,, \\ &\quad s_n^T = \underbrace{C_{++}(n)}_{S_{++}(n)} \Re e^{\mathcal{I}}_{++}(n|\mathcal{F}) + S_{0+}(n) \Im m \mathcal{S}_{0+}^T (n|\mathcal{F}_{\rm eff}) + S_{-+}(n) \Im m \mathcal{S}_{-+}^T (n|\mathcal{F}_T) \,. \\ &\quad C. \text{Hyde Femtography} \end{split}$$

Real & Imaginary part of [DVCS*BH] Interference

- A careful examination of the kinematic pre-factors of the |BH|², Re[DVCS*BH] and |DVCS|² show they contain different powers of s=(k+P)².
- Im[DVCS*BH] interference from spin-dependent cross sections $d\sigma(+) d\sigma(-)$, since BH is real
- Two methods for separation of the Re[DVCS*BH] from |DVCS|^2
 - Beam charge difference HERMES, HERA, COMPASS
 - Beam energy-dependence "Generalized Rosenbluth Separation":
 - M.Defurne, et al [Hall A], Nature Commun. 8 (2017) 1, 1408
 - 2023-2024 Hall C "Neutral Particle Spectrometer (NPS)" data

Separation of Re[DVCS*BH] and $|DVCS|^2$

- M.Defurne, et al [Hall A], Nature Commun. 8 (2017) 1, 1408
- 2 beam energies, 3 Q² values at x=0.36. "6 GeV"
- Analyzed dσ results in BMP helicity frame (q,q')
- Data preferred inclusion of either Gluon transversity: helicity flip GPD (HT) or NLO $(q\bar{q}g)$ amplitude

Hall A 12 GeV DVCS

PHYSICAL REVIEW LETTERS **128**, 252002 (2022)

TABLE I. Main kinematic variables for each of the nine (Q^2, x_B) settings where the DVCS cross section is reported. E_b is the incident electron energy, E_{γ} and $-t_{\min}$ correspond to a final state photon emitted parallel to $\mathbf{q} = \mathbf{k} - \mathbf{k}'$ at the nominal Q^2 , x_B values listed. For each setting, the cross section is measured as a function of t (3 to 5 bins depending on the setting) and in 24 bins in ϕ . The accumulated charge, corrected by the acquisition dead time, is listed in the row labeled $\int Q dt$. The last row of the table indicates the number of statistically independent measurements (bins) for each x_B setting, including helicity dependence.

Setting	Kin-36-1	Kin-36-2	Kin-36-3	Kin-48-1	Kin-48-2	Kin-48-3	Kin-48-4	Kin-60-1	Kin-60-3
x_B	0.36			0.48			0.60		
E_b (GeV)	7.38	8.52	10.59	4.49	8.85	8.85	10.99	8.52	10.59
Q^2 (GeV ²)	3.20	3.60	4.47	2.70	4.37	5.33	6.90	5.54	8.40
\tilde{E}_{γ} (GeV)	4.7	5.2	6.5	2.8	4.7	5.7	7.5	4.6	7.1
$-t_{\min}$ (GeV ²)	0.16	0.17	0.17	0.32	0.34	0.35	0.36	0.66	0.70
$\int Qdt$ (C)	1.2	1.7	1.3	2.2	2.2	3.7	5.7	6.4	18.5
Number of data bins	672				912			480	

- Analyzed full energy, Q², ϕ , beam helicity dependence
- Helicity conserving terms e.g. \mathcal{H}_{++} shown, error bands include effects of \mathcal{H}_{0+} and \mathcal{H}_{-+}

9/20/24

CLAS Longitudinally polarized NH₃ target

- E.Seder *et al.* [*CLAS*] Phys.Rev.Lett. 114 (2015) 3, 032001
- Extensive measurements, primary sensitivity to $\mathrm{Im} ig[\widetilde{\mathcal{H}} ig]$

9/20/24

CLAS Longitudinally polarized target

- E.Seder et al. [CLAS] Phys.Rev.Lett. 114 (2015) 3, 032001
- Amplitude of $\sin\phi$ term of target single-spin asymmetry

FIG. 4. (Color online) First five plots: -t dependence of the $\sin \phi$ amplitude of A_{UL} for each $Q^2 \cdot x_B$ bin. The shaded bands represent the systematic uncertainties. The curves show the predictions of four GPD models: i) VGG [18] (red-dashed), ii) GK [20] (black-dotted), KMM12 [21] (blue-thick solid), GGL [22] (black-solid). Bottom right plot: comparison of the $\sin \phi$ amplitude of A_{UL} as a function of -t for the results of this work (black dots) integrated over all Q^2 and x_B values $(\langle Q^2 \rangle = 2.4 \ (\text{GeV/c})^2, \ \langle x_B \rangle = 0.31)$, the HERMES results [13] (green squares) at $\langle Q^2 \rangle = 2.459 \ (\text{GeV/c})^2, \ \langle x_B \rangle = 0.096$, and the previously published CLAS results [12] (pink triangles), at $\langle Q^2 \rangle = 1.82 \ (\text{GeV/c})^2, \ \langle x_B \rangle = 0.28$.

Neutron DVCS: An old, provocative Plot

- M.Mazouz Phys.Rev.Lett.
 99 (2007) 242501
- Fit model of E GPD to one (ξ, Q^2) data point.
- Integrate the model over x.
- HERMES data was transversely polarized *p*

DVCS at HERA

- Next three slides are from review by G. Wolf arXiv 0907.1217
- This slide, GPD model of Freund

DVCS at HERA

- The DVCS cross section as a function of the scaling variable $\tau = \frac{Q^2}{Q_S^2(x)}$, for W = 82 GeV and Q^2 = 8, 15.5, 25 GeV² (top), and for W = 40,80,100 GeV, Q² = 10 GeV² (bottom), as measured by H1.
- The dashed curve shows the prediction of the dipole model

9/20/24

Model Fits: DVCS

R. Akhunzyanov et al. [COMPASS], Phys.Lett.B **793** (2019) 188-194 arXiv:1802.02739

- COMPASS, HERA *t*-slope of H(x/2,x/2,t) at small-x
- Kumericki Mueller (KM)
- Goloskokov Kroll

9/20/24

• What do these models do at high-*x*?

Conclusions

- There is now a large data base of 1000s of DVCS measurements
 - Cross sections
 - Single and double spin asymmetries
- Local and Global Fits enable separations of Compton Form Factors (CFFs), including flavor separations.
- Global fits can also test assumptions of factorization, NLO contributions and Higher Twist (both kinematic & dynamic)
- A great deal of Jlab 12 GeV data is on tape, in various stages of analysis and publication, and more data planned.

Epilogue

Radiative Corrections

Radiative Corrections to BH & DVCS

- M. Vanderhaeghen, et al., Phys Rev C **62**, 025501 (2000)
- I.Akushevich and A. Ilyich, Phys Rev D 85, 053008 (2012)
- A. Afanasev, I. Akushevich, et al, Phys Rev D 66 (2002) (EXCLURAD)
- Figures that follow are from M.V. PRC 62

Intrinsically different for BH & VCS

Vacuum-Polarization BH: $1/[1 + \Pi(t)]$ VCS: $1/[1 + \Pi(Q^2)]$

Self-Energy, Unique to BH

Correction to measured cross section to obtain "Born" cross section does not factorize

$$d\sigma = d\sigma^{\text{VCS}} + d\sigma^{\text{BH}} + \left[VCS^{\dagger}BH \right]$$

$$\Rightarrow d\sigma^{\text{VCS}} \left[1 + \frac{\delta_{\text{vertex}}^{\text{VCS}}/2}{1 - \Pi(Q^2)} \right]^2 + d\sigma^{\text{BH}} \left[1 + \frac{\delta_{\text{vertex}}^{\text{BH}}/2}{1 - \Pi(-t)} \right]^2 + \left[VCS^{\dagger}BH \right] \left[1 + \frac{\delta_{\text{vertex}}^{\text{VCS}}/2}{1 - \Pi(Q^2)} \right] \left[1 + \frac{\delta_{\text{vertex}}^{\text{BH}}/2}{1 - \Pi(-t)} \right]^2$$

- Model dependent calculation.
 - Hall A analysis uses P.Guichon code with old factorized GPD model
- Final correction is relatively insensitive to specific DVCS kinematics in JLab range.
 - ~10% effect

9/20/24