FIRST INTERNATIONAL SCHOOL OF HADRON FEMTOGRAPHY

Jefferson Lab | September 16 - 25, 2024

Physics From Deep Virtual Exclusive Data

Charles Hyde

A few starting thoughts

- Our analysis methods could probably be improved
- Most experiments analyzed by binning data, and then fitting distributions
- Possibilities to use Maximum Likelihood methods on un-binned data
	- Very computationally intensive
	- Opportunities for AI/ML?

Radiative Corrections

- Higher order in $\alpha_{QED} \approx 1/137$
	- Not small! Parametrically $\frac{\alpha_{QED}}{2}$ $\frac{QED}{\pi} \ln [Q^2/m_e^2]$ ~0.1
	- Radiation of soft photons
	- Virtual photon loop coupling across *(e,e')* vertex
	- Vacuum polarization*: e+e–* loop in virtual photon propagator
- Must be incorporated into experimental analysis
- More on DVCS Radiative Corrections later.

Electroproduction

- "Trento Convention" for ϕ_h
	- A. Bacchetta, et al., Phys.Rev.D**70**, 117504 (2004).
- $(e,e'h)X$
	- *D. Drechsel and L. Tiator, J. Phys. G 18, 449 (1992).*

$$
\bullet \frac{d^5 \sigma}{d\Omega dk' dt d\phi_h} = \frac{d^3 \Gamma}{d\Omega dk'} \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon (1+\epsilon)} \cos \phi_h \frac{d\sigma_{TL}}{dt} + \epsilon \cos(2\phi_h) \frac{d\sigma_{TT}}{dt} + h\sqrt{2\epsilon (1+\epsilon)} \sin \phi_h \frac{d\sigma_{TL'}}{dt} \right]
$$

• $d\Gamma$ = "Virtual Photon Flux" *L. N. Hand, Phys. Rev.* **129***, 1834 (1963).*

- Vector Meson Production : K.Schillilng, G.Wolf, *Nucl.Phys.B* **61** (1973) 381-413
	- Analyze the decay angular distribution *e.g.* $\phi \rightarrow K^+ K^-$
	- Extract polarization density matrix of phi-meson (about 28 terms!)
	- R4_00 term: L \rightarrow L polarization \rightarrow d σ_{\perp}
	- QCD factorization predicts dominance of $d\sigma_1$ over $d\sigma_T$ for **light** mesons

Vector Meson Electroproduction

• K.Schillilng, G.Wolf, *Nucl.Phys.B* **61** (1973) 381-413

- Example: two-body decay of vector-meson production $(e, e' \phi \rightarrow K^+ K^-$
	- Analyze the decay angular distribution *e.g.* $\phi \rightarrow K^+ K^-$ or $\rho \rightarrow \pi^+ \pi^-$
	- Extract polarization density matrix of vector-meson
		- Decay angular distribution of Wigner d-functions of $J = 0,1,2 \rightarrow 20$ structure functions!

 r_{00}^{04} from $cos(2\theta)$ term in polar decay-angle distribution

$$
R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{(1 - r_{00}^{04})}, \quad \text{SCHC}
$$

Exclusive Vector Meson Production at HERA

- Summary talk from Diffraction2004 *A. Levy / Nuclear Physics B (Proc. Suppl.)* **146** *(2005) 92–101, arXiv:0501008*
- Ratio grows slower than *Q2*
	- Factorization of σ_{L} and σ_{T} can be considered separately

Deep Virtual π^0 and η Production

photons on the transverse only to the transverse ones in the transverse ones in the transverse ones through deep exclusive processes, such as deeply virtual u duction (DVMP). For the latter state u_i $\mathbf{4}$ applied to longitudinally polarized virtually polari establish that the DVMP amplitude factorizes at large

- Naïve QCD Factorization, asymptotic behavior: ctorization, asymptotic bena
	- d $\sigma_{\sf L}$ ~1/Q 6 ,
	- $d\sigma_{\tau} \sim 1/Q^8$
- \bullet Initial Hall A / CLAS experiments suggested d $\sigma_{\text{\tiny T}}$ dominant at Q 2 ≤ 2 GeV 2 CLAS experiments suggested d $\sigma_{\text{\tiny T}}$ dominant at Q 2 ≤ 2 GeV 2 the Creative Commons Attribution 4.0 International license.
	- S. Ahmad, G. R. Goldstein and S. Liuti, Phys. Rev. D 79, 054014 (2009) LO **79**, 054014 (2009) $F(\alpha)$ is distribution of the third must may be the third model of this model is α . K. Goldstein and S. Liuti, Phys. Re
		- Helicity flips via $\sigma^{\mu\nu}$ operator at π^0 and N vertices \rightarrow nominally suppressed by $\sqrt{\Lambda^2/Q^2}$
	- S. V. Goloskokov and P. Kroll, Eur. Phys. J. A 47, 112 (2011),

ing the transverse position and the longitudinal momentum

- "Generalized Perturbative Approach", account for "finite-size" of meson vertex
- Chiral Symmetry breaking leads to strong helicity flip pseudo-scalar distribution amplitude (DA): $q\bar{q} \rightarrow \pi^0, \eta$

9/20/24 C.Hyde Femtography 9

Invariants $Q^2 = -(k - k')^2$

 $W^2 = (a + p)^2$

(transversity) GPDs $\overline{}$ T $\overline{\phant$

 $x +$

 $GPDs$

Hall-A Rosenbluth Separation: $H(e,e'\pi^0)p$ \overline{C} 2

- M.Defurne, *et al.,* PRL **117**, 262001 (2016) VU I (ZV I V) and 2 GeV2 (circles) at xB \sim t \sim
- $\langle x_B \rangle = 0.36$, Q^2 = 1.5, 1.75, 2.0 GeV² eV^2 are shown in opening eV^2

FIG. 3. $2\pi(d^2\sigma/dtd\phi)$ for $Q^2 = 1.5$ (triangles), 1.75 (squares), and 2 GeV² (circles) at $x_B = 0.36$ and $t_{\text{min}} - t = 0.025$ GeV². The cross sections extracted at low (high) ϵ are shown in open (solid) symbols [and dashed (solid) lines].

the signal is coming from its transversely polarized

Long Dashed: $d:$ section is almost independent of ϵ, indicating that most of the signal is coming from its transversely polarized Goldstein, Hernandez, Liuti, Phys. Rev. D **84**, 034007 (2011). oo..a.
S. Goloskokov and P. Kroll, Eur. Phys. J. compatible with zero, as seen in Fig. 4. However, the seed in Fig. 4. However, the seed in Fig. 4. However, th **A 47,** 112 (2011). means that $d\sigma_{\text{TT}}$ Solid:

PRL 117, 262001 (2016) PHYSICAL REVIEW LETTERS week ending

9/20/24 **a** $(e_U = \sigma_T + e_{\sigma_L})$ at similar, 10 $\sigma_L = \sigma_T + e_{\sigma_L}$ at similar, 10 and $d\sigma_{TT}$ (squares) as a function of $t_{\text{min}} - t$ for $Q^2 = 1.5$ (left), 1.75 (center), and 2 GeV² (right) at $x_B = 0.36$. The full lines are predictions from Ref. [16] and the long-dashed lines from Ref. [25]. The short-dashed line show the VGG model [2] for $d\sigma$ _L. Solid boxes around the points show normalization systematic uncertainties; for $d\sigma_L$ and $d\sigma_T$, these uncertainties are strongly anticorrelated. Previous but not equal, kinematics are also shown and described in the text.

C. Hyde Femtography $\mathbf{d} = \mathbf{d} + \mathbf{d}$

Transversity GPDs

- Light cone matrix elements of $\sigma^{\mu\nu}$
	- Tensor charge is a `macroscopic' property of the nucleon
	- S. Ahmad, G. R. Goldstein and S. Liuti, Phys. Rev. D **79**, 054014 (2009)
- Combined analysis of π^0 d σ_{τ} , p & n \rightarrow
	- $\langle x_R \rangle = 0.36$, $Q^2 = 1.75$ GeV²
	- Systematic errors can be reduced with inclusion of CLAS η data
		- Resolve signs of GPD_T

FIG. 6. Magnitude of the nucleon helicity-flip $\langle H_T \rangle$ (top) and nonflip $\langle \bar{E}_T \rangle$ (bottom) transversity terms for u (squares) and d (circles) quarks assuming no relative phase between them. The boxes around the points represent the variation of the results when their relative phase varies between 0 and π . Bars show the quadratic sum of the statistical and systematic uncertainties of the data. Solid (dashed) lines are calculations from the Goloskokov-Kroll model [14] for u (*d*) quark.

for E¯ ^T. The constraints on E¯ ^T are mainly taken from lattice

9/20/24 C.Hyde Femtography 11

Deceased

mazouz@jlab.org

262002 (2006).

055202 (2015).

212003 (2015).

56, 2982 (1997).

054014 (2009).

109, 112001 (2012).

Phys. 63, 573 (1991).

[1] R. Hofstadter and R. McAllister, Phys. Rev. 98, 217 (1955). [2] J. I. Friedman, H. W. Kendall, and R. E. Taylor, Rev. Mod.

[3] D. Mueller, D. Robaschik, B. Geyer, F. M. Dittes, and J.

[8] P. Hoodbhoy and X.-D. Ji, Phys. Rev. D 58, 054006 (1998). [9] C. Muñoz Camacho et al. (Jefferson Lab Hall A Collaboration, Hall A DVCS Collaboration), Phys. Rev. Lett. 97,

[10] M. Defurne et al. (Jefferson Lab Hall A), Phys. Rev. C 92,

[11] H. S. Jo et al. (CLAS Collaboration), Phys. Rev. Lett. 115,

[12] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D

[13] S. Ahmad, G. R. Goldstein, and S. Liuti, Phys. Rev. D 79,

[14] S. Goloskokov and P. Kroll, Eur. Phys. J. A 47, 112 (2011). [15] E. Fuchey, A. Camsonne, C. Munoz Camacho, M. Mazouz, G. Gavalian et al., Phys. Rev. C 83, 025201 (2011). [16] I. Bedlinskiy et al. (CLAS Collaboration), Phys. Rev. Lett.

[17] I. Bedlinskiy et al. (CLAS Collaboration), Phys. Rev. C 90,

Horejsi, Fortschr. Phys. 42, 101 (1994). [4] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997).

[7] M. Diehl, Phys. Rep. 388, 41 (2003).

[5] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997). [6] M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003).

Deep Virtual η

- I.Bedlinsky *et al* [CLAS] Phys.Rev.C 95 (2017) 3, 035202
	- 6 GeV cross sections
	- Curves from GK ($d\sigma_T \gg d\sigma_L$)
		- $d\sigma_{TT} \gg d\sigma_{LT}$

FIG. 13. The structure functions vs *t* for the different (Q^2 , x_B) bins, extracted from the present experiment. Black circles: $d\sigma_U/dt$. Red squares: $d\sigma_{LT}/dt$. Blue triangles: $d\sigma_{TT}/dt$. The black, red, and blue curves are the corresponding results of the handbag-based calculation of Ref. [8]. The inset is an enlarged view of the bin with $x_B = 0.17$ and $Q^2 = 1.87$ GeV². The error bars are statistical only.

Participate 12 and *Q20/24* with an exponential function α c. Hyde Femtography

*d*σ*^U*

Ref. [28]). Thus the data imply that the separation is larger

Comparison of Deep π^0 and η

- I.Bedlinsky *et al* [CLAS] Phys.Rev.C **95** (2017) 3, 035202
- Curves of Goloskokov & Kroll qualitatively accurate

Hall C data in analysis

- Rosenbluth separations
- H, D targets

DVCS: What do we measure?

- Cross sections and asymmetries
	- Linked to CFFs, not GPDs
	- Very complicated structure of cross section
	- Need polarization observables to extract CFFs
- Azimuthal distribution analyzes polarization of virtual photon
- Longitudinal and transverse polarized targets
	- Longitudinal is hard
	- Transverse is extremely hard (except at EIC!)
		- Only existing data are from HERMES

DVCS Analysis Techniques

- Monte Carlo simulation of the full DVCS amplitude \rightarrow cross section and/or Asymmetries. Adjust model to fit data.
	- Mostly used only when allows restriction to just one GPD
		- H_{glue} for HERA
		- Isoscalar H for coherent ⁴He
- Simplistic Fourier analysis (recommended by Kumericki & Mueller)
	- Works well in domains where BH is weak
- Fit semi-empirical forms
• BSA = α sin $\phi/[1 + \beta \cos \phi]$
	-
- Monte Carlo simulation of the structure of DVCS observables (perhaps neglecting a few "kinematically suppressed" terms

Also need to include "radiative effects"

"BMK"

• A.Belitsky, D.Mueller, PhysRev D **82**, 074010 (2010)

.

- Kinematic factors
- Bilinear CFF terms
- Linear CFF terms times elastic FF

4
$$
d\sigma = \frac{\alpha^3 x_B y^2}{8\pi Q^4 \sqrt{1+\epsilon^2}} \left| \frac{T}{\epsilon^3} \right|^2 dx_B dQ^2 d|t| d\phi.
$$

\n**4** $\epsilon^2 \equiv 4x_B^2 \frac{M^2}{Q^2},$

\n**5** $\epsilon^2 = 4x_B^2 \frac{M^2}{Q^2},$

\n**6** $\epsilon^2 = 4x_B^2 \frac{M^2}{Q^2},$

\n**7** $\frac{T}{\epsilon^2} = \frac{\epsilon^6}{y^2 Q^2} \left\{ c_0^{\text{DVCS}} + \sum_{n=1}^2 \left[c_n^{\text{DVCS}} \cos(n\phi) + s_n^{\text{DVCS}} \sin(n\phi) \right] \right\}$

\n**6** $\frac{1}{\epsilon^2} \int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**8** $\frac{1}{\epsilon^2} \int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**8** $\frac{1}{\epsilon^2} \int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**9** $\frac{1}{\epsilon^2} \int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**10** $\int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**11** $\int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**12** $\int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**13** $\int \frac{1}{\sqrt{1-\epsilon^2}} \cos(n\phi) d\phi + \sin(n\phi) d\phi$

\n**14** $\int \frac{1}{$

Formulae from Belitsky Mueller:

Real & Imaginary part of [DVCS*BH] Interference

- A careful examination of the kinematic pre-factors of the $|BH|^2$, Re[DVCS*BH] and |DVCS|2 show they contain different powers of $s=(k+P)^2$.
- Im[DVCS*BH] interference from spin-dependent cross sections $d\sigma(+)$ – $d\sigma$ (–), since BH is real
- Two methods for separation of the Re[DVCS*BH] from |DVCS|^2
	- Beam charge difference HERMES, HERA, COMPASS
	- Beam energy-dependence "Generalized Rosenbluth Separation":
		- M.Defurne, *et al* [Hall A], Nature Commun. **8** (2017) 1, 1408
		- 2023-2024 Hall C "Neutral Particle Spectrometer (NPS)" data

Separation of Re[DVCS*BH] and |DVCS|2

- M.Defurne, *et al* [Hall A], Nature Commun. **8** (2017) 1, 1408
- 2 beam energies, 3 Q^2 values at x=0.36. "6 GeV"
- Analyzed d σ results in BMP helicity frame (q,q')
- Data preferred inclusion of either Gluon transversity: helicity flip GPD (HT) or NLO ($q\bar{q}g$) amplitude

Hall A 12 GeV DVCS Deep inelastic scattering data were taken simultaneously $\overline{\mathsf{U}}$ v $\overline{\mathsf{U}}$ data using an ancient for all $\overline{\mathsf{U}}$

PHYSICAL REVIEW LETTERS 128, 252002 (2022) $\frac{1}{2}$ systematic uncertainty of the DVCS cross-section of the

TABLE I. Main kinematic variables for each of the nine (Q^2, x_B) settings where the DVCS cross section is reported. E_b is the incident EXDEE I. Main kinemate variables for each of the fine (g^t, x_B) settings where the DVCs closs section is reported. E_b is the method.
electron energy, E_{γ} and $-t_{min}$ correspond to a final state photon emitted paralle each setting, the cross section is measured as a function of t (3 to 5 bins depending on the setting) and in 24 bins in ϕ . The accumulated in the accumulated charge, corrected by the acquisition dead time, is listed in the row labeled $\int Qdt$. The last row of the table indicates the number of statistically independent measurements (bins) for each x_B setting, including helicity dependence.

- Analyzed full energy, Q², ϕ , beam helicity dependence \bullet Analyzed full energy \ldots and \ldots sum rule \ldots of \ldots Sep structure \overline{z} , The H₁ \overline{z} Ω^2 denote the Delicity cross section of Ω^2 χ , γ , we can be a generated by 2_h heam helicity -, φ , beam neucity
- Helicity conserving terms *e.g.* \mathcal{H}_{++} shown, error bands include effects of \mathcal{H}_{0+}^+ and $\mathcal{H}_{-+}^ \bullet$ Helicity conserving terms *e.g.* \mathcal{H}_{++} shown, error panus include σ iiiis C.g. σ l $_{++}$ siluwii, ffooto of \mathcal{U} and \mathcal{U} 115013 VI $360+$ and 36α and α photons. Formalism, the σ_{\pm} contributions contributions of σ_{\pm} $\cos 10^{-4}$ and π σ uto vi $J\iota_{0+}$ and $J\iota_{-+}$

 $9/20/24$

emitted by the incoming or the incoming or the scattered electron, as α

While the number of m

analysis details. Table I shows the nine kinematic settings

accuracy of the data allows to simultaneously extract all the

CLAS Longitudinally polarized $NH₃$ target

- E.Seder *et al. [CLAS]* Phys.Rev.Lett. 114 (2015) 3, 032001
- Extensive measurements, primary sensitivity to Im $\left[\widetilde{\mathcal{H}}\right]$

CLAS Longitudinally polarized target

- E.Seder *et al. [CLAS]* Phys.Rev.Lett. 114 (2015) 3, 032001
- Amplitude of sin ϕ term of target single-spin asymmetry

FIG. 4. (Color online) First five plots: *t* dependence of the $\sin \phi$ amplitude of A_{UL} for each Q^2 - x_B bin. The shaded bands represent the systematic uncertainties. The curves show the predictions of four GPD models: i) VGG [18] (red-dashed), ii) GK [20] (black-dotted), KMM12 [21] (blue-thick solid), GGL [22] (black-solid). Bottom right plot: comparison of the $\sin \phi$ amplitude of A_{UL} as a function of $-t$ for the results of this work (black dots) integrated over all Q^2 and x_B values $\langle \langle Q^2 \rangle = 2.4 \langle \text{GeV/c} \rangle^2$, $\langle x_B \rangle = 0.31$, the HERMES results [13] (green squares) at $\langle Q^2 \rangle = 2.459 \; (\text{GeV/c})^2, \, \langle x_B \rangle = 0.096,$ and the previously published CLAS results [12] (pink triangles), at $\langle Q^2 \rangle = 1.82 \text{ (GeV/c)}^2$, $\langle x_B \rangle = 0.28$.

the VGG and GK models are based on double distri-

 $\frac{9}{20/24}$

FIG. 3. (Color online) Target-spin asymmetry (*AUL*) for DVCS/BH events plotted as a function of for each threedimensional bin in *^Q*²-*x^B* (rows) and *^t* (columns - the bin limits are shown on the top axis). The shaded bands are the systematic uncertainties. The thin black line is the fit to

 $w \in \mathbb{R}$, which were fitted with \mathbb{R} coverage). The dashed/red lines are the predictions of the

suggests that the axial charge (linked to ⁼m*H*˜) is more

 $1 + \frac{1}{2}$

Neutron DVCS: An old, provocative Plot

- M.Mazouz Phys.Rev.Lett. **99** (2007) 242501
- Fit model of E GPD to one (ξ, Q^2) data point.
- Integrate the model over x.
- HERMES data was transversely polarized *p*

DVCS at HERA

- Next three slides are from review by G. Wolf arXiv 0907.1217
- This slide, GPD model of Freund

DVCS at HERA

- The DVCS cross section as a function of the scaling variable $\tau =$ Q^2 $\overline{Q_S^2(x)}$, for $W = 82$ GeV and $Q^2 = 8$, 15.5, 25 GeV² (top), and for $W = 40,80,100$ GeV, $Q^2 = 10$ GeV² (bottom), as measured by H1.
- The dashed curve shows the prediction of the dipole model

Model Fits: DVCS

R. Akhunzyanov *et al.* [COMPASS], Phys.Lett.B **793** (2019) 188-194 [arXiv:1802.02](https://arxiv.org/abs/1802.02739)739

- COMPASS, HERA *t*-slope of H(x/2,x/2,t) at small-x
- Kumericki Mueller (KM)
- Goloskokov Kroll
- What do these models do at high-*x*?

Conclusions

- There is now a large data base of 1000s of DVCS measurements
	- Cross sections
	- Single and double spin asymmetries
- Local and Global Fits enable separations of Compton Form Factors (CFFs), including flavor separations.
- Global fits can also test assumptions of factorization, NLO contributions and Higher Twist (both kinematic & dynamic)
- A great deal of Jlab 12 GeV data is on tape, in various stages of analysis and publication, and more data planned.

Epilogue

Radiative Corrections

Radiative Corrections to BH & DVCS

- M. Vanderhaeghen, et al., Phys Rev C **62,** 025501 (2000)
- I.Akushevich and A. Ilyich, Phys Rev D **85**, 053008 (2012)
- A. Afanasev, I. Akushevich, et al, Phys Rev D **66** (2002) (EXCLURAD)
- Figures that follow are from M.V. PRC **62**

Intrinsically different for BH & VCS

Vacuum-Polarization $BH: 1/[1 + \Pi(t)]$ VCS: $1/[1 + \Pi(Q^2)]$

Self-Energy, Unique to BH

Correction to measured cross section to obtain "Born" cross section does not factorize

$$
d\sigma = d\sigma^{VCS} + d\sigma^{BH} + \left[VCS^{\dagger}BH \right]
$$

\n
$$
\Rightarrow d\sigma^{VCS} \left[1 + \frac{\delta_{\text{vertex}}^{VCS} / 2}{1 - \Pi(Q^2)} \right]^2 + d\sigma^{BH} \left[1 + \frac{\delta_{\text{vertex}}^{BH} / 2}{1 - \Pi(-t)} \right]^2 + \left[VCS^{\dagger}BH \right] \left[1 + \frac{\delta_{\text{vertex}}^{VCS} / 2}{1 - \Pi(Q^2)} \right] \left[1 + \frac{\delta_{\text{vertex}}^{VCS} / 2}{1 - \Pi(-t)} \right]
$$

- Model dependent calculation.
	- Hall A analysis uses P.Guichon code with old factorized GPD model
- Final correction is relatively insensitive to specific DVCS kinematics in JLab range.
	- \cdot ~10% effect