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The Standard Model of particle physics

The constituents are three families of fermions having spin 1/2:

Quarks
flavor | name mass electric
[GeV/c?®] | charge
uuu up 0.003 2/3
ddd down 0.006 -1/3
cce charm 1.3 2/3
SEIS strange 0.1 -1/3
ttt top 175 2/3
bbb | bottom 4.3 -1/3
Leptons
flavor name mass electric
[GeV/c?®] | charge
Ve electron neutrino <1078 0
e electron 0.00511 -1
iy muon neutrino < 0.0002 0
b muon 0.106 -1
Vs tau neutrino < 0.02 0
T tau 1.777 -1
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O The constituents interact with each other by exchanging gauge bosons, the force
carriers, which have spin 1

force | symbol name mass electric
[GeV/c?] | charge
strong g gluon 0 0
e-m vy photon 0 0
W~ W-boson 80.4 -1
weak w W-boson 80.4 +1
Z° Z-boson | 91.187 0

O The strong force ]ﬁor color force) acts only on quarks and gluons, which both carry color
charge. It binds, for example, the three quarks that make up a proton and neutron
together. The residual strong force also holds the nucleons in a nucleus together.

O The electro-magnetic force acts on all particles that carry electric charge. It binds, for
example, the electrons in an atom to the nucleus.

O The force causes, for example, beta-decay of radioactive nuclei.

O For two u-quarks, a distance of 3 x 10-17 m apart, the relative strength of the three forces
strong, electro-magnetic and weak is. 60:1:10-4 [:10-41].

O For comparison | also included the gravitational force. In particle physics, the gravitational
force is certainly negligibly small.
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Path integrals (Minkowski space)

O In Quantum Mechanics the probability amplitude for a particle to move from y to x
in d dimensions within time t is

(x[e™™] )
O And H = H, + V(x) and potential V(x). For a free particle H, = p212m

n p2
dp{x|p)exp {—i%f} rly)

(x| e ™| y)

1/2
7 exp {1 ﬂ(x — y)2
2mit 21

O The time evolution operator (transfer matrix) for small € can be approximated by

U ,=exp(—iHe) =~ W, = exp(—ivg)exp(—iHoe)eXp(—ivg)
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Path integrals (2)

O Inserting N - 1 complete set of position eigenstates:
(x]e7y) = lim de1°°°de—1<x| Welxp).. Qv [ Wely)

N— oo

12
= <2m. > del...de_l X exp(iﬂ [(x — Y+ Gy — Y)zl
L€ e
_ie Bv(x) + V() + ...+ Vixy_) + %V(y) )

O This last term can be rewritten for small €
! m
S = [ dt' |—x% — V(x)
0 2
O and the amplitude (path integral)
(x| e "M|y) = J@xe’s
O With the measure

12
m
) dxy...dxy_,

2TIE

Ix = lim (

N—-o0

O Amplitude widely oscillating from “i”. Not well defined but used formally
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Path integrals in Euclidean Space

O In “imaginary” time t = -it, T > 0 we have
(xle1y) = | Des

5, = [ dr [%xz + V(x)]

0

O where § = 1S . Note evolution operator well defined bounded operator. Consider
some operator A. Then

Tr (e_HTA) = i e E(n|A|n)
n=0
Z(r) =Tr (e‘H") = Z e~ bn®

n=0

O For large t the n = 0 term dominates, hence the ground state expectation value of A
is

(0|A]0) = lim : Tr (e‘HTA)

T— 00 T
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Path integrals (2)

O With

x(7) = ef’"xe "

O correlation functions are
(x(7))...x(z,)) = (0| x(7)...x(7,) | 0)
= (0| efolixe =2 | xe~H0-17%) | O

1
= lim
T— 00 Z(T) o

1
= lim
T—00 Z(T) .

dx(x | e—H(T/Z—Tl)Xe —H(Tl—TZ)X. . .e—H(Tn+T/2) |X>

Dx x(1y).. .x(fn)e_SE[x(T)]

O Note, Schro"dinger equation in Euclidean space is
0
EWE(X, 7) + Hy(x,7) = 0

O The Euclidean path integral is an average over random paths suitably weighted. It
looks like a partition function (functional integral) with a Boltzmann weight S

O 4-D STATISTICAL MECHANICS!!
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Euclidean Quantum Field Theory

O The path integral for a quantum theory follows that of Quantum Mechanics. For
example, for a Euclidean scalar field with 4-vector coordinate x

P(x) = ™ p(x,0)e

O Treat Euclidean fields as random variables, whose expectation values yield
correlation functions. The probability distribution is

(Flg]) = Jdﬂ Flg]

O with action S[¢] and measure

1
duy = — —S[¢]| Id .
U Ze : P (x)

O For a general action, the n-pt functions are

(p(x))...d(x)) = G(xy, ..., x,)

O By Wick’s theorem we have

(PxDP(xy)) = G(xy,x,),
(¢(x1)qb(x2)qﬁ(x3)qb(x2)) = G(x1,x%)G(x3, x) + G(xp, X3)G(X5, X4) + G(x1, %4) G (X5, X3),

O For a quadratic scalar field action S = ¢T(x)D¢(x) and D possibly functions of other
fields, we have D G(x, y) = &(x — y). For example, for a free scalar field, D =[]+ m?

O The G(x,y) are propagators and are the inverse of an operator.
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Statistical mechanics

O Problem is a 4D statistical mechanical problem. Want physical masses constant in
limit of lattice spacing a — 0.

O Use theory of phase transitions and determine critical exponents, etc.

O Can define (?) a continuum theory where there is a diverging length scale ¢ because
¢ ~ 1/ma - a second order phase transition.

O Also diverging length scale in chiral limit (of QCD) mg — 0 because of 1/mma.

O Have combination of finite volume (lattice size), lattice spacing, and quark-mass
extrapolation systematic-errors.
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Quantum Electro-Dynamics

O The familiar Maxwell equations for electric and magnetic fields (in units where c =
h/2m =1, c the speed of light, h Planck’s constant

V-E=p, VXB-——=]
ot 0
O can be written in a relativistic covariant form xy =, 9, = o E. = Fy,
X
1 8

b; = B Z ik Jo = P
jk=1

oF, (x)=j(x), F W(x) = OﬂAy(x) - dyAﬂ(x)

Wy
O The covariant form of the Dirac equation is

Dslashy(x) = Z Yy ldﬂ + ieAﬂ(x)] w(x) =0
U

U Gauge invariance under a local finite transformation A(x)

A0 > AWA XA (®) = —A® @A p(x) - AW ()
p(x) = Ay
F,(x) > AWF,AT'(x),  Dy(x) = AX)Dy(x)
O These equations can be obtained from extremizing the action

1
SA,p) = | d*x ZFi + @ (x)Dy(x)

O with current-charge density jﬂ(x) = il/"/(x)}/ﬂl//(x). In Euclidean space, action is real
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What is a gauge theory?

O Maxwell’s eqgns: field strength and vector potentials

:€><Z> ?——A ?Ao

aXO

0 E; E, Es

B0 B m| e, 0
by = —E, —B3 O By _BXVAV(X> avay(x)
—E3 By —B;y O
0 Action

s = [ 1ZFMVF”V /d4 (E2+ B?)
D(A,m) ZWD +m, Dy =09,+igA,
O Integral - a probability density
_ / dA(x) O(A) ¢ 4 det (D(A,m))
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QED (2)

O For a quantum theory of QED one integrates over fields A (x) representing the
photons, and fields y(x), representing the ele}trons as

1 1
<@(Aa Y, W)) — E H [dA(X)dW(X)dW(X) @(A, W, w)e—%S(A,W)
0O Z is a normalization factor defined by (1) = 1.

O To do computatlons in QED, one notices that the electro-magnetic coupling

constant, a = e 2/47 =1/137.03 . , is small. One can therefore make expansions
in powers of a. This is called perturbatlon theory. Predictions from perturbation
theory have been verified, for example for the anomalous magnetic moment of the
electron, to 1 part in 10- 9!
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Quantum Chromo -Dynamics

O The theory of the strong interactions, Quantum Chromo -Dynamics (QCD), is quite
similar to QED. The fields y(x) now represent quarks and the fields A (x) represent

gluons. They are now 3 x 3 matrices, A (x) =A (x)/lk and
F,(x)=09A,x) —0d,A,x) +glA,x),A,(x)]

O The last term is new for QCD. As a consequence the gluons interact with each other.
This leads to the peculiar property that the coupling constant a(E) = g 2/(47) is

> weak at high energies E: asymptotic freedom

= success of perturbation theory for high energy properties

oo - e
Yoo e

- Last two diagrams show the gluon self-interaction. They don’t occur in QED.
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QCD (2)

- logarithmic decrease of a(E) = g2 /(4x) with increasing energy
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» strong at low energies (long distances)

= confinement: quarks and gluons do not exist as free particles. They are
always bound into nucleons, mesons or glueballs.

= perturbation theory - expansion in powers of as not applicable: = decisive
test of low energy properties of QCD from first principles are only emerging

= need non-perturbative methods of computation: lattice QCD
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Strong coupling constant

O A comparison of lattice calculations of as with experimental determinations is
shown in the following figure from the Particle Data Group, D.E. Groom et al.,
Euro. Phys. Jour. C15 (2000) 1
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O The combined lattice result is: as (MZ ) =0.115 + 0.003
O The complete average is: as (MZ ) =0.118 + 0.002
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Symmetries

There are various important symmetries of the continuum that should be preserved in a
lattice discretization:

»| Gau§e invariance: can change underlying potentials without changing physical
fields, like electric and magnetic fields. Was principle used to construct “minimal”
coupling theories, like QED and QCD.

O Flavor symmetry: can rotate different types or flavors of fermion fields among each
other. This leads to classification of particle families.

O Chiral symmetry: can change fermion fields by an overall phase change

w(x) — exp(ifys)y(x),
w(x) = w(x)exp(ifys)

and leaves fermion action invariant

wy, (0, +igA )y

wDy

Topology of the gauge fields is intimately tied with chiral symmetry - instantons
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Regularization of QCD on a lattice

O We approximate continuous space-time with a 4-dim lattice, and derivatives by
finite differences. Quarks are put on sites, gluons on links. They are represented by

3 x 3 complex unitary matrices U = exp(zga o ) elements of the group SU(3).

Then
1
(O, y,p)) =

1

= dUﬂ@(U, M~ (U))e>\V det M(U)

O The Gaussian integration over the anti- commutmg fermion fields y and g was
done, resulting in the det M(U)) and M~'(U) factors.
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Regularization

O The lattice gauge action is constructed from ! L
elementary plaquettes 3 Ux+v)

Un, () = U,0U,(x + DU, (x + DU (x)

UJ(x ) Uy(x+1)

O The gauge action is_ _

2N 1 Y
1 ——RTrTU~ ()| = - ERTrUU(’“)
x NC e ) gﬂzxz
O where we have 1gnored the constant term, and introduced
2N,
=

O with, for QCD, Nc = 3. B assumes the r ole of inverse temperature.

O Exercise: Show that

S 1[d4xF" F¢ + 0(a®)
G~ A ;

Uvt pu

O i.e. that the lattice gauge action has O(a2) discretisation errors.

O Gauge invariance: the action is invariant under

U,(x) = VU, x0)V(x + i)'
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Static Quark Potential

t] ExamFle relate the static quark potential to Wilson loops. Consider P 5
complete set of eigenv. of

HY" = E $"

O The energy EO of the %round state depend on static quark locations x and y and
relative lstance R.T

V(R) =
O For an arbitrary state ¥
<\Ij | €_TH| lP) Z | <\P(n) | LP) |2 —-TE, T — oo | <\P(O) | \P> |2€_TE0

O For the test-function acting on some vacuum wave function ()

\Paﬁ — Uaﬁ(X, Y)Q
O we obtain

(P |e~TH|P) = —[HdU(b)Tr( [T v®)e™s® = wR,T) .

b€loop
O Therefore,

1
VIR, T) = — lim 7 log W(R, T)
T—o0
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Static quark potential (2)

O Consider strong coupling expansion of the pure gauge action around B8 = 0. Compute

W(R,T) = %JH(ZU@‘SG(U)H Ub),
SG = —%Z Z WTI’UDZ,

X u>v

O Use the identity

1
[dU Te(UV,) Te(U™'V,) = STV V), [dU = 1

O For the case of a 1 x 2 rectangle

1 2
W(R,T) = E“_IUZU [1+ § ) TrU, +§% Y TeU, Y TrU, +..]TeU,,

4N4

Cc

O In general the only non-zerg term comes from tiling the loop. So,

W(R,T) = <2£2) = ¢~ %R ay = — log <2§’2)

O This is an area law indicating confinement.
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Monte Carlo method

O On a finite lattice we need to compute the integral over a finite, but large, number
of U-fields. This can be done numerically, though not by direct mtegratlon

3 One uses the stochastlc Monte Carlo method instead: Sgenerate a series of
G

configurations U )(x) distributed with probability e )det M(U)/Z and
compute expectatmn values as averages over those configurations:

(O, y. ) = ZmU@ M= (U
i=1

O A sufficient number of configurations is needed to keep the statistical errors of the
computation small.

O The detM(U) factor is still a big computational problem, since the matrix M is order
V x V, though it is sparse.

O In the quenched approximation, often employed first, one sets det M =1, i.e. one
neglects internal quark loops.

SR
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Metropolis algorithm - highly simplified

O Start with some “trial” configuration {U(x)}

O Go through sites of lattice xi,i = 1,...,N in some order,
updating each in turn while keepmg others fixed

» Choose new local gauge field U’(xi) with probability PU'«U
and Boltzmann density W(U) such that

> ZPU<—U =1, Py yWU) = Py_yWU)

» (Calculate change in action AS

> Accept the new configuration with probability
: W(U’) : _AS
min< 1, — min {l,e }
W(U)

= Ensures correct distribution.

O One complete pass through the lattice is a sweep. =~
O There are two crucial features that simplify the calculation.

» The change in the energy can be
calculated locally.

|
|
|
|
|
|
'

> “Independent” sites can be up- dated in parallel

O These are the features that allow us to make highly effective use of parallel
computers.
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Statistical and Systematic Uncertainties

O Statistical uncertainties:

» gauge configurations gerlmerated through Monte Carlo procedure

o =~

\/ch
> where Ncfg is the number of independent gauge configurations; O(100) typical.
Lattice data has statistical error bars.

O Systematic Uncertainties

» Finite volume: we work in a box - it must be big enough to, e.g. contain the
hadron. L ~ 2 Fm for hadron masses and properties.

> Discretisation effects: the lattice spacing a, or inverse coupling B, must be
sufficiently small that these are under control. Standard Wilson gauge action
has discretisation errors of O(a2).

O State-of-the-Art: 323 X 64 lattice, with L ~ 2 Fm, and a ~ 0.07 Fm.
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The static quark potential

O Confinement was the first property of QCD demonstrated by numerical simulations
in (quenched) lattice QCD, by M. Creutz, Phys. Rev. Lett. 43 (1979) 553.

O Confinement is seen as a linear rise of the static potential at large distances. It is
by now the best studied property of QCD. Here | shall use it to illustrate the effect
of quenching, i.e., of neglecting mternal quark loops.

l T T T T

RER
1 frof
Cosf
./”"
O_16 1.8 2.0 22
= i
=
Y o: 8=6.85, m=0.05
_1__ s O: 8=8.0 quenched |
| | | | | < a -|<m=0.05
o | | | | [em=c
R N I R A YV R
i WIS BRI BT
0 1 2

r/r,

O 7, is the distance defined by the condition ri FQQ(FI) = ]. The potentials are
matched at 7.

O TheuCoulomb well is deeper with dynamical fermions, and the string tension slightly
smaller.
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Potential (2)

O The difference in the short distance behavior, corresponding to high energies, is due
to the different running of the strong couplmg constant as in the presence of
dynamical quarks.

O A more detailed comparison of the behavior of a long distance scale fo and a shorter
distance scale r1 = 0.35 fm as function of quark mass, m,  (m,/m ) is shown in

086 I T I I I I I I ‘

0.84 — —

0.78 L .

0'76 | | | | |

O The effects of the dyhamical quark % e%clearly séan.
Ref.: C. Bernard et al. (MILC), Phys D62 (2000) 034503
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Quarks

O The full generating functional for lattice QCD is

O where M(x,y, U) is the fermion matrix which, in its “naive” form, is

1 .
M(x,y, U) =mo,, + 2 Z I (Uﬂ(x)éy,xﬂ? — U= ”)5y’x‘ﬁ>
U

O Here m is the quark mass. Note that M once again connects only nearest neighbour
points
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Quarks (2)

O Because the y fields are Grassman variables, we can integrate out the fermion
degrees of freedom:

7 = JQZU det M(U) e =%V

O While M is local, the calculation of det M is a global operation.
In particular, we have to re-evaluate det M every time we update the gauge fields.
If you think about this, it is not surprising; quarks are fermions, and therefore have
to satisfy Fermi-Dirac statistics, including anti-symmetry under exchange of co-
ordinates - a non-local procedure.

O There have been many studies of efficient non-local update algorithms - most
noticeably the Hybrid MonteCarlo.

O The cost of including fermions is high - perhaps 1,000 times as expensive as
simulations with gluons alone.

Quenched Approximation
O Because of this enormous computational cost, many simulations to date have set
detM =1

O in the ﬁath integral - this is the quenched approximation. The best justification for
using this approximation is that it applies in the large-Nc limit
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Dynamical Fermions

O Recall the partition function for full QCD,

Z :’T[dUe‘SG(U) det M(U).

0 Computing the determinant is not practical. Consider instead Hamilton’s equations.
Introduce a fictitious momenta and evolve in fictitious time (computer time, so a 4+1
Hamiltonian).

dqb_éH
dt on
dﬂ_ 5H_ 0S
dt o 8

H = ~7*+ S(¢) -

O Note, we can rewrite in Z thedet(M(U)) using Bosonic fields x-

Z = |dUdydr exp —L122-5 (U)— ) yIM~ Y (U)y
2 G X y
X,y

O In the HKbrid Monte Carlo algorithm, choose some Gaussian distributed m and x, then
evolve the U and 1 according to a discrete version of Hamilton’s ec?jjations, keeping X
fixed. Metropolis accept or reject the proposed U. This is the new U.

O Note, at each step require
OH oS, (U
M _ 28 mw)
oU oU oU

SM(U
( )M‘lx

O So, an inversion at each step - expensive - but tractable
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Fermion Doubling and Chiral Symmetry

O The difficulties are not over yet. . ..
O Let us consider the inverse lattice free-fermion propagator in momentum space:
“% d*p oD (=)

0o Qo) m+i Zﬂ y,sinap,

_1=

XY

O This has a pole at p, = 0 andp, = n/a ; it arises because the Dirac equation is first
order

U In four dimensions we have a theory with 4 non-interacting, equal mass fermions
O This is the “fermion-doubling problem”
» Kogut-Susskind - preserves chiral symmetry, but with wrong flavor spectrum

>  Wilson fermions - correct spectrum of states, but at the loss of exact chiral
symmetry on the lattice.

» Chiral fermions - an exact lattice symmetry that reduces to chiral symmetry in
the continuum and flavor structure.

O For spectroscopy, Wilson fermions are the traditional “flavor of choice”
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Wilson fermions

O Solution is to add a second-derivative, or momentum-dependent mass term, to the
action

1
SF =2 [+ 4n0py @) =5 Y0 = )V, ) + e+ D+ 1) U (o)
X Iz

O In the continuum limit
2

W (x) + 0(a?)

SV = [d“x FD +m—

» Lifts mass of doublers but...

» Adds O(a) discretization errors
> Breaks chiral symmetry therefore

» Additive mass renormalization
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Symanzik Improvement

U Working at small lattice spacing a is expensive - more lattice sites are needed to
keep the (physical) volume fixed. It is worthwhile to improve the approach to the

continuum from O(a) to O(a?)

0O Use the Symanzik improvement program. Near the continuum limit, the lattice
action and composite fields can be written as a local effective theory

S =Sy +aS, +a’S,+ ...
Pei(X) = Pp(x) + ag(x) + a*r(x) + ...

O where §, is the continuum action, ¢(x) are lattice fields (e.g. axial density), and
the S, are combinations of gauge invariant composite fields of dimension 4 + k.

O For the Wilson fermion action, the @O(a) term is a Pauli term of the form
CSW(gg )WGMUF /,u/w

U with some appropriately chosen CSW(gg) which needs to be determined non-
perturbatively

O One approach is to simulate a system with Schrodinger Functional, i.e. fixed at
initial and final time, boundary conditions that induce a constant chromoelectric
field and monitoring the response of the fermions. This program was initiated by the
ALPHA collaboration
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Improvement

U Because the Wilson term has introduced.@(a) discretisation errors, there has been
an emphasis on removing those errors - improvement

O Sheikholeslami-Wohlert (SW) or “clover” action:

Cs

NN BWF,0,w ()

X U,V

v

Magnhetic moment term

looks like four-leaf clover 1
y |

(V)

Cw = NP removes all O(ma) errors from hadron masses.
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Hadron spectrum

O The spectrum of hadrons compr1smgkl1ght u, d, s) quarks is the benchmark test of
lattice QCD - also many masses not known!

O In principle, the recipe is to determine the mass of particle P is straightforward:

» Choose an interpolating operator Op such that
(0] Op|P) # 0

» Construct the time-sliced correlator

C(t) = Z (O, H)61(0,0)

> |Insert a complete set 01; states

 d%k e
C@t) = —(0]| O, 1) | P(k))(P(k)| ©%(0,0)]0
Z; om0 OGO IPRNE®10'O010)
- dk e
=) —(0| 6| P(k)){P(k)| O | 0)e™*

P (27r)32 (k)

DEK)

<0|@|P>|
R

» Go to Euclidean space

2
C(t) - Z [O1O1P)] e~Mp!

2m
P P
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Hadron spectrum from dynamical fermions

O An amalgamation of dynamical fermion results. Good agreement with expt. Some of
these states are unstable under strong interactions (not considered)

2500

2000 [~ |

1500 Li=

(MeV)
3
Iy
_E“'

! . ]
1000 [~ 5 e _
e -

500 |~ oofo —

| |
n p K g M oy © ¢ N A T E A s z Q

Wide-ranging results are from MILC, PACS-CS, BMW, QCDSF. Results for 77 and 7" are from RBC & UKQCD, Hadron

Spectrum (also the only @ mass), and UKQCD. Symbol shape denotes the formulation used for sea quarks.
Asterisks represent anisotropic lattices. Open symbols denote the masses used to fix parameters. Filled symbols
(and asterisks) denote results. Red, orange, yellow, green, and blue stand for increasing numbers of ensembles
(i.e., lattice spacing and sea quark mass). Horizontal bars (gray boxes) denote experimentally measured masses
(widths). Adapted from Kronfeld (2012).
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Hadron spectrum from dynamical fermions

O Excited isoscalar and isovector meson spectrum

3000
— ]
- = — L
2500 t _ 4=t - I -
. 4 ‘! . . -
I . - T = B g e - — N
I i — 3
2000 | . L — 1 (]
—-— o — T 1__|_
> [ — 3
= - o~
~ L - — .
g 1500 | —
1+t- o++
1++
1000 -/ s ¢— T my = 392 MeV
' c= | 9243 % 128
1 1 {5
R isoscalar ¥
500 .
1sovector

Hadron Spectrum (2013): Light-quark meson spectrum resulting from lattice QCD, sorted by the quantum numbers
JPC. Note that these results have been obtained with an unphysical pion mass, mm = 396 MeV
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Why supercomputers?

U QCD is a 4 dimensional grid based problem, #sites = L*

O Want small lattice spacmgs and large lattice sizes. Typical size is 324
corresponding to 33 X 10° degrees of freedom

O In Monte Carlo, integrals are approximated by sums. Each element of the sum is the
integration of a differential equation (Hamilton’s equations)

O Most time consuming part is repeatedly solving large sparse linear systems of
equations. E.g., conjugate gradient

O A cycle estimate is

#1025 139 3 o2
sample step CG — site site

ops ops

103sample

O For a 1 Gigaflop machine, and a typical medium size of 10 sites, then we need 10’
secs for a complete simulation
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QCD on a parallel computing platform

O We want to decrease runtime for a fixed size problem, so we increase # of
processors, N

O Consider a 2 dimensional problem. Use a grid mapping

O Amount of data to be communicated between
neighboring processors is proportional to the
surface area of the subgrid residing on each , - |
processor S e -

O Limitation of scalability is communication / i S —
computation ratio. Amount of computations is ' T ’
falling faster than the amount of

communications when N increases

O Latency is okay - can overlap communication and computations

O Bandwidth okay; however, packet size and overhead too large. For a Teraflop scale

computer, we typically need to exchange a few hundred bytes between neighboring
processors

J)effé?son Lab









Experimental meson spectrum

« Mesons classified by their conserved quantum numbers
e Spin, isospin, charge-conjugation  JPC

ISOSPIN=1 MESON SPECTRUM

7T O 03

~!
J—
-
Ny

LN
")

-
-
-4
-
4

2.0

m / GeV

10 E 1t Ju—
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Experimental meson spectrum

« Mesons classified by their conserved quantum numbers
e Spin, isospin, charge-conjugation  JPC

ISOSPIN=1 MESON SPECTRUM

7T Y 03 e) by ay a1 a

_ fq 20}
L 25+1 o %
[C]Cﬂ (7’1 T L]) ’ e | - i | 9
1.5¢ A | 3 g+ E _—
> | - i =
L=0: O_+,1__ g : o
= 1.0t ol -

L=1:1",(0,1,2)"" | 5
L=2:2""(1,23)" | '

.geffé?son Lab
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Experimental meson spectrum

« Mesons classified by their conserved quantum numbers
JPC

« Spin, isospin, charge-conjugation

q
[6]67] (n 25+1L])

)

-

=0:(07%,1 |
L=1:(17,(0,1,2) "
(2%, (1,2,3)

J

[~
|

h
|

.geffé?son Lab

m / GeV

2.0t

1.5¢

ISOSPIN=1 MESON SPECTRUM

T 0 03 g b, apg a1 a» 1y

]F@
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Experimental meson spectrum

« Mesons classified by their conserved quantum numbers
JPC

Spin, isospin, charge-conjugation

q
[6]67] (n 25+1L])

-

07,17
(177, (0,1,2)t+
(2%, (1,2,3)

J

n.b.

—— Ot— 1—+ ot-—
absent: o —,0", 177,27 ...

.geffé?son Lab

m / GeV

2.0t

1.5¢

05}

ISOSPIN=1 MESON SPECTRUM

ay  a ay

1 F@

an

7T O

03 T b

the cbnstituent
quark picture
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Experimental baryon spectrum

« Baryons classified by their conserved quantum numbers
e Spin, parity, isospin  JP

ISOSPIN=1/2 BARYON SPECTRUM

Nucleon Mass Spectrum (Exp): 4%, 3%, 2*

2400 |- -
2200 - H, (2220) G 4(2250) "]
- Tt G,(2190)
2000 —
P,11900) .....
S 1800 -
§ . b e
é« 600 - Pull710) Pil1720) ¢ (1680 s,) D’?:f*;‘) D, (1675) b
S ==
> 5,,(153)  p'(1520)
1400 {0 ~
1200 | .
1000 -
300 [ 12+ 32+ 52+ 72+ 92+ 1/2- 3/2- 52- 7/2- 9/2-
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Experimental baryon spectrum

« Baryons classified by their conserved quantum numbers

e Spin, parity, isospin  JP

ISOSPIN=1/2 BARYON SPECTRUM

@:CDS 25+1 00 -
9qq] (n® L)
q q q 2200 - H, (2220) G, (2250) |
G, (2190)
2000 -
Antisymmetric under interchange

. . S 1800 - .

7 = permutation of quarksinspace I I g@m m \
<) L P, (1710) P,(1720) Fﬁo’- e Dﬂ:;s DW?S\ i
. 1 + § 1600 — § s,,(1650)  D,,(1700) N

L = OS . > Z - 159 0T
1 3 1 3 5 1400 __P’ ) ——
L= 1Iv : (22,223 o _
1000 |- N
800: 12+ 32+ 52+ 72+ 92+ 12- 32- 52- 7/2- 9/2- :
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Nucleon Mass Spectrum (Exp): 4%, 3%, 2*




Experimental baryon spectrum

Spin, parity, isospin ~ JP

Baryons classified by their conserved quantum numbers

ISOSPIN=1/2 BARYON SPECTRUM

Nucleon Mass Spectrum (Exp): 4%, 3%, 2*

Cmwm— 2541y ) :
99q] (n% 1Ly )
q q q 2200 —
Antisymmetric under interchange | =2 LA
: : S 1800 b
7 = permutation of quarks inspace T} N _
_ . 1 _|_ %’ 1600 FJes0) | EEE 1 P }
L - OS . Z] 2 B 5%) D.(1520) g
L= 1M : X (Z'Q' Q'Q’Q) J 1200:— .
1000 |- 1S ] N
800 [ 12+ 32+ 52+ 72+ 92+ 12- 3/2- 52- 72- 9/2- :
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Experimental baryon spectrum

« Some states are “missing” ?77?

ISOSPIN=1/2 BARYON SPECTRUM

Nucleon Mass Spectrum (Exp): 4%, 3%, 2*
Cmwm - si1y ) ol
9qq] (n® L)

q q q 2200 (

2000 - L -
Antisymmetric under interchange '

_ k= i
- : S 1800 |- - -
7 = permutation of quarksinspace I | m !
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1t 2 1600 i / {5""“‘” R 1P %
R o i 1400? m 2S ] il
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VB Al 1200 F -
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Finite volume QCD & the hadron spectrum

Compute correlation functions as an average over field configurations

e.g. /Dtth/_)DAy BT (F) FTp(0) o=/ 4x Laco 4.4,

¢ Y

sum ‘field correlation’ ‘probability weight’

Field integration within a finite, but continuous, hypercube

Need some kind of ultraviolet regulator....

Spectrum from two-point correlation functions

C(t) = <0\0(t) 0+(0)|0>
Z e FWH(0|O(0)n) (n]OT(0)[0)

States |n) are finite-volume distorted

J)effe?son Lab



Lattice QCD & the hadron spectrum

Compute correlation functions as a Monte Carlo average over field configurations

e.g. [DYDFDA, GTy(t) fry(0) ¢ |7 Lacolviin)

¢ Y

sum

o ~— Discretize the action over sites
Y 7 G Serves as an ultraviolet regulator

‘field correlation’ ‘probability weight’

Spectrum from two-point correlation functions

C(t) = <0|C9() 1L( 0)[0)
Z e FWH(0|O(0)n) (n]OT(0)[0)

States |n) are finite-volume distorted

.{effé?son Lab



Excited states from correlators

e How to get at excited QCD eigenstates ?

- optimal operator for state |n> : Qﬁ ~ Zi vz(n) O:L

for a basis of {Oz}

meson operators

- can be obtained (in a variational sense) from the matrix of correlators
.l.
Cij(t) = (0]O;(t) O} (0)]0)

- by solving a generalized eigenvalue problem diagonalize the

(n) — (n) eigenvalues
C(t)v C(tg)o\™ An(t) )\i(t)  o—En(t—to)

correlation matrix’

- a large basis can be constructed using covariant derivatives :

O~gI'D ... Dy

J)effe?son Lab



Operators - quark bilinears

[J Scalar/Vector Dirac structures & covariant derivatives
Y5t —J =0
Vit —J =0
0D = J=1
= Combine gamma & derivatives
0D D
in terms of PN

Amy 1mo| JmG D o, Doypatd = J = 0,1,2
(1s LI Jm) (1 Us| LT D). Dy — J=0,1,2,3

] Subduction of continuum to cubic reps.

o = Tsirom

arxiv:1004.4930, 1104.5152, 1201.2349
4effe?son Lab



Operators - three quarks

{] Baryons operators are projectors acting on flavor, Dirac spin, and spatial indices

(Flavor,, ® Spin_¢ ® Space.p) {11293}

| Symmetric under quark permutations © & color is antisymmetric

J

J

| Now CG-s in permutations  and coupling spin and derivatives/space

e.g., two derivatives

NSJEN|

| arxiv:1004.4930, 1104.5152, 1201.2349
J)eferon Lab



Distillation

[ Define a low rank (spatial) smearing operator
e.g., quark bilinear

Cyj(t) = @O0y - OTHOY) vy = Vi VI

{] Factorize propagators and operator constructions
Cii(t) = Tr [®*(t) P(t,0) 7 (0)P(0,t)]

fxﬁ (t) — V(t)TFfw (t)V(t) matrix rep. of operator
P,s(t,0) = V(t)T./\/l;é (¢,0)V(0) perambulator

;’ » Multigrid & GPUs have been key to
Bl construction quark line

"and a powerful ally it is’

arxiv:0905.2160
4effe?son Lab



Glimpse of meson spectrum from lattice QCD

e Appears to be some gg-like near-degeneracy patterns - isovectors

1
=0 =2 & ?—) = on-+
:\. _35 =
0t —
> - -
§ :/ == 277 o=+1D
15 = 25
ot
;_
0.5}
p "1S

J)effe?son Lab

G|

m, ~ 391 MeV
_ | =
I | N
| I 1F | e
I N ,7213 — & &= | .
| (= o i
[l @ e 4T g ot
I r—
| / .
1—+
‘/' 7\\
I S
P
0++
Monte Carlo

stat. uncertainty PRL 103: PRD 82. 88




qq interpretation?

« “Extra” non-exotic states at same energy scale as lightest exotic?

2.5

200 0~ T

m / GeV

1.5

1.0

0.5

.{effé?son Lab




qq interpretation?

» Consider the relative size of operator overlaps <n| (’);r ‘@>

2.5

2.0

m / GeV
I

1.5

1.0

0.5

.{effé?son Lab




1-- operator overlaps

» Consider the relative size of operator overlaps <n| OZT ‘@> B s

— R
-
2.0
> —
L\“ﬁ —
S 15}
i e
—

.geff;?son Lab



Glimpse of meson spectrum from lattice QCD

e ‘super’-multiplet of hybrid mesons roughly 1.2 GeV above the p

m / GeV

.geff.é?son Lab

25

20T

1.5
1.0 1

0.5

O—+

012 1)

1 -

| .

| -

1 O+_ 2+—
1=

| m,; ~391MeV |

| PRL 103; PRD 82, 88 |

o these states have a dominant overlap onto JJF[D' D]zlj ~ [qoﬂ 8. & B8c




Glimpse of meson spectrum from lattice QCD

Multiple exotic mesons within range of GlueX EXOTIC MESONS

PRL 103; PRD 82, 88

.geffe;?son Lab



Excited light quark baryons

« A ‘super’-multiplet of hybrid baryons >earches In CLAS1Z

N* A*
1+ 3+ 5+ 7+ 1 1+t 3+ 5+ 7+
| ] ) 2 2 | 2 2 2 2
3.0} - E i B
| -
- 1 |
75 . B , — :
= ' om = = - @ —
~ 20t |
SRR |
[ |
- |
1.5¢ i =
- — i Moy ~ 391 MeV
1.0} i 16% x 128
| ~ (2fm)?
. PRD84 074508 (2011)
spectrum from large basis of baryon operators PRD85 054016 (2012)

.geffé?son Lab



Excited strange (and charm) quark baryons

m. ~ 391 MeV

A-391 Y301
Light quarks - SU(3) RS RN IR, —
flavor broken d @ b

Full non-relativistic osf _ I odf o
quark model counting T S G S S T G G W
=-391 1-391

Some mixing of SU(3)
flavor irreps

0B} = : : : : 1 0.8

PRD87 054506 (2013) I N IR NS I R L 9 L L
PRD90 074504 (2014) FFFFE T T FOT A T A A S S

PRD91 054502 (2015)
.{effe?son Lab



Charmonium spectrum

. . Cheung, O'Hara, Tims, Moir, Peardon, Ryan, Thomas (2016)
e A ‘super’-multiplet of hybrid mesons

1500 + - -
E | ]
]
o —
~ — I
- = = =
% _ (—
E .
1000 | : —
N -
U — — T R T Q.‘.D:.
2: C ]
| _—— BT
;Y
2 e
500 - he X, Xes .
Xeo NeTT |
ol T/ | _
Te
—1—+ ot 1—/— 2=t 9=/ 3 4+ 4——“0+— 2+— ott+ 1t+— 1++ 9++ 3+— 3++ gyt+

.geffeffon Lab



Chromo-magnetic excitation

e Subtract the ‘quark mass’ contribution

%)
§
>
2.0} 12.0
> | _
8 1.5} 11.5
~ ' .
< | |
= | | -
| 1.0¢} | | 11.0
= : : '
>>TSU3)r point Mz ~ 702MeV | My ~ 524MeV | My ~391MeV 107
Pattern of states suggest . o
aluonic excitations - Common energy scale of gluonic excitation ~ 1.3 GeV

= Need to know decay modes and rates to compare to expt.

HADRON SPECTRUM: PRD83 (2011); PRD88 (2013)

gefigZon Lab



Excited states are resonances

e Initial determination of spectrum with only ggg style operators
— missing scattering states

N* A*
1+ 3+ 5+ 7+ 1 1+t 3+ 5+ 7+
| 2 2 2 2 | 2 2 2 2
3.0¢ O [i i -
|
s o =
|
25 ™ B = B —
~~ 2.0 [ o = EEEEEEEE BN N BN N * ------------- il m = 7T7TN thr
~ | |
: ----------------- + ------------- M EH = 7TN thr
1.5¢1 | T
. i
X I ~ 1
10! | my ~ 391 MeV
) |
- Some initial results in 511 & P33 have appeared (Graz group)

.geffé?son Lab



Resonances

Manifest as behavior of real scattering amplitudes
- E.g., N TN

Formally defined as a pole in a partial-wave scattering amplitude

A

R
+ ...

tl(S) ~/

® 5y = sh+ s
Different channels should have same pole location

Pole structure (location and residue) gives decay information

.{effé?son Lab



QFT in a periodic cube

Luscher (1986) : application to 3+1dim quantum field theories

quantization condition:

solutions, E,, of

det [1+ip-t-(1+iM)} =0

p(E) phase-space

t(F) scattering matrix (S =14+2i\/p-t \/ﬁ)
M(E, L) finite-volume function

P = [110]

20k ] a1 , | 41 1 1
0 0.5 1.0 1.5 20 2.5

J)effé?son Lab



QFT in a periodic cube

Luscher (1986) : application to 3+1dim quantum field theories

quantization condition:

solutions, E,, of

det [1+ip-t-(1+iM)} =0
simplest case — elastic scattering of a single partial wave:

(6 = lesing, = cotd(E)=M(E,L) E. value maps to d(En)

need to compute the spectrum ...

4effe?son Lab



An elastic resonance — the p in ntrt

2 %
[}
8
¢
3
3
¢ 3
-]
[}
3
8
R X 0
600 700 800 900 1000 1100
m(rm)

J)effé?son Lab

canonical resonance ‘bump’
described by a rapidly rising phase-shift

scattering phase-shift

0.0 0.5 1.0 1.5
E | GeV

1 MARCH 1973

PHYSICAL REVIEW D VOLUME 7, NUMBER 5

nw Partial-Wave Analysis from Reactions 7'p = n'n"A*" and 7n'p > K*K"A** at 7.1 GeV/ct

S. D. Protopopescu,* M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatté, i
J. H. Friedman,§ T. A. Lasinski, G. R. Lynch, M. S. Rabin, || and F. T. Solmitz
Lawrence Berkeley Laborvatory, University of California, Berkeley, California 94720
(Received 25 September 1972)



Lattice QCD spectrum

Variational analysis of a matrix of correlation functions C;;(¢) = (0|0;(¢)0;(0)|0)

—Z *(0]0;|n)(n|0O;|0)

operator basis:  ‘single-meson’ ‘meson-meson’
T Z C(p1,p2; p) Mi(p1) M2(p2)

P1,DP2

P = %[namnyanz]

\/m?+p?+\/m%+p§

J)effe?son Lab



Lattice QCD spectrum

Variational analysis of a matrix of correlation functions C;;(¢) = (0|0;(¢)0;(0)|0)

—Z *(0]0;|n)(n|0O;|0)

operator basis:  ‘single-meson’ + ‘meson-meson’
T Y C(p1,p2;p) Mi(p1) Ma(p2)

P1,DP2

P = %[nxynyanz]

.

N\

diagrams like

e
|| '’

)

now need to evaluate /< >
\

Distillation handles
quark annihilation lines

"Don’t underestimate the power...’

| Linear ops from KNLs+GPUs
J)effe?son Lab



Lattice QCD spectrum

Variational analysis of a matrix of correlation functions C;;(¢) = (0|0;(¢)0;(0)|0)

—Z *(0]0;|n)(n|0O;|0)

operator basis:  ‘single-meson’ ‘meson-meson’
T Z C(p1,p2; p) Mi(p1) M2(p2)

p17p2

P = %[nxanyanz]

\/m?+p?+\/m%+p§

Can be lots of Wick contractions, and momentum projections

Worst case: rest-frame —> p=100 -> 6x, p=110 -> 12x, p=111 -> 8x

(a) (b) () d@ @
() (f) (9) (h)

J)effé20n Lab



An elastic resonance — the p in it — lattice QCD

PRD87 034505 (2013)| My ~ 391 MeV

scattering phase-shift

[000] [100] [110] [111] [200]
E / MeV iz [
1100 120} &l
. o

1000 1 E 90 e
900 | °l N
800 | N

' 800 850 900 950 1000 1050

E / MeV

.{effe?son Lab



An elastic resonance — the p in it — lattice QCD

PRD87 034505 (2013)| My ~ 391 MeV

scattering phase-shift

[000] [100] [110] [111] [200] .
E / MeV e . jﬁ s
150 e
1100 0] 53
. g
1000 E 90 e
60} @
900 | N
30 .
800 | Ny
' 800 850 900 950 1000 1050
E / MeV
PRD92 094502 (2015)| my ~ 236 MeV
scattering phase-shift
E / MeV [OOO] [100] [110] [111] [200] 180 ¢ = = - & o % ______
960! - 00 NN S S SR S N s <] 1
8 " o
840+ B o - - N 120+ [111] @ﬂ
o [200] -
720} \ \ & o a
600 | | ! 60 ra
480k iy by ey by b T .
obLs o fH m@g . .
480 600 720 840 960

E / MeV
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An elastic resonance — the p in it — lattice QCD

150 | Feng et al | u,d | ma-330 MeV 180 - Lang et al | u,d | mn~266 MeV
PRD83 094505 (2011) o
120 L 150 | | PRD84 054503 (2011) s
cez]
20 120
60 '_§_' 90 L
0L 60 |
0 1 0 1 193} 1 1 1 1 1 30 I
700 800 900 1000 1100 1200 1300 0 o B , , ,
600 700 800 900 1000
Guo et al | u,d | mr~226 MeV 180 -
51 | u,d | M Bulava et al | u,d,s | mz~236 MeV
PRD94 034501 (2016) o .
150]- s 50 | NPB 910 842 (2016) +
; | {+
100 | o 120r s
o ~+
9
50| ® *
© 60 +
0 emd 1 1 1 ;
2.0 25 3.0 35 40 E/m 0l
" +
ol M * * | | |
20 2.5 30 35 4.0
E/mg
Alexandrou et al | u,d,s | m~320 MeV ,
180 180 - Balietal | u,d | m:~150 MeV
PRDTe DIy 2017) = = PRD93 054509 (2016 T
150 ¢ 150 b ( )
fH
120 + 120 -

90 E‘Eﬂ 9 L
60 %_' 60 | é%

30 + 30 &
0 I En A I I I I I I ) L L L ! ! 1 1
700 750 800 850 900 950 1000 1050 300 400 500 600 700 800 900 1000
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Coupled-channel resonances

Most resonances decay into more than one final state

e.g. two-channel scattering described by a t-matrix t(E) = Gigg Zzgg)

Finite-volume spectrum as a function of scattering becomes more complicated

coupled-channel spectrum
solutions En(L) of

det [1+ip(E) - t(E) - (1 + iM(E,L))] = 0

No longer a one-to-one mapping from energy to scattering ...

Jefferson Lab



Coupled-channels

solutions, E,, of

det {1+z’p-t-(1—|—z’M)] =0

p(E) phase-space
t(F) scattering matrix

M(E, L) finite-volume function

for a known t(E)

2
|A| L
sl KK — KK
04|
03 |
02 mm\— KK
01k
T — T
0 ' !

600 800 1000 1200 1400 1600

4effe?son Lab

1600
1400
1200
1000
800
600

e T — T
-\ KK = 7

can predict En
[000] AF

7T7T_—>KI_(_
KK —- KK



Coupled-channels

solutions, E,, of

. : T — T r — KK
det{1+zp-t-(1—|—z./\/l)]—0 t_<K[_{—>7r7r KK - KK

p(E) phase-space
t(F) scattering matrix

M(E, L) finite-volume function

for a known t(E) can predict En
\«4!2 [000] Air

os | KK — KK 1600 - .

1400 |- *

04 | g o

1200 = o

03 |- °

- 1000 |- o

02 Tm\— KK — ¢

800
0.1 |
T — T | 600 = | | —— |

0600 800 1000 1200 1400 1600 7 15 2.0 2.5 3.0 3.5 40

but how do we perform the inverse mapping ?

J)effé?son Lab



Coupled-channels

solutions, E,, of

det {1+z’p-t-(1—|—z’M)] =0

p(E) phase-space
t(F) scattering matrix

M(E, L) finite-volume function

parameterize the energy dependence of the t-matrix

K-matrix is a convenient approach
Imi;(s) = =055 pils) © (s — sy, )

t H(F) =K (E) —ip(E) where K-matrix is “any” real matrix

J)effé?son Lab



Coupled-channels

solutions, E,, of

det {1+ip-t-(1—|—z’M)] =0

p(E) phase-space
t(F) scattering matrix

M(E, L) finite-volume function

parameterize the energy dependence of the t-matrix

K-matrix is a convenient approach
Imi;(s) = =055 pils) © (s — sy, )

t H(F) =K (E) —ip(E) where K-matrix is “any” real matrix

Want pole mass and residues/couplings of t-matrix

In recent years, progress towards establishing this approach

.{effé?son Lab



p resonance as a coupled channel system
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Phase shifts & inelasticity

PRD87 034505 (2013)
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M, ~ 236 MeV
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Side comment: four-particle effects

PRD95 074510 (2017)

Don’t know the equation that describes 27 - 4%, but must have the form:

o[ )

If Korax ~ O(€), then factorizes

[:(ZW,QW [§2w,4w):| — 0

K47r,27r K47T,47T

det {MQ_; —+ ngjgﬂ-} X det {M;Tl —+ K47T,4ﬂ-} —+ 0(6) =3

See no clear evidence of 4x

4effe?son Lab
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Light scalar mesons - empirically
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1000 events
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Light scalar mesons - empirically

Conventional wisdom: an ‘inverted’ mass nonet
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G @ Similar? Vastly different imaginary parts...
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What does QCD have to say?
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Lightest tensors at m;=391 MeV
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Lightest tensors at m;=391 MeV
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Lightest scalars at m;=391 MeV
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light meson resonances at mr~391 MeV
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Quark mass dependence: I1=0 & 1
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arXiv:1904:03188

Quark mass dependence: I=1/2

6, .0 50/0
A more complicated story... 60 | aY o o3
need “t” & “u”-channel amplitudes
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Charmonium resonances

PDG

Several resonances reported near DD thresholds

Mass (MeV)
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Charmonium resonances

PDG

Isospin 1 charmonium?

Mass (MeV)
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Tetraquarks 7 mnx ~ 391 MeV JHEP 1711 033 (2017)
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S-wave D decays

. ] Moir et al, JHEP 1610 (2016) 011
Sharp threshold behavior in D & Ds
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Coupling resonances to currents

e Production mechanisms - e.g., photo-production
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