

THE INVERSE PROBLEM AND SHADOW GENERALIZED PARTON DISTRIBUTIONS (GPDS)

1ST INTERNATIONAL SCHOOL OF HADRON FEMTOGRAPHY 9-18-24

PRESENTER: ERIC MOFFAT ARGONNE NATIONAL LAB

The Inverse Problem

- * Methods of accessing non-perturbative functions:
 - * Lattice QCD (See lectures by Joe Karpie, Robert Edwards, and Eloy Romero Alcalde)
 - * Global analysis (See also lectures by Marija Čuić, Yuxun Guo, and Hervé Dutrieux):
 - * Extraction of non-perturbative functions from experimental data
 - * Observables are related to non-perturbative functions via convolution (integrals) with perturbative factors
 - * Inverse problem:
 - * Trying to determine the integrand from the value of an integral

The Inverse Problem

- * Particularly challenging in the case of GPDs:
 - * GPDs are functions of three variables $(x, \xi, and t)$
 - * x-dependence is lost in the integration:
 - * Deeply virtual Compton scattering (DVCS):
 - * Compton Form Factors:

$$\mathcal{H}(\xi, t, Q^2) = \int_{-1}^{1} dx \sum_{a} C^a(x, \xi, Q^2, \mu^2) H^a(x, \xi, t; \mu^2) \quad \mathcal{E}(\xi, t, Q^2) = \int_{-1}^{1} dx \sum_{a} C^a(x, \xi, Q^2, \mu^2) E^a(x, \xi, t; \mu^2)$$

* Same is true for Deeply virtual meson production (DVMP)

- * While a fit could obtain a GPD:
 - * Does the x-dependence represent the true GPD?
 - * There is an infinite number of functions that can give the same CFF
 - * Shadow GPDs (SGPDS) (Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019):

* Definition:

* Functions of *x*, ξ , and *t*:

$$x = \frac{k^{+} + k^{'+}}{p^{+} + p^{'+}} \quad \xi = \frac{p^{'+} - p^{+}}{p^{+} + p^{'+}} \quad t = (p' - p)^{2}$$

* Forward Limit ($\xi, t \to 0$):

***** H GPD:

$H^{q}(x, 0, 0) = q(x) \Theta(x) - \bar{q}(-x) \Theta(-x),$ $2H^{g}(x, 0, 0) = q(x)\Theta(x) - q(-x)\Theta(-x),$

* Forward limit of E does not map to known functions

* Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^{s} H^{a}(x,\xi,t;\mu^{2}) = \sum_{i=0 \,(\text{even})}^{s} \, (2\xi)^{i} \, A^{a}_{s+1,i}(t,\mu^{2}) + \operatorname{mod}(s,2) \, (2\xi)^{s+1} \, C^{a}_{s+1}(t,\mu^{2}),$$

$$\int_{-1}^{1} \mathrm{d}x \, x^{s} E^{a}(x,\xi,t;\mu^{2}) = \sum_{i=0 \,(\text{even})}^{s} \, (2\xi)^{i} \, B^{a}_{s+1,i}(t,\mu^{2}) - \operatorname{mod}(s,2) \, (2\xi)^{s+1} \, C^{a}_{s+1}(t,\mu^{2}),$$

- * First moments (s=0) give electromagnetic form factors:
- $\int_{-1}^{1} dx H^{q}(x,\xi,t;\mu^{2}) = A_{10}^{a}(t;\mu^{2}) = F_{1}^{q}(t;\mu^{2})$
- $\int_{-1}^{1} dx E^{q}(x,\xi,t;\mu^{2}) = B^{a}_{10}(t;\mu^{2}) = F^{q}_{2}(t;\mu^{2})$

* Second moments give gravitational form factors:

$$\int_{-1}^{1} dx \, x H^a(x,\xi,t;\mu^2) = A^a_{20}(t;\mu^2) + 4\xi^2 C^a_2(t;\mu^2) \int_{-1}^{1} dx \, x E^a(x,\xi,t;\mu^2) = B^a_{20}(t;\mu^2) - 4\xi^2 C^a_2(t;\mu^2)$$

* Ji sum rule:

 $2J^{a}(\mu^{2}) = A^{a}_{20}(0,\mu^{2}) + B^{a}_{20}(0,\mu^{2}) =$

* C_2^a is related to internal stresses

$$= \int_{-1}^{1} dx \, x \left[H^a(x,\xi,0;\mu^2) + E^a(x,\xi,0;\mu^2) \right]$$

***** Evolution:

equations of the general form:

$$\frac{\mathrm{d}H^a(x,\xi,t)}{\mathrm{d}\ln Q^2} = \int \mathrm{d}x$$

* GPDs change with the energy scale in accordance with evolution

$xP^{a}(x,\xi)H^{a}(x,\xi,t;Q_{0}^{2})$

Shadow GPDs

- * Can rule out any F_F^a that do not satisfy the properties of GPDs, therefore SGPDs:
 - Must satisfy polynomiality
 - * Zero contribution to CFF:

$$\sum_{a} C^{a}(x,\xi,Q^{2},$$

* Forward Limit: $H_S^a(x,0,0) = 0$

* The difference between one of the multiple solutions to the inverse problem and the true GPD:

 $F_S^a(x,\xi;\mu^2) = F_F^a(x,\xi;\mu^2) - F_T^a(x,\xi;\mu^2)$

$$\mu^2) \otimes F_S^a(x,\xi;\mu^2) = 0$$

Examples of Shadow GPDs

* Start from a double distribution (DD):

$$F_{DD}(\alpha,\beta) =$$

* SGPD is a Radon transform of the DD:

$$H_{S}(x,\xi) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \delta(x-\beta-\alpha\xi) F_{DD}(\alpha,\beta)$$

* This guarantees the SGPDs satisfy polynomiality

$$H^{q(+)}(x,\xi) = \sum_{u=1,v=0}^{N+1} \left[\frac{1}{(1+\xi)^u} + \frac{1}{(1-\xi)^u} \right] q_{uv} x^v$$

$$\sum_{m=1}^{m+n\leq N} c_{mn} \alpha^m \beta^n$$

m even,*n* odd

$$q_{uv} = \sum_{m,n} R_{uv}^{mn} c_{mn} \qquad R_{uv}^{mn} = \sum_{j=0}^{n} \frac{(-1)^{u+v+j}}{m+j+1} \binom{n}{j} \binom{j}{m-u+j+1} \times \binom{m+j}{v-1} \binom{m+j}{j} \binom{m+j}{m-1} + \binom{m+j}{j} \binom{m+j}{m-1} + \binom{m+j}{j} \binom{m+j}{j} \binom{m+j}{m-1} + \binom{m+j}{j} \binom{m+j}{j} \binom{m+j}{m-1} \binom{m+j}{m-1} \binom{m+j}{j} \binom{m+j}{m-1} \binom{m+j}{m-1} \binom{m+j}{j} \binom{m+j}{m-1} \binom$$

Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019

Examples of Shadow GPDs

- * SGPD conditions give a set of equations that can be solved for the unknowns (C_{mn}) :
 - * CFF zero contribution:
 - * At leading order (LO) in α_S :

$$H^{q(+)}(\xi,\xi) = \sum_{w=1}^{N+1} \frac{1}{(1+\xi)^w} \sum_{u,v} C^{uv}_w q_{uv} \qquad C^{uv}_w = (-1)^{u+v+w} \binom{v}{u-w}$$

* At next-to-leading order (NLO):

$$\operatorname{Im} C_{\operatorname{coll}}^{q} \otimes H^{q} = \frac{e_{q}^{2} C_{F}}{2} \left(H^{q(+)}(\xi,\xi) \left[\frac{3}{2} + \log \left(\frac{1-\xi}{2\xi} \right) \right] + \int_{\xi}^{1} \mathrm{d}x \frac{H^{q(+)}(x,\xi) - H^{q(+)}(\xi,\xi)}{x-\xi} \right)$$

$$\int_{\xi}^{1} \mathrm{d}x \frac{H^{q(+)}(x,\xi) - H^{q(+)}(\xi,\xi)}{x - \xi} = \sum_{w=1}^{N+1} \frac{\sum_{u,v} D_{w}^{uv} q_{uv}}{(1 + \xi)^{w}} \qquad D_{w}^{uv} = (-1)^{u+v+w} \sum_{k=1}^{v} \frac{(-1)^{k}}{k} \binom{v-k}{u-w} - \frac{1}{k} \binom{v}{u-w}$$

Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019

Examples of Shadow GPDs

- * SGPD conditions give a set of equations that can be solved for the unknowns (C_{mn}):
 - ***** Forward Limit constraint:

$$H^{q(+)}(x,0) = \sum_{w=0}^{N+1} x^{w} \sum_{u,v} Q^{uv}_{w} q_{uv}$$

Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019

Evolution and SGPDs

- * Example SGPDs explored in Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019 give very small but non-zero CFF after evolution to a different energy scale.
- * SGPDs can be multiplied by any factor and the result would still be a SGPD at the input scale
- * Non-zero CFF after evolution would be multiplied by this factor
- * Data spanning a range of energy scales would give a limit to the possible scaling factors

Evolution and SGPDs

- * EM, et. al. Phys.Rev.D 108 (2023) 3, 036027
 - * Explored impact of evolution on SGPDs:
 - * Generated simulated CFF data spanning a range of energy scales and skewness using a model
 - * Calculated how this data constrains a Monte Carlo sampling of SGPDs

"True" GPDs

- * Use VGG model as a proxy for the "true" GPD:
 - * Vanderhaeghen, et. al., Phys. Rev. Lett. 80, 5064 (1998)
 - * Vanderhaeghen, et. al., Phys. Rev. D 60, 094017 (1999)
 - * Goeke, et. al., Prog. Part. Nucl. Phys. 47, 401 (2001)
 - * Guidal, et. al., Phys. Rev. D 72, 054013 (2005)
- al., Phys. Rev. D 104, 016015 (2021))

* Use Parton Distribution Functions (PDFs) from JAM20-SIDIS (EM, et.

Calculating Shadow GPDs

- * For SGPDs derived this way we can impose the forward limit in two ways: * Type A:
 - * Consistent with Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019: $H_{c}^{u(+)}(x,0;\mu_{0})) = 0$

* Type B:

* Could also multiply F_{DD} by a function of t that is zero when t = 0

 $H^{u(+)}_{\varsigma}(x,0;\mu_0)) \neq 0$

* Use Monte Carlo sampling to generate replicas that are linear combinations of three SGPDs:

$$H^{u(+)}(x,\xi;\mu^2,\lambda) = H_T^{u(+)}(x,\xi;\mu^2) + \lambda_1 H_{S1}^{u(+)}(x,\xi;\mu^2) + \lambda_2 H_{S2}^{u(+)}(x,\xi;\mu^2) + \lambda_3 H_{S3}^{u(+)}(x,\xi;\mu^2)$$

- * Plot the region δH_{S} : Outer boundary of all replicas

* Randomly select the scaling factors until we get many replicas that all give CFFs that are within 1% of the simulated data from the model.

- * Inclusion of higher ξ data leads to better constraint of SGPDs at smaller ξ
 - True over the full range of x when $H_{S}^{u(+)}(x,0;\mu_{0})) = 0$
 - * Only true for low x when $H_{c}^{u(+)}$ $(x,0;\mu_0)) \neq 0$

 $Q^2 \leq 100 \text{ GeV}^2$

* Some range of Q^2 is necessary for evolution to constrain the SGPDs but a large range is not as. necessary as having large ξ data.

- * The trend of larger ξ data leading to better constrained SGPDs at smaller ξ is a direct result of the ξ dependence of the SGPDs
 - * Independent of the model used as a proxy for the "true" GPD
 - * Independent of the chosen uncertainty
 - * May be intrinsic to the polynomial model used to construct the example SGPDs
 - example)

* Need a much more general sampling of SGPDs to determine if these trends are generally true (using neural networks (NNs) for

Example Shadow GPDs

Exploring SGPDs with NNs

* Dutrieux, et. al. *Eur.Phys.J.C* 82 (2022) 3, 252:

* Utilized NNs to model H GPD:

* F_C - "Classic" GPD double distribution

* F_S - SGPD part of the double distribution

* F_D - Used for a D-term

- - * Goloskokov, Kroll, Eur. Phys. J. C 42, 281 (2005)
 - * Goloskokov, Kroll, Eur. Phys. J. C 53, 367 (2008)
 - * Goloskokov, Kroll, Eur. Phys. J. C 65, 137 (2010)
- * Note: All pseudodata is at the same energy scale (No evolution)

$(1-x^2)F_C(\beta,\alpha) + (x^2-\xi^2)F_S(\beta,\alpha) + \xi F_D(\beta,\alpha)$

* Trained the NNs utilizing ImCFF pseudodata generated using the Goloskokov-Kroll (GK) model:

Exploring SGPDs with NNs

Dutrieux, et. al. *Eur.Phys.J.C* 82 (2022) 3, 252

* Positivity constraints:

- GPDs $|H(x,\xi,t)| \leq \sqrt{q\left(\frac{x}{1}\right)}$
 - * Radyushkin, Phys. Rev. D 59, 014030 (1999)
 - * Pire, Soffer, Teryaev, Eur. Phys. J. C 8, 103 (1999)

* Probability distribution interpretation of PDFs can yield limits on the

$$\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)\frac{1}{1-\xi^2}$$

Dutrieux, et. al. *Eur.Phys.J.C* 82 (2022) 3, 252

Dutrieux, et. al. *Eur.Phys.J.C* 82 (2022) 3, 252

$$\left| E^q(x,\xi,t;\mu^2) \right| \leq \frac{2M}{\sqrt{t_{\min} - t}} \sqrt{q(x_{\text{in}};\mu^2)} q(x_{\text{out}};\mu^2)$$

EM, et. al. Phys.Rev.D 108 (2023) 3, 036027

Pobylitsa, Phys. Rev. D 65, 114015 (2002)

* Positivity constraints can help to better constrain SGPDs

* Care must be taken since these inequalities can be violated by regularization and renormalization effects in QCD (Collins, Rogers, Sato, Phys. Rev. D 105, 076010 (2022))

SGPDs and Spin

* Ji sum rule:

$$2J^{a}(\mu^{2}) = A^{a}_{20}(0,\mu^{2}) + B^{a}_{20}(0,\mu^{2}) = \int_{-1}^{1} dx \, x$$

* For H:

$$\begin{aligned} A_{20}^{q}(0) &= \int_{-1}^{1} dx x H^{q}(x,0,0;\mu^{2}) = \int_{0}^{1} dx x (q(x;\mu^{2}) + \bar{q}(x;\mu^{2})) \\ A_{20}^{g}(0) &= \int_{-1}^{1} dx x H^{g}(x,0,0;\mu^{2}) = 2 \int_{0}^{1} dx x g(x;\mu^{2}) \end{aligned}$$

* Since this contribution can be determined from the PDFs, H SGPDs would not contribute.

* For E:

* E SGPDs can contribute to the spin because the forward limit is not known EM, et. al. Phys.Rev.D 108 (2023) 3, 036027

$\left[H^{a}(x,\xi,0;\mu^{2}) + E^{a}(x,\xi,0;\mu^{2})\right]$

SGPDs and Spin

- * Calculating the spin contributions:
 - * $H_T: J^{u+} = 0.389$
 - * $E_T: J^{u+} = 0.219$
 - * $\delta E_{\rm S}: J^{u+} = 0.009$
- * The contribution of E SGPDs to the spin is $\sim 4\%$.

* Knowledge of the forward limit of the E GPD from lattice would reduce the possible E SGPDs to those for which the forward limit gives zero. EM, et. al. Phys.Rev.D 108 (2023) 3, 036027

SGPDs and Internal Stresses

- * Internal stresses in the hadron are connected to C_2^a in the second moment of the GPD.
- * This contribution comes from the D-term portion of the GPD
- * The SGPDs explored here have no D-term and so would not affect internal stress calculations
- * Dutrieux, et. al., Eur. Phys. J. C 81, 300 (2021):
 - * Found different D-terms that fit data equally well (shadow D-terms)
 - * Can result in significantly different internal stresses

SGPDs and Tomography

- * Transverse spatial distribution can be obtained from a transverse Fourier transform of the H GPD at $\xi=0.$
 - * Requires accurate knowledge of t-dependence at $\xi = 0$.
 - * Not accessible experimentally.
 - * Must extrapolate from t-dependence at non-zero ξ .
- * Impact of Type A SGPDs would be minimal since they get smaller as $\xi
 ightarrow 0$
- * Impact of Type B SGPDs would be minimal at small x but could be substantial at large x
- Quantitative analysis of the impact SGPDs could have on tomography requires a thorough exploration of possible t-dependent SGPDs. (Work utilizing NNs in progress by EM and collaborators)

Summary

- - * Positivity constraints can help to limit SGPDs

* Integration relating GPDs to currently available observable data (DVCS and DVMP) leads to an infinite number of GPD-like functions that would fit the data equally well

* A SGPD is the difference between one of these GPD-like functions and the true GPD

* The existence of such functions must be accounted for in the estimated uncertainties of any GPDs extracted from DVCS and DVMP data alone

* Those explored so far seem to gain limited constraint due to evolution. Further exploration is needed with a more general sampling of possible SGPDs to verify generality of this finding (Exploration with NNs in progress by EM and collaborators)

