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Introduction of parton distributions

Bjorken scaling

Inclusive deep inelastic scattering (DIS): high-energy electron (virtual photon)
penetrate the nucleon and measure the total inclusive cross-section.

Observation: for medium x, the cross-sections do not depend on Q2.
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Introduction of parton distributions

Feynman parton model and parton distributions

The photon virtuality Q can be considered as the resolution of the probe.

Higher Q2 ⇔ Finer spatial resolution

Conjecture: there are some point-like structures in the nucleon — no extra
feature probed when increasing the resolution.

Feynman Parton model:

If the knock-out process happens so
fast that the interaction among the con-
stituent particles themselves can be ne-
glected, an almost free particle that car-
ries a fraction x of the total momentum
will be probed: p = xP.

The final particle is almost on-shell, so (p + q)2 = (xP + q)2 ≈ 0
→ x ≈ −q2/(2P · q)
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Introduction of parton distributions

Parton distribution functions (PDFs)

Following the parton model, one can immediately write down the first
‘factorized’ formula for inclusive DIS:

σ ≈
∫

dx′f(x′,Q)σ(x′,Q)δ(x − x′) ,

1 σ(x′,Q): simple elastic partonic cross-section
2 δ(x − x′): hard scattering coefficient
3 f(x′,Q): PDF, probability of finding a parton with momentum fraction x′

Bjorken scaling: PDF f(x′,Q) almost do not depend on Q.

Well, why would/should the f(x′,Q) depend on Q at all?

Answer: Quantum corrections.
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Introduction of parton distributions

Resolution dependence of PDFs

In a quantum theory, probes of different resolution scales perceive the
quantum fluctuations differently. E.g. Multiwavelength Milky Way

In the case of Quantum Chromodynamics (QCD), quarks and gluons fluctuate
into each others. Therefore, we see different numbers of quarks and gluons at
different resolution scales.
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Introduction of parton distributions

QCD evolution of PDFs: DGLAP equation

When the interaction is weak, the quantum fluctuations of quarks and gluons
can be perturbatively calculated, which diagrammatically look like1:

Therefore, we have the so-called DGLAP equation:

d
d logQ2 fi(x,Q) =

αS(Q)

2π

∫ 1

x

dy
y

∑
j=q,q̄,g

Pij(x, y)fj(y,Q) +O(α2
S) ,

and we have Pij(x, y) = Pij(x/y) !

1Altarelli and Parisi, “Asymptotic Freedom in Parton Language”.
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Introduction of parton distributions

Partons in the infinite momentum frame

To understand this, let’s switch to another frame, where the proton is moving
at high speed in one direction z. (Infinite Momentum Frame)

World line of partons in
fast-moving nucleona.

aSoper, “Parton distribution functions”.

Light cone coordinates are defined as

x± = (x0 ± x3)/
√

2 ,

so x+ is light-like in the +z direction and
x− is light-like in the −z direction. And
the inner product reads:

x · P = x−P+ + x+P−x⊥ · P⊥ ,

Each constituent particle moves almost
at the speed of light, so its interactions
can be ignored (asymptotic freedom).

Partons are effective objects moving at the speed of light.

Yuxun Guo (LBNL) GUMP GPD Sep. 17, 2024 9 / 47



Introduction of parton distributions

Operator definition of PDFs

Let’s also quick review the operator definition of PDFs:

fq(x) =
1

2x(2π)3

∫
d2k⊥

∑
s

〈
P
∣∣b†s(xP+, k⊥)bs(xP+, k⊥)

∣∣P
〉

=
1
2

∫ dy−
2π eixP+y−

〈
P
∣∣∣∣ψ̄(

−y−
2

)
γ+ψ

(
y−
2

)∣∣∣∣P
〉
,

with implicit gauge links between the two fields. Diagrammatically, it looks

when x < 0, it represents antiquark moving with momentum fraction −x.
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Introduction of parton distributions

Generalized Parton Distributions (GPDs)

GPDs are the generalization of PDFs with non-zero momentum transfer.

Fq =
1
2

∫ dy−
2π eixP+y−

〈
P′

∣∣∣∣ψ̄(
−y−

2

)
γ+ψ

(
y−
2

)∣∣∣∣P
〉
,

This matrix element can be parameterized with two scalar functions:

Fq =
1

2P̄+
ū(P′)

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσ+α∆α

2MN

]
u(P) ,

where we define: P̄ ≡ (P + P′)/2, ∆ ≡ P′ − P, t ≡ ∆2 and ξ ≡ −n ·∆/(2n · P).
We also use the light-cone vector n and its conjugate n̄ such that n2 = n̄2 = 0
and n · n̄ = 1. For an arbitrary vector V, V+ ≡ n · V and V− ≡ n̄ · V

Vµ = nµ(V · n̄) + n̄µ(V · n) + V⊥ ,

The light-cone structure is unchanged under n → eλnµ, n̄ → e−λn̄µ.
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Introduction of parton distributions

Partonic picture of GPDs

The partonic picture of GPDs resembles PDFs except for one region:

when ξ > x > −ξ, the two fields annihilate a quark-antiquark pair.
GPDs resemble distribution amplitudes (DAs) in the nucleons in this DA-like
region, whereas in the PDF-like x > ξ and x < −ξ regions, GPDs resemble the
quark and antiquark PDFs.

This partonic picture also affects the evolution of GPDs.
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Parton evolution in moment space

Parton evolution in moment space
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Parton evolution in moment space

Why do me need moments, and what are them?

Complicate equations can be solved simply with Fourier transform.
For example: a scalar Yukawa theory has

LYukawa = ψ̄(i/∂ − mf)ψ +
1
2 (∂

2
t − ∂2

r + m2)ϕ2 − gψ̄ψϕ

The Yukawa potential V(r) is given by

(∂2
r − m2)V(r) = 4πg2δ(3)(r) ⇔ V(r) = −4πg2

∫ d3k
(2π)3 eik·r 1

k2 + m2

More often we do calculation in momentum space because the substitution

−i∂r ⇔ k

will turn a differential equation into an ordinary equation.

Exer. Prove that the two expressions of V(r) are equivalent.
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Parton evolution in moment space

Fourier transform and convolution theorem

Another interesting property of the Fourier transform is the convolution
theorem. If we define the Fourier convolution of two functions as:

(̃f ∗ g̃)(k) ≡
∫

dk′ f̃(k′)g̃(k − k′) ,

Then the convolution theorem reads,

F [f(x)g(x)] = (̃f ∗ g̃)(k) .

The proof can be done by simply inserting the definition, we can write

(̃f ∗ g̃)(k) =
∫

dk′dk′′ f̃(k′)g̃(k′′)δ(k′ + k′′ − k) ,

therefore we have

F [f(x)g(x)] = (̃f ∗ g̃)(k) =
∫

dk′dk′′ f̃(k′)g̃(k′′)δ(k′ + k′′ − k) .
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Parton evolution in moment space

From Fourier to Mellin transform∗

Now we consider a slightly different convolution:

(f ⊗ g)(x) ≡
∫ ∞

0

dy
y g

(
x
y

)
f(y) ,

we can define kx ≡ log x, ky ≡ log y and we also define two new functions:

f̄(kx) ≡ f(ekx) = f(x) and ḡ(ky) ≡ g(eky) = g(y) ,

and the convolution becomes a Fourier convolutions:

f ⊗ g(kx) =

∫ +∞

−∞
dkyḡ(kx − ky)̄f(ky) .

What does the Fourier transform means?∫ +∞

−∞
dkx f̄(kx)eikx(−in) =

∫ ∞

0

dx
x f(x)xn ,

where I redefine the Fourier conjugate of kx to be −in.
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Parton evolution in moment space

Mellin transform and Mellin convolution

Now that we can formally introduce the Mellin transform:

fn ≡ M [f(x)] =
∫ ∞

0
dx xn−1f(x) ,

and we have the Mellin convolution theorem:

M [(f ⊗ g)(x)] = fn × gn

The Mellin transform can be considered as the Laplace transform, or the
Fourier transform, with change of variable:

fn =

∫ ∞

0
dkx ekxnf(x) ,

where kx ≡ log x. (If you further redefine n → −in, you get Fourier transform.)
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Parton evolution in moment space

Evolution of PDFs in Mellin space

Recall the DGLAP equation that reads:

d
d logQ2 fi(x,Q) =

αS(Q)

2π

∫ 1

x

dy
y

∑
j=q,q̄,g

Pij(x, y)fj(y,Q) +O(α2
S) ,

where Pij(x, y) = Pij(x/y) and thus this is precisely a Mellin convolution.

Therefore, the DGLAP evolution in the Mellin space becomes multiplicative:

d
d logQ2 fin(Q) =

αS(Q)

2π
∑

j=q,q̄,g
Pij

n fjn(Q) +O(α2
S) ,

which is much easier to solve.

However, everything came with a price.
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Parton evolution in moment space

Inverse Mellin transform

Like the case of Fourier transform, the price is the inverse transform. Recall
that the Mellin transform can be considered as a Laplace transform:

fn =

∫ ∞

0
dkx ekxnf(x) =

∫ ∞

0
dkx ekxn f̄(kx) ,

where kx ≡ log x. The inverse Laplace transform reads,

f̄(kx) =
1

2πi

∫ c+i∞

c−i∞
dn e−kxnfn ,

⇒ f(x) = 1
2πi

∫ c+i∞

c−i∞
dn x−nfn

1 Ignoring the c, inverse Laplace transform is just inverse Fourier transform
with a rotation of the variable kx → ikx.

2 Inverse Mellin transform is inverse Laplace transform with redefinition.
3 n must be a complex number that has imaginary part!

Yuxun Guo (LBNL) GUMP GPD Sep. 17, 2024 19 / 47



Parton evolution in moment space

Inverse Mellin transform

Like the case of Fourier transform, the price is the inverse transform. Recall
that the Mellin transform can be considered as a Laplace transform:

fn =

∫ ∞

0
dkx ekxnf(x) =

∫ ∞

0
dkx ekxn f̄(kx) ,

where kx ≡ log x. The inverse Laplace transform reads,

f̄(kx) =
1

2πi

∫ c+i∞

c−i∞
dn e−kxnfn ,

⇒ f(x) = 1
2πi

∫ c+i∞

c−i∞
dn x−nfn

1 Ignoring the c, inverse Laplace transform is just inverse Fourier transform
with a rotation of the variable kx → ikx.

2 Inverse Mellin transform is inverse Laplace transform with redefinition.
3 n must be a complex number that has imaginary part!

Yuxun Guo (LBNL) GUMP GPD Sep. 17, 2024 19 / 47



Parton evolution in moment space

Evolution of GPDs

Now we move on to the GPD evolution, which reads,2

d
d lnQ2 F

(
x, ξ, t,Q2) = αs(Q)

2π

∫ 1

−1

dx′
|ξ|

[
V
(

x
ξ
,

x′
ξ

)]
+

F
(
x′, ξ, t,Q2) .

The evolution of GPDs has two limits in the PDF- and DA-like regions.

lim
ξ→0

1
|ξ|

[
V
(

x
ξ
,

1
ξ

)]
+

= P(x) ,

with P(x) the DGLAP splitting kernel. And

V(2x − 1, 2y − 1)0<x,y<1 = VERBL(x, y) .

where VERBL(x, y) the ERBL kernel for the DA evolution.

2Belitsky et al., “On the leading logarithmic evolution of the off forward distributions”.
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Parton evolution in moment space

Eigenfunctions of GPD evolutions

The so-called Gegenbauer polynomials diagonalize the LO evolution∫ 1

−1

dx′
|ξ|

[
V(0)

(
x
ξ
,

x′
ξ

)]
+

C
3
2
j

(
x
ξ

)
= γjC

3
2
j

(
x′
ξ

)
,

Thus, expanding F(x, ξ, t) Gegenbauer polynomials will diagonalize it.

But before getting to it, let’s review some quantum mechanics:

Ĥ |ψn⟩ = En |ψn⟩

so that any solution at energy E can be written as.

|F⟩ =
∑

i
fi |ψi⟩ such that E =

∑
i

fiEi

and the wave function can be obtained by:

F(x) ≡ ⟨x|F⟩ =
∑

i
fi ⟨x|ψi⟩ =

∑
i

fiψi(x) and fi = ⟨ψi|F⟩ .
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Parton evolution in moment space

Conformal expansion of GPDs

Then we can write the formal decomposition of GPDs as3

F(x, ξ, t) =
∞∑

j=0
(−1)jpj(x, ξ)Fj(ξ, t)

Now that we know the following transform diagonalize evolution:

Fj(ξ, t) ≡
∫ 1

−1
dxcj(x, ξ)F(x, ξ, t) with cj(x, ξ) ≡ ξjΓ

( 3
2
)
Γ(j + 1)

2jΓ
( 3

2 + j
) C

3
2
j

(
x
ξ

)

the prefactor is defined such that

lim
ξ→0

Fj(ξ, t) =
∫ 1

−1
dx xjF(x, ξ, t) or lim

ξ→0
cj(x, ξ) = xj

the pj(x, ξ) can be constructed as

pj(x, ξ) ≡ ξ−j−1 2jΓ
( 5

2 + j
)

Γ
( 3

2
)
Γ(j + 3)

[
1 −

(
x
ξ

)2
]

C
3
2
j

(
x
ξ

)
such that

∫
dx cj(x, ξ)(−1)kpk(x, ξ) = δjk analogous to ⟨ψj|ψk⟩ = δjk

3Mueller and Schafer, “Complex conformal spin partial wave expansion of generalized parton distributions and
distribution amplitudes”.
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Parton evolution in moment space

Conformal expansion of GPDs

Then we can write the formal decomposition of GPDs as3

F(x, ξ, t) =
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j=0
(−1)jpj(x, ξ)Fj(ξ, t)

Now that we know the following transform diagonalize evolution:

Fj(ξ, t) ≡
∫ 1
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dxcj(x, ξ)F(x, ξ, t) with cj(x, ξ) ≡ ξjΓ
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2
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) C

3
2
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(
x
ξ
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the prefactor is defined such that
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Parton evolution in moment space

GPD evolution with conformal moments

Note that Gegenbauer polynomials have a weight function w3/2(x) = 1 − x2:∫ 1

−1
dx w(x)C

3
2n (x)C

3
2m(x) ∝ δnm

With the equations in the previous slides

d
d lnQ2Fj

(
ξ, t,Q2) = αs(Q)

2π γjFj
(
ξ, t,Q2)+O(α2

s) ,

the evolution are diagonalized!
1 Even if it’s not diagonalized beyond LO, you still get evolution equations

without integral in x, except that you will need an evolution matrix Ejk.
2 Any transform of the variable x/ξ (not x) should do this trick, but

Gegenbauer polynomials diagonalized the LO.
3 Again, anything come with a price — inverse transform issue.
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Parton evolution in moment space

Inverse transform (resummation) of GPDs moments

To obtain the GPD, one needs to resum the expression:

F(x, ξ, t) =
∞∑

j=0
(−1)jpj(x, ξ)Fj(ξ, t)

Unfortunately, you cannot truncate the sum, which is divergent!

We need an analytic tick that adds ALL moments together analytically.

1 + 2 + 3 + 4 + · · · ?
= − 1

12
This is defined with the Riemann ζ(s) function

ζ(s) =
∞∑

s=1

1
ns ,

when Re(s) > 1, convergent and well-defined summation.
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Parton evolution in moment space

Mellin-Barnes integral

For any s the Riemann ζ(s) can be defined according to the integral form:

ζ(s) = 1
Γ(s)

∫ ∞

0
dx xs−1

ex − 1 =
1

Γ(s)

∫ ∞

0
dxxs−1e−x

1 − e−x

=
1

Γ(s)

∫ ∞

0
dx

∞∑
n=0

xs−1e−xe−nx =

∞∑
n=0

1
(n + 1)s

The following Mellin-Barnes integral forms an analytical continuation of the
formal summation of GPDs:

F(x, ξ, t) = 1
2i

∫ c+i∞

c−i∞
dj pj(x, ξ)
sin(π[j + 1])Fj(ξ, t) ,

where −1 < c < 0 assuming that Fj(ξ, t) has no pole when Rej > −1. This
allows resummation of GPDs if the analytical expression of Fj(ξ, t) is known.
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Phenomenology with moment space evolution
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Phenomenology with moment space evolution

PDFs fit with moment space method

Doing phenomenology with a moment space approach is not complicated.

Parameters ⇒ Moments ⇒ Evolution ⇒ Observables

1 The differential equation can be solved analytically for a given order.
d

d logQ2 fin(Q) =
αS(Q)

2π
∑

j=q,q̄,g
Pij

n fjn(Q) +O(α2
S)

2 The moments are multiplicative renormalizable.
3 Non-parametric forms are harder to implement — we need moments in

complex plane. Numeric functions need to be extrapolated.
4 Observables should be either calculated or transformed to moment space.

Not necessary to go back to x-space to calculate the observables.∫
dxC(x)f(x) = 1

2πi

∫ c+i∞

c−i∞
ds′C1−s′ fs′ ,

Yuxun Guo (LBNL) GUMP GPD Sep. 17, 2024 27 / 47



Phenomenology with moment space evolution

PDFs fit with moment space method

Doing phenomenology with a moment space approach is not complicated.

Parameters ⇒ Moments ⇒ Evolution ⇒ Observables

1 The differential equation can be solved analytically for a given order.
d

d logQ2 fin(Q) =
αS(Q)

2π
∑

j=q,q̄,g
Pij

n fjn(Q) +O(α2
S)

2 The moments are multiplicative renormalizable.
3 Non-parametric forms are harder to implement — we need moments in

complex plane. Numeric functions need to be extrapolated.
4 Observables should be either calculated or transformed to moment space.

Not necessary to go back to x-space to calculate the observables.∫
dxC(x)f(x) = 1

2πi

∫ c+i∞

c−i∞
ds′C1−s′ fs′ ,

Yuxun Guo (LBNL) GUMP GPD Sep. 17, 2024 27 / 47



Phenomenology with moment space evolution

A simple example of PDFs

Let’s first choose an ansatz for PDFs f(x, µ0). We know that PDF must vanish
when x → 1 and it has some scaling x−α according to small-x physics.

f(x, µ0) = Nx−α(1 − x)βP(x).

where P(x) is an extra piece to give f(x, µ0) more flexibility for medium-x4.

⇒ fn(µ0) = NB(n − α, 1 + β) where B(z1, z2) ≡
Γ(z1)Γ(z2)

Γ(z1 + z2)
,

where we set P(x) = 1 and B is the Euler beta function.

Now we can solve the moment space evolution:

fn(Q) =

[
αS(µ0)

αS(Q)

]Pn/β0

fn(µ0)

The β0 is the leading order β function of QCD.

4Hou et al., “New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC”.
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Phenomenology with moment space evolution

A simple example of PDFs (Continued)

Of course, we can include the flavor of the parton as well, so we have

fijn(Q) =

[
αS(µ0)

αS(Q)

]Pij
n/β0

fjn(µ0)

where i, j = q, q̄, g. Commonly, we consider the evolution basis5:

Flavor mixing only happens between singlet (Σ) and gluon (g).
5Herrmann, Evolution of parton distribution functions.
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Phenomenology with moment space evolution

Constraints on GPD

Now we move on to the GPD analysis, the first thing we need is the ansatz.
What do we know about GPDs F(x, ξ, t) in general?

1 It vanishes when x = 1
2 It reduces to PDF when ξ = t = 0
3 It has non-analyticity at x = ξ.
4 Polynomiality condition:

∫
dx xn−1F(x, ξ, t) must be polynomials of ξ

5 It has positivity constrains
6 · · ·

Unfortunately, most of them do not directly constrain GPDs.

The overall behaviors of GPDs are largely undetermined.

Especially true noting that they are 3D functions.
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Phenomenology with moment space evolution

Phenomenological parameterization of GPDs

Now we start to build a phenomenological modeling of GPDs in terms of their
moment Fj(ξ, t). We start with the polynomiality condition6:

∫ 1

−1
dxxn−1Hq(x, ξ, t) =

i≤(n−1)/2∑
i=0

(2ξ)2iAq
n,2i + Mod(n + 1, 2)(2ξ)nCq

n ,

∫ 1

−1
dxxn−1Eq(x, ξ, t) =

i≤(n−1)/2∑
i=0

(2ξ)2iBq
n,2i − Mod(n + 1, 2)(2ξ)nCq

n .

where Mod(n + 1, 2) = 1 for even n and = 0 for odd n.
Therefore, we can write the moments as

Fj(ξ, t) =
∑

k
Fj,k(t)ξ2k ,

Polynomiality condition obtained and the ξ-dependence modeled simply.
6Ji, “Off forward parton distributions”.
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Phenomenology with moment space evolution

The x- and t-dependence of GPDs7

Let’s start by considering the ξ → 0 pieces of GPDs. Since GPDs reduce to
PDFs when t = 0 as well, let just write:

Fj,0(t = 0) = NB(j + 1 − α, 1 + β).

This corresponds to the ansatz of PDFs.
Now we add extra t-dependence with some overall t-dependent factor:

Fj,0(t) = NB(j + 1 − α, 1 + β)× f(j, t)

The t-dependent part consists of two pieces

f(j, t) = j + 1 − k − α

j + 1 − k − α(t)r(t) ,

The first part is the Regge term that produce x−α(t) with α(t) = α+ α′t
observed in experiments, and the other part r(t) is a general t-dependent term.

7Kumerički and Mueller, “Deeply virtual Compton scattering at small xB and the access to the GPD H”.
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Phenomenology with moment space evolution

The ξ-dependent terms of GPDs

Furthermore, the ξ-dependence is constrained by the polynomiality condition:

Fj(ξ, t) = Fj,0(t) + ξ2Fj,2(t) + ξ4Fj,4(t) +O(ξ6) ,

which means that moments are analytical and expandable in ξ (NOT the case
for the GPD themselves). We consider truncating the series for small ξ.

The off-forward moments Fj,2(t),Fj,4(t) can be completely independently
modeled. One simple choice is to let me be proportional to the forward ones.

Fj,2(t) = Rξ2Fj−2,0(t) and Fj,4(t) = Rξ4Fj−4,0(t)

There could be smarter choices (and there should be).
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GUMP program for GPD extraction
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GUMP program for GPD extraction

GUMP program

The GUMP (GPDs through Universal Moment Parameterization) program
makes use of the above constructions for GPD analysis.
We aim to put together the constraints from:

1 Global analysis of PDFs / directly fitting to DIS experiments
2 Global analysis of charge form factors/ directly fitting to measurements
3 Exclusive processes like DVCS/DVMP
4 Other possible exclusive productions
5 Lattice calculated GPD moments
6 Lattice calculated x-dependence GPD
7 · · ·

to obtain the best constraints on GPDs.
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GUMP program for GPD extraction

GUMP for t-dependent PDFs (tPDFs) (2207.05768)

One simple example is the tPDFs that correspond to the GPDs at ξ = 0.
The f(x, t) can be constrained by the PDF f(x), the corresponding form factors,
and lattice calculation of tPDFs as well:
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GUMP program for GPD extraction

GUMP for tPDFs (continued)

We can then obtain a 3-D image of the nucleon with the obtained tPDFs:

ρq(x, b) =
∫ d2∆

(2π)2 e−i∆·bHq(x,−∆2) = Hq(x, b) ,

And we have the following image based on the extraction
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GUMP program for GPD extraction

GUMP for tPDFs (continued)

The same can be done for polarized nucleon:

ρX
q (x, b) =

∫ d2∆

(2π)2 e−i∆·b
(

Hq(x,−∆2) +
i∆y
2M Eq(x,−∆2)

)
,

=Hq(x, b)−
1

2M
∂

∂by Eq(x, b) ,

of which the corresponding image looks
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GUMP program for GPD extraction

GUMP for DVCS (2302.07279)

Extending to the off-forward case, we consider the DVCS measurements for
the quark GPDs, which measures the so-called Compton form factors.

HCFF(ξ, t) = −Q2
q

∫ 1

−1
dx

(
1

x − ξ + iϵ

)
H(+)

q (x, ξ, t)

This process provides us sensitivities of quark GPDs.
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GUMP program for GPD extraction

Ambiguity when inverting CFF to GPD

It is well-known that the shape of GPDs is not uniquely determined by the
sole input of CFFs. It can be further constrained by lattice input:

Lattice simulations of GPDs provide complementary information!
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GUMP program for GPD extraction

GUMP for DVJ/ψP (2409.****)

The heavy meson production provides the sensitivity to the gluon GPDs.

Hg(ξ, t) =
∫ 1

0
dxdz

(
1

x − ξ + iϵ

)
Hg(x, ξ, t)

Φ(z)
1 − z ,
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GUMP program for GPD extraction

Summary

Here we summarize the main results discussed in this talk.
1 Phenomenology in the extraction of parton distributions (PDFs, GPDs)
2 Moment space approach facilitates the parton evolution equations.
3 Inverse transform are needed for moment space treatments.
4 Particularly, the so-called conformal moment expansion helps

parameterize the GPDs and allows for simple evolution.
5 Phenomenological application of such methods.
6 Still, one requires complementary inputs (from lattice or different

processes) to improve the determination of GPDs.

Of course, many future developments in both theory and phenomenology!
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Some extra discussions (if time allows)
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Some extra discussions (if time allows)

Dispersion relation and D-terms

The amplitudes are analytical functions which satisfied the so-called dispersion
relation:

HgC(ξ, t) =
1
π

∫ ξth

0
dξ′ 2ξ′ImHgC(ξ, t)

(ξ − ξ′ − i0) (ξ + ξ′ + i0) + Cg(t) ,

Then the so-called Cg(t) form factors can be determined when both the real
and imaginary parts are determined.

An extraction of the quark Cq(t)
form factors based on dispersion
analysis.a

aBurkert, Elouadrhiri, and Girod, “The
pressure distribution inside the proton”.
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Some extra discussions (if time allows)

Threshold J/ψ productions

Interestingly for large ξ, the imaginary part of the amplitudes will be
suppressed, and the real parts are dominated by gravitational form factors:8

ReHgC(ξ, t) = Cg(t) + ξ−2A(2)
g (t) + ξ−4A(4)

g (t) + · · · ,

ReEgC(ξ, t) = −Cg(t) + ξ−2B(2)
g (t) + ξ−4B(4)

g (t) + · · · ,

such that they can be extracted from threshold J/ψ productions with large ξ.

8Guo, Ji, and Yuan, “Proton’s gluon GPDs at large skewness and gravitational form factors from near threshold
heavy quarkonium photoproduction”.
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Some extra discussions (if time allows)

Some mathematical subtleties

The conformal wave expansion method is nice when just looking at it, but
somewhat strange when looking into it. The summation:

F(x, ξ, t) =
∞∑

j=0
(−1)jpj(x, ξ)Fj(ξ, t)

is divergent. Moreover, pj(x, ξ) vanishes when x > ξ for all integer j.
The analytical continuation not only performs a resummation of the divergent
summation. This process also extends GPDs to the PDF-like region x > ξ.
Thus, we have two statements based on this

1 The PDF-like region is non-zero only when the summation diverges.
2 Modifying finite moments do not affect GPDs in the PDF-like region
3 GPDs in the PDF-like regions depend on the divergent (asymptotic)

behaviors of summation/moments when j → ∞.
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Some extra discussions (if time allows)

Some mathematical subtleties (Continued)

In fact, GPDs in the PDF-like region (x > ξ) can be related to9:

with which one obtains an estimate of GPDs in the PDF region:

9Zhang and Ji, “On convergence properties of GPD expansion through Mellin/conformal moments and
orthogonal polynomials”.Yuxun Guo (LBNL) GUMP GPD Sep. 17, 2024 47 / 47
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