Exclusive processes and generalized parton distributions

C. Weiss (JLab), Lectures at International School of Hadron Femtography, JLab, 16-25 Sep 2024 [[Webpage\]](https://www.jlab.org/conference/HadronFemtographySchool)

I) Exclusive processes in lepton-hadron scattering

Kinematic variables Collinear frames and light-cone components L/T currents Cross section Meson production and Virtual Compton Scattering VCS

II) Asymptotic behavior and factorization

Bjorken regime QCD factorization Quantum correlation functions DVCS factorization from collinear expansion Generalized parton distributions

III) Asymptotic behavior and factorization II

Meson production factorization and GPDs GPD evolution Characteristics of large and small x Heavy quarkonium production near threshold TBD

"kinematics"

"dynamics" ←

Notice ²

Slides are work in progress References to literature still missing; will be added

High energy and momentum transfer regime 3

 $W^2, Q^2 \gg \mu_{\text{had}}^2$

Energy / momentum transfer \gg hadronic scale

 $\mu_{\mathsf{had}}^2 \sim M_{\rho}^2 \approx 0.6 \; \text{GeV}^2 \;$ reasonable reference - meson mass, nucleon size

- Can we predict/compute the asymptotic behavior of the amplitudes of exclusive processes?
- Can we describe exclusive processes in terms of QCD degrees of freedom and interactions? Asymptotic freedom: Effective coupling decreases at short distances Non-perturbative effects suppressed at short distances
- Can we use exclusive processes to quantify and measure the quark/gluon structure of hadrons?

Asymptotics enables systematic theory: Parametric expansion, ordering principle Practical applicability to be demonstrated

Asymptotic regimes ⁴

$$
Q^2 \sim W^2 \to \infty
$$

Deep-inelastic limit (Bjorken limit) $x_R \sim Q^2/W^2$ fixed DVCS, meson production \leftarrow considered here

 $W^2 \to \infty$, Q^2 fixed High-energy limit (Gribov-Regge limit) $x_B \rightarrow 0$ High-energy vector meson production

$$
Q^2\to\infty,~~W^2~\text{fixed}
$$

High-momentum elastic or transition form factors $x_B \rightarrow 1$ Near-threshold production $\gamma^* N \to \pi N$, $\overline{Q}QN$

In processes involving production of heavy quarkonia $Q\bar Q$, the heavy quark mass m_Q can serve as the scale for the asymptotic expansion

Factorization ⁵

 $= \langle M | \Phi \dots \Phi | 0 \rangle$ \times Amp(γ^* – quark/gluon) $\times \langle N'|\Phi \dots \Phi|N\rangle$ Amp ($\gamma^* N \to M N'$)

Separation of scales $Q^2 \longleftrightarrow \mu_{\text{bad}}^2$

Quark-gluon scattering process involving momenta $~\sim Q~$ (meaning invariant scalars $\sim Q^2$) mediated by perturbative QCD interactions

Correlation functions of QCD fields in hadron states $(\Phi = \psi, \bar{\psi}, F)$ describing distributions of quarks/gluons at scale *μ*

 $\langle N'|\Phi(x')\dots\Phi(x)|N\rangle$ "generalized parton distributions" $\langle M | \Phi(y') \dots \Phi(y) | 0 \rangle$ "distribution amplitude"

Exact definition and properties to be elaborated in following

Factorization ⁶

Asymptotic behavior given by

Light-like separation of fields in correlation functions: $(x'-x)^2=0$

Minimal number of physical fields (up to gauge invariance)

Major simplifications, make program practical! Simple renormalization properties of operators in correlation function Small number of structures in matrix element

 $\langle N'|\Phi(x')\dots\Phi(x)|N\rangle$

$$
\bar{\psi}(x')\left[x',x\right]\Gamma\psi(x)\bigg|_{(x'-x)^2=0}
$$

$$
[x', x] = \text{P} \exp \left[i \int_x^{x'} dy^{\alpha} A_{\alpha}(y) \right]
$$

y = $\lambda x' + (1 - \lambda)x$, 0 < λ < 1 *y* along path between *x* and *x*′

$$
A_{\alpha} \equiv A_{\alpha}^a \, \frac{1}{2} \lambda^a \quad \text{QCD gauge potential}
$$

QCD **ALCO ALCO Alt. view: Operator expansion**

QCD process as transition operator

Expansion in "basis operators"

Light-ray operators

Nonlocal composite operators

Gauge-invariant, contain gauge link (connection)

Can be represented as series of local tensor operators classified by twist $=$ dimension - spin: Twist-2, 3, 4 etc.

Renormalization \rightarrow scale dependence

Similarly: Gluon light-ray operators $F(x') \dots F(x)$

Factorization performed in frame where external momenta q , P are collinear along z-axis

 q_T , $P_T = 0$ q^{\pm} , $P^{\pm} \neq 0$ $P^+q^- \sim Q^2$

Light-like separation of fields in correlation function along collinear direction

Momenta of quarks/gluons entering in QCD process

Longitudinal: Determine kinematics of QCD process, produce scalars ∼ *Q*²

Transverse: Cannot produce scalars $\;\sim Q^2$, determine phase space of QCD process, integrated over in correlation function

P+ , *P*[−]

DVCS: Factorization ⁹

Apply factorization to deeply-virtual Compton scattering

 $l + N \rightarrow l' + \gamma + N'$ $Q^2, W^2 \gg \mu_{\text{hi}}^2$

Simplest exclusive process

Leading asymptotic contribution to amplitude contained in virtual Compton scattering on free quark *γ***q* → *γq*′ ("handbag graph")

No pQCD interaction required at LO, amplitude $\mathcal{O}(g^0)$

Outgoing real photon couples to quarks through pointlike QED vertex; no distribution amplitude involved at leading power accuracy in 1/*Q*²

GPDs \longrightarrow Involves twist-2 generalized parton distributions

Factorization of DVCS amplitude formally similar to that of DIS cross section

DVCS: Calculation ¹⁰

1.Compute Compton amplitude from "handbag graph" with unspecified quark correlation function

2.Parametrize external and internal momenta in collinear frame

3. Perform collinear expansion of loop integral, neglecting terms $k_T^2/Q^2, k^2/Q^2,$ reducing the quark correlation function to light-cone distances

4.Parametrize light-cone quark correlation function in terms of GPDs, including spin-flavor structure

DVCS: Compton amplitude from handbag graph ¹¹

$$
T^{\mu\nu} \equiv i \int d^4 z \ e^{i(q'+q)z/2} \langle N' | T J^{\mu}(-z/2) J^{\nu}(z/2) | N \rangle
$$
Compton tensor, general
\n
$$
J^{\mu}(x) = \bar{\psi}(x) \gamma^{\mu} \psi(x)
$$
EM current of quark field
\n(one flavor, unit charge)
\n
$$
T J^{\mu}(-z/2) J^{\nu}(z/2) = \bar{\psi}(-z/2) \gamma^{\mu} \psi(-z/2) \bar{\psi}(z/2) \gamma^{\mu} \psi(z/2)
$$
Apply Wick's theorem.
\n
$$
T \psi(x) \bar{\psi}(y) = iG(x - y)
$$
Quark propagator in coordinate representation

$$
T J^{\mu}(-z/2) J^{\nu}(z/2) = - \bar{\psi}(-z/2) \gamma^{\mu} G(-z) \gamma^{\nu} \psi(z/2) + (\mu \leftrightarrow \nu, z \to -z)
$$
 Contractions 1 + 2

$$
= \operatorname{tr} \left[\gamma^{\mu} G(-z) \gamma^{\nu} \psi(z/2) \bar{\psi}(-z/2) + (\mu \leftrightarrow \nu, z \to -z) \right]
$$

^ψ(*z*/2) *^ψ*¯(−*z*/2) ⁺ (*^μ* [↔] *^ν*,*^z* [→] [−] *^z*)] Anticommuted fields to form density $\psi \bar{\psi}$, trace in spinor ind.

$$
T^{\mu\nu} = i \int d^4 z \ e^{i(q+q')z/2} \operatorname{tr} \left[\gamma^{\mu} G(-z) \gamma^{\nu} \langle N' | \psi(z/2) \overline{\psi}(-z/2) | N \rangle \right. + \gamma^{\nu} G(z) \gamma^{\mu} \langle N' | \psi(-z/2) \overline{\psi}(z/2) | N \rangle \right]
$$

[∫] *^d*4*^z ^ei*(*q*+*q*′)*z*/2 tr[*^γ^μ ^G*(−*z*) *^γ^ν* ⟨*N*′|*ψ*(*z*/2) *^ψ*¯(−*z*/2)|*N*⟩ Nucleon matrix element

DVCS: Compton amplitude from handbag graph ¹²

Switch to momentum representation of quark subprocess

$$
G(z) = \int \frac{d^4k}{(2\pi)^4} e^{-ikz} \frac{1}{k\gamma + i0}
$$

Quark propagator in momentum representation Loop momentum *k* integration variable, can be shifted

$$
\frac{q+q'}{2} = q + \frac{\Delta}{2} \qquad \Delta \equiv q - q' = \text{momentum transfer}
$$

Momenta in Compton amplitude Fourier integral

Shift loop momentum in contractions 1 and 2 such that terms can be combined. Change $z \rightarrow -z$ in contraction 2

$$
T^{\mu\nu} = i \int \frac{d^4k}{(2\pi)^4} \int d^4z \ e^{ikz} \operatorname{tr} \left[\left(\gamma^\mu \frac{1}{(k-q+\Delta/2)\gamma+i0} \gamma^\nu + \gamma^\nu \frac{1}{(k+q-\Delta/2)\gamma+i0} \gamma^\mu \right) \right]
$$

$$
\times \left\langle N' | \psi(z/2) \overline{\psi}(-z/2) | N \rangle \right]
$$

Agrees with result obtained by applying Feynman rules in momentum space

DVCS: Compton amplitude from handbag graph ¹³

- The expression derived from the handbag graph is an intermediate result, to be simplified further by the collinear expansion. The handbag graph contains the leading asymptotic contribution in $1/Q^2$. Its features beyond that, e.g. higher power corrections in $1/Q^2$ should not be taken seriously.
	- The nonlocal quark density in the handbag graph, as it stands, is not a gauge-invariant QCD operator. Gauge invariance will be restored in the asymptotic contribution obtained from collinear expansion.
	- The handbag amplitude, as it stands, is not electromagnetically gauge invariant. EM gauge invariance will be restored in the asymptotic contribution

DVCS: Collinear frame ¹⁴

$$
\Delta \equiv q - q' = P' - P \qquad t \equiv \Delta^2 < 0
$$
\nMomentum transfer to nucleon

\n
$$
\bar{P} \equiv (P' + P)/2 \qquad \qquad \bar{M}^2 \equiv \bar{P}^2 = m^2 - t/4 > 0
$$
\nAverage of initial and final nucleon momenta

Here: Use frame where q and \bar{P} collinear (convenient, other choices possible)

External momenta:

$$
\bar{P} = \left[\bar{P}^+, \frac{\bar{M}^2}{\bar{P}^+}, \mathbf{0}_T\right]
$$

\n
$$
q = \left[-2\xi\bar{P}^+, \frac{Q^2}{2\xi\bar{P}^+}, \mathbf{0}_T\right]
$$

\nLight-cone components $[\, +, -, T]$
\nSatisfy $\bar{P}^2 = \bar{M}^2, q^2 = -Q^2$
\n
$$
\Delta = \left[-2\eta\bar{P}^+, -\frac{t + |\Delta_T|^2}{2\eta\bar{P}^+}, \Delta_T\right]
$$

\nSatisfies $\Delta^2 = t$

Parameters
$$
\xi
$$
 and η determined by the conditions: $Pq = \left(\bar{P} - \frac{\Delta}{2}\right)q = \frac{Q^2}{2x_B}$ $\bar{P}\Delta = 0$

$$
\xi = \frac{x_B}{2} \left(1 + \text{terms } \frac{\{x_B^2 m^2, t\}}{Q^2} \right) \qquad \eta = \xi \left(1 + \text{terms } \frac{\{x_B^2 m^2, t\}}{Q^2} \right)
$$

$$
T^{\mu\nu} = i \int \frac{d^4k}{(2\pi)^4} \int d^4z \ e^{ikz} \operatorname{tr} \left[\left(\frac{\gamma^\mu (k - q + \Delta/2) \cdot \gamma \ \gamma^\nu}{(k - q + \Delta/2)^2 + i0} + \frac{\gamma^\nu (k + q - \Delta/2) \cdot \gamma \ \gamma^\mu}{(k + q - \Delta/2)^2 + i0} \right) \right]
$$

$$
\times \langle N' | \psi(z/2) \bar{\psi}(-z/2) | N \rangle \right]
$$

Compton amplitude as loop integral

 $k = \left| x\bar{P}^{+}, \right.$ $k^2 + |{\bf k}_T|^2$ $\left[\frac{I}{x\bar{P}^+}, \mathbf{k}_T\right]$

$$
\int d^4k = \frac{1}{2} \int dk^+ dk^- d^2k_T = \frac{\bar{P}^+}{2} \int dx \, dk^- d^2k_T
$$

Loop momentum in collinear frame k^- expressed through k^2 , $|\mathbf{k}_T|^2$

Integration measure in light-cone components

Expand quark propagators in integral to capture leading asymptotic contribution

 Q^2 ← $k^2, k_T^2 \sim \mu_{\text{had}}^2$ $\Delta^2, \Delta_T^2, m^2 \sim \mu_{\text{had}}^2$ "hard" ← "soft"

Expansion performed under integral, approximates integrand in dominant region ("Method of regions")

Denominators of quark propagators:

$$
(k - \Delta/2 + q)^2 + i0 = (\dots)^+ (\dots)^- - (\dots)^2_T
$$

\n
$$
= (x + \eta - 2\xi) \left(\frac{k^2 + |\mathbf{k}|_T^2}{x} + \frac{\Delta^2 + |\Delta|_T^2}{\eta} + \frac{Q^2}{2\xi} \right) - (\mathbf{k}_T - \Delta_T/2)^2 + i0
$$

\n
$$
= (x - \xi) \frac{Q^2}{2\xi} + \text{terms } \mu_{\text{had}}^2 + i0
$$

\n
$$
= (x - \xi + i0) \frac{Q^2}{2\xi} \left(1 + \frac{\mu_{\text{had}}^2}{Q^2} \right) \qquad \text{[Terms } \sim \mu_{\text{had}}^2 \text{ marked in blue]}
$$

\n
$$
(k + \Delta/2 - q)^2 + i0 = -(x + \xi - i0) \frac{Q^2}{2\xi} \left(1 + \frac{\mu_{\text{had}}^2}{Q^2} \right)
$$

Denominators given by "effective plus momentum" of quark propagator times hard scale

Plus momentum flow in hard process

Numerators of quark propagators:

$$
(k \mp \Delta/2 \pm q) \cdot \gamma = \frac{1}{2} (\dots)^+ \gamma^- + \frac{1}{2} (\dots)^- \gamma^+ - (\dots)_{T} \cdot \gamma_T
$$

= $\pm \frac{1}{2} q^- \gamma^+ + \text{terms } \mu_{\text{had}}$ = $\pm \frac{Q^2}{4 \xi \bar{P}^+} \gamma^+ + \text{terms } \mu_{\text{had}}$

$$
\gamma^{\mu}\gamma^{+}\gamma^{\nu}, \ \gamma^{\nu}\gamma^{+}\gamma^{\mu} = g_T^{\mu\nu}\gamma^{+} \pm i\epsilon_T^{\mu\nu}\gamma^{+}\gamma_5 + \ldots
$$

 $\mu, \nu = i, j:$ $g_T^{ij} = \delta^{ij}, \epsilon_T^{ij}$

From gamma matrix algebra

Unit tensors in transverse space, symmetric/antisymmetric

In leading-order expansion

Compton tensor $T^{\mu\nu} \rightarrow$ transverse tensors

Spinor projection of quark correlation function $\rightarrow \gamma^+$

Final result for Compton tensor:

$$
T^{\mu\nu} = g_T^{\mu\nu} \int_{-1}^1 dx \left(\frac{1}{x - \xi + i0} + \frac{1}{x + \xi - i0} \right) \times \int \frac{dz^-}{2\pi} e^{ix\bar{P} + z^-} \langle P' | \bar{\psi}(-z/2) \gamma^+ \psi(z/2) | P \rangle_{z^+, z_T = 0}
$$

+ $\epsilon_T^{\mu\nu} \int_{-1}^1 dx \left(\frac{1}{x - \xi + i0} - \frac{1}{x + \xi - i0} \right) \times \int \frac{dz^-}{2\pi} e^{ix\bar{P} + z^-} \langle P' | \bar{\psi}(-z/2) \gamma^+ \gamma_5 \psi(z/2) | P \rangle_{z^+, z_T = 0}$

Quark subprocess amplitudes in collinear approximation

Correlation functions of quark fields with light-like separation

∑ *f*=*u*,*d* • Include quark flavor: $\sum e_f^2 \bar{\psi}_f \dots \psi_f$ e_f = quark charge

- Leading asymptotic behavior of DVCS amplitude in limit $Q^2 \gg \mu_{\tt had}^2$
- Amplitude independent of Q^2 in asymptotic regime (Bjorken scaling). Cross section depends on \widetilde{Q}^2 through kinematic factors
- QCD gauge invariance can be restored by including gauge link along light-like path $[-z/2, z/2]$.
Results agrees with result of operator methods where gauge invariance maintained throughout.

- Asymptotic result derived assuming quarks in hadron have k^2 , $\mathbf{k}_T^2 \sim \mu_{\text{had}}^2$. Valid at tree level, but needs to be modified when quantum corrections are included. \rightarrow QCD evolution, logarithmic scale dependence
- Factorization can be extended to higher order in perturbative coupling: QCD subprocess amplitudes $\mathcal{O}(g^2)$, contributions from quark and gluon correlators

• Power corrections $\sim \mu_{\rm had}^2/Q^2$ can arise from several sources, e.g. t/Q^2 terms, m^2/Q^2 terms, other spin projections in field correlators, higher field correlators. They can be classified within the collinear expansion but are difficult to evaluate. They may not be factorizable.

DVCS: Generalized parton distributions ²⁰

Parametrization of correlation function

$$
\int \frac{dz^-}{2\pi} e^{ix\bar{P}^+z^-} \langle P' | \bar{\psi}(-z/2) \gamma^+ \psi(z/2) | P \rangle_{z^+,z_T=0} = \bar{U}(P',\sigma') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\nu}\Delta_\nu}{2m} E(x,\xi,t) \right] U(P,\sigma)
$$

$$
\int \frac{dz^-}{2\pi} e^{ix\bar{P}^+z^-} \langle P' | \bar{\psi}(-z/2) \gamma^+ \gamma_5 \psi(z/2) | P \rangle_{z^+,z_T=0} = \bar{U}(P',\sigma') \left[\gamma^+ \gamma_5 \tilde{H}(x,\xi,t) + \frac{\gamma_5 \Delta^+}{2m} \tilde{E}(x,\xi,t) \right] U(P,\sigma)
$$

 $U(P, \sigma)$, $\overline{U}(P', \sigma')$ Bispinors of initial/final nucleon (spin wave functions)

 $H, E, \tilde{H}, \tilde{E}$ = functions (x, ξ, t) Generalized parton distributions = form factors of light-ray operator