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2Notice

Slides are work in progress 
References to literature still missing; will be added



3High energy and momentum transfer regime

W2, Q2 ≫ μ2
𝗁𝖺𝖽 Energy / momentum transfer  hadronic scale≫

  reasonable reference - meson mass, nucleon size μ2
𝗁𝖺𝖽 ∼ M2

ρ ≈ 0.6 GeV2

• Can we predict/compute the asymptotic behavior of the amplitudes of exclusive processes?

• Can we describe exclusive processes in terms of QCD degrees of freedom and interactions?
Asymptotic freedom: Effective coupling decreases at short distances 
Non-perturbative effects suppressed at short distances 

• Can we use exclusive processes to quantify and measure the quark/gluon structure of hadrons?

Asymptotics enables systematic theory: Parametric expansion, ordering principle 
Practical applicability to be demonstrated



4Asymptotic regimes

Q2 ∼ W2 → ∞ Deep-inelastic limit (Bjorken limit)
 fixedxB ∼ Q2/W2

 fixedW2 → ∞, Q2 High-energy limit (Gribov-Regge limit)
xB → 0

 fixedQ2 → ∞, W2 High-momentum elastic or transition form factors
xB → 1
Near-threshold production  γ*N → πN, Q̄QN

DVCS, meson production

High-energy vector meson production

 considered here←

In processes involving production of heavy quarkonia , the heavy quark mass  
can serve as the scale for the asymptotic expansion

QQ̄ mQ



5Factorization

= ⟨M |Φ . . . Φ |0⟩
QCD

N N′ 

M

× Amp( γ* − quark/gluon )

× ⟨N′ |Φ . . . Φ |N⟩

Amp (γ*N → MN′ )

Separation of scales  Q2 ⟷ μ2
𝗁𝖺𝖽

Q2

Quark-gluon scattering process involving momenta   (meaning invariant scalars ) 
mediated by perturbative QCD interactions

∼ Q ∼ Q2

Correlation functions of QCD fields in hadron states  ( )  
describing distributions of quarks/gluons at scale 

Φ = ψ, ψ̄, F
μ𝗁𝖺𝖽

“generalized parton distributions”⟨N′ |Φ(x′ ) . . . Φ(x) |N⟩

⟨M |Φ(y′ ) . . . Φ(y) |0⟩ “distribution amplitude”
Exact definition and properties  
to be elaborated in following



6Factorization

Asymptotic behavior given by

Light-like separation of fields in correlation functions:  (x′ − x)2 = 0

Major simplifications, make program practical! 
Simple renormalization properties of operators in correlation function 
Small number of structures in matrix element

⟨N′ |Φ(x′ ) . . . Φ(x) |N⟩

Minimal number of physical fields (up to gauge invariance)

(x′ − x)2 = 0x′ x



7Factorization

ψ̄(x′ ) [x′ , x] Γ ψ(x) (x′ −x)2=0

QCD Alt. view: Operator expansion

QCD process as transition operator

Expansion in “basis operators”

Light-ray operators

P exp [i∫
x′ 

x
dyαAα(y)]

Nonlocal composite operators

Gauge-invariant, contain gauge link (connection)

Similarly: Gluon light-ray operators F(x′ ) . . . F(x)

Can be represented as series of local tensor 
operators classified by twist = dimension - spin: 
Twist-2, 3, 4 etc.

Renormalization  scale dependence→
y = λx′ + (1 − λ)x, 0 < λ < 1

[x′ , x] =

 along path between  and y x x′ 

   QCD gauge potential Aα ≡ Aa
α

1
2 λa



8Factorization: Collinear frame

Factorization performed in frame where external momenta  are collinear along z-axisq, P

qT, PT = 0

Momenta of quarks/gluons entering in QCD process

Light-like separation of fields in correlation function along collinear direction

QCD

q±, P± ≠ 0

Longitudinal:

P+q− ∼ Q2

Transverse:

Determine kinematics of QCD process, produce scalars ∼ Q2

Cannot produce scalars , determine phase space of QCD process, 
integrated over in correlation function

∼ Q2

q+, q−

P+, P−

k+ = xP+

kT



9DVCS: Factorization

Apply factorization to deeply-virtual Compton scattering

l + N → l′ + γ + N′ 
QCD

Q2, W2 ≫ μ2
𝗁𝖺𝖽

Simplest exclusive process

Leading asymptotic contribution to amplitude contained 
in virtual Compton scattering on free quark 
(“handbag graph”)

γ*q → γq′ 

Outgoing real photon couples to quarks through 
pointlike QED vertex; no distribution amplitude  
involved at leading power accuracy in 1/Q2

Factorization of DVCS amplitude formally similar  
to that of DIS cross section

Involves twist-2 generalized parton distributionsGPDs

No pQCD interaction required at LO, amplitude 𝒪(g0)



10DVCS: Calculation

1.Compute Compton amplitude from “handbag graph” with unspecified quark correlation function


2.Parametrize external and internal momenta in collinear frame


3.Perform collinear expansion of loop integral, neglecting terms ,  
reducing the quark correlation function to light-cone distances


4.Parametrize light-cone quark correlation function in terms of GPDs, including spin-flavor structure

k2
T /Q2, k2/Q2



11DVCS: Compton amplitude from handbag graph

Tμν ≡ i∫ d4z ei(q′ +q)z/2 ⟨N′ | T Jμ(−z /2) Jν(z /2) |N⟩

Jμ(x) = ψ̄(x) γμ ψ(x)

T Jμ(−z /2) Jν(z /2) = ψ̄(−z /2) γμ ψ(−z /2) ψ̄(z /2) γμ ψ(z /2)
1 12 2

Apply Wick’s theorem.  
Two contractions 1, 2

Compton tensor, general

EM current of quark field 
(one flavor, unit charge)

Tψ(x) ψ̄(y) = iG(x − y) Quark propagator in coordinate representation

T Jμ(−z /2) Jν(z /2) = − ψ̄(−z /2) γμ G(−z) γνψ(z /2) + (μ ↔ ν, z → − z)

= tr [ γμ G(−z) γνψ(z /2) ψ̄(−z /2) + (μ ↔ ν, z → − z)] Anticommuted fields to form 
density , trace in spinor ind.ψ ψ̄

Contractions 1 + 2

Tμν = i∫ d4z ei(q+q′ )z/2 tr [ γμ G(−z) γν ⟨N′ |ψ(z /2) ψ̄(−z /2) |N⟩
Nucleon matrix element

+ γν G(z) γμ ⟨N′ |ψ(−z /2) ψ̄(z /2) |N⟩]



12DVCS: Compton amplitude from handbag graph

Tμν = i∫
d4k

(2π)4 ∫ d4z eikz tr [(γμ 1
(k − q + Δ/2)γ + i0

γν + γν 1
(k + q − Δ/2)γ + i0

γμ)

Switch to momentum representation of quark subprocess

G(z) = ∫
d4k

(2π)4
e−ikz 1

kγ + i0
Quark propagator in momentum representation 
Loop momentum  integration variable, can be shiftedk

q + q′ 

2
= q +

Δ
2

momentum transferΔ ≡ q − q′ = Momenta in Compton 
amplitude Fourier integral

Shift loop momentum in contractions 1 and 2 such that terms can be combined. 
Change  in contraction 2z → − z

× ⟨N′ |ψ(z /2) ψ̄(−z /2) |N⟩]

q q′ 
k + q − Δ /2

k − Δ /2 k + Δ /2 k − Δ /2 k + Δ /2
k − q + Δ /2

qq′ 
Agrees with result obtained 
by applying Feynman rules 
in momentum space

μ ν μν



13DVCS: Compton amplitude from handbag graph

• The expression derived from the handbag graph is an intermediate result, to be simplified further by 
the collinear expansion. The handbag graph contains the leading asymptotic contribution in . 
Its features beyond that, e.g. higher power corrections in  should not be taken seriously.

1/Q2

1/Q2

• The nonlocal quark density in the handbag graph, as it stands, is not a gauge-invariant QCD 
operator. Gauge invariance will be restored in the asymptotic contribution obtained from collinear 
expansion.

• The handbag amplitude, as it stands, is not electromagnetically gauge invariant. EM gauge 
invariance will be restored in the asymptotic contribution



Δ = [−2ηP̄+, −
t + |ΔT |2

2ηP̄+
, ΔT]

14DVCS: Collinear frame

Δ ≡ q − q′ = P′ − P

Here: Use frame where    and   collinear (convenient, other choices possible)q P̄

t ≡ Δ2 < 0

P̄ ≡ (P′ + P)/2 Average of initial and final nucleon momentaM̄2 ≡ P̄2 = m2 − t/4 > 0

Momentum transfer to nucleon

External momenta:

P̄ = [P̄+,
M̄2

P̄+
, 0T] q = [−2ξP̄+,

Q2

2ξP̄+
, 0T] Light-cone components [ + , − ,T ]

Satisfy P̄2 = M̄2, q2 = − Q2

Satisfies Δ2 = t

Parameters  and  determined by the conditions:ξ η P̄Δ = 0Pq = (P̄ −
Δ
2 ) q =

Q2

2xB

ξ =
xB

2 (1 + terms
{x2

Bm2, t}
Q2 ) η = ξ (1 + terms

{x2
Bm2, t}
Q2 )



15DVCS: Collinear expansion of Compton amplitude

k = [xP̄+,
k2 + |kT |2

xP̄+
, kT]

Tμν = i∫
d4k

(2π)4 ∫ d4z eikz tr [( γμ(k − q + Δ/2) ⋅ γ γν

(k − q + Δ/2)2 + i0
+

γν(k + q − Δ/2) ⋅ γ γμ

(k + q − Δ/2)2 + i0 )
× ⟨N′ |ψ(z /2) ψ̄(−z /2) |N⟩]

Compton amplitude  
as loop integral

Loop momentum in collinear frame 
 expressed through k− k2, |kT |2

∫ d4k =
1
2 ∫ dk+dk−d2kT =

P̄+

2 ∫ dx dk−d2kT Integration measure in light-cone components

Expand quark propagators in integral to capture leading asymptotic contribution

k2, k2
T ∼ μ2

hadQ2 “hard”Δ2, Δ2
T, m2 ∼ μ2

had “soft”⟷ ⟷

Expansion performed under integral, approximates integrand in dominant region 
(“Method of regions”)



16DVCS: Collinear expansion of Compton amplitude

(k + Δ/2 − q)2 + i0 = − (x + ξ − i0)
Q2

2ξ (1 +
μ2

had

Q2 )

[Terms  marked in blue]∼ μ2
had

(k − Δ/2 + q)2 + i0 = ( . . . )+( . . . )− − ( . . . )2
T

= (x − ξ)
Q2

2ξ
+ terms μ2

had + i0

= (x − ξ + i0)
Q2

2ξ (1 +
μ2

had

Q2 )

= (x + η − 2ξ)(
k2 + |k |2

T

x
+

Δ2 + |Δ |2
T

η
+

Q2

2ξ ) − (kT − ΔT /2)2 +i0

Denominators given by “effective plus momentum” of quark propagator times hard scale 

Denominators of quark propagators:

x + ξ

−2ξ x − ξ

x − ξ x + ξ x + ξ x − ξ

−2ξ0
0

Plus momentum flow in hard process



17DVCS: Collinear expansion of Compton amplitude

Numerators of quark propagators:

(k ∓ Δ/2 ± q) ⋅ γ =
1
2

( . . . )+γ− +
1
2

( . . . )−γ+ − ( . . . )T ⋅ γT

= ± 1
2

q−γ+ + terms μhad = ± Q2

4ξP̄+
γ+ + terms μhad

γμγ+γν, γνγ+γμ = gμν
T γ+ ± iϵμν

T γ+γ5 + . . .

μ, ν = i, j : gij
T = δij, ϵij

T = ϵij Unit tensors in transverse space, symmetric/antisymmetric

From gamma matrix algebra

In leading-order expansion

Compton tensor   transverse tensorsTμν →

Spinor projection of quark correlation function  → γ+



18DVCS: Collinear expansion of Compton amplitude

Final result for Compton tensor:

Tμν = gμν
T ∫

1

−1
dx ( 1

x − ξ + i0
+

1
x + ξ − i0 ) × ∫

dz−

2π
eixP̄+z−⟨P′ | ψ̄(−z /2) γ+ ψ(z /2) |P⟩z+,zT=0

+ ϵμν
T ∫

1

−1
dx ( 1

x − ξ + i0
−

1
x + ξ − i0 ) × ∫

dz−

2π
eixP̄+z−⟨P′ | ψ̄(−z /2) γ+γ5 ψ(z /2) |P⟩z+,zT=0

Quark subprocess amplitudes 
in collinear approximation

Correlation functions of quark fields 
with light-like separation

• Leading asymptotic behavior of DVCS amplitude in limit Q2 ≫ μ2
𝗁𝖺𝖽

• Amplitude independent of  in asymptotic regime (Bjorken scaling).  
Cross section depends on  through kinematic factors

Q2

Q2

• QCD gauge invariance can be restored by including gauge link along light-like path . 
Results agrees with result of operator methods where gauge invariance maintained throughout.

[−z /2,z /2]

∑
f=u,d

e2
f ψ̄f . . . ψf  = quark chargeef• Include quark flavor:



19DVCS: Collinear expansion of Compton amplitude

• Asymptotic result derived assuming quarks in hadron have  . 
Valid at tree level, but needs to be modified when quantum corrections are included. 
→ QCD evolution, logarithmic scale dependence

k2, k2
T ∼ μ2

𝗁𝖺𝖽

• Factorization can be extended to higher order in perturbative coupling:  
QCD subprocess amplitudes , contributions from quark and gluon correlators𝒪(g2)

• Power corrections  can arise from several sources, e.g.  terms,  terms, 
other spin projections in field correlators, higher field correlators. They can be classified within the 
collinear expansion but are difficult to evaluate. They may not be factorizable.

∼ μ2
had /Q2 t/Q2 m2/Q2



20DVCS: Generalized parton distributions

Parametrization of correlation function

∫
dz−

2π
eixP̄+z−⟨P′ | ψ̄(−z /2) γ+ ψ(z /2) |P⟩z+,zT=0

∫
dz−

2π
eixP̄+z−⟨P′ | ψ̄(−z /2) γ+γ5 ψ(z /2) |P⟩z+,zT=0

= Ū(P′ , σ′ )[γ+ H(x, ξ, t) +
iσ+νΔν

2m
E(x, ξ, t)] U(P, σ)

= Ū(P′ , σ′ )[γ+γ5 H̃(x, ξ, t) +
γ5 Δ+

2m
Ẽ(x, ξ, t)] U(P, σ)

U(P, σ), Ū(P′ , σ′ ) Bispinors of initial/final nucleon (spin wave functions)

H, E, H̃, Ẽ = functions(x, ξ, t) Generalized parton distributions = form factors of light-ray operator


