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Part I: Exclusive processes and Compton
form factors



Exclusive processes

Deeply virtual Compton scattering (7(k)) + N(P,) — £(k,) + N(P,) + v(g,))

Gold standard channel due to a simple final state, the 3D
structure of the proton is uncovered because the photon is
emitted from the nucleon and because the initial and final
nucleon states are not the same

1‘3( Kinematic variables:
]2 ] * Photon virtuality: q12 = 0*
ﬂ“»—l_ﬂ * . Bjorken x: Xg = ©
T 2Py - q
'y * Four-momentum transfer to thle hadron: t = A® = (P, — P,)*
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N P-q

Generalized Bjorken limit:
S=(P1+q1)2~q12—> o, —A’<s, xg=fixed
— the virtual photon has high energy to take a good look into the

proton, but the momentum transfer is small enough to not excite or
break apart the hadron

— in this limit we have
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Bethe-Heitler (£(k,) + N(P,) = £(k,) + N(P,) + y(g,))

The same initial and final state as DVCS, but the real photon is emitted as Bremsstrahlung from the initial or final lepton.

Detectors cannot differentiate between DVCS or BH, so we need
to add their amplitudes coherently in order to calculate the total

cross section for the transition betweenZ + NtoZ + N + y:

do xRy T

duydyd | 82| dpdg 1622021+ &2 | €3

Cross section:

. , 2 >
amplitude: |7 | = ‘5’713\/(:5‘ +‘<7BH‘ + 7

interference term: .¥ = tves? B T 7 pves? ap

This process gives access to elastic form factors, it does not see the 3D structure of hadrons.



BH usually dominates over the DVCS and the interference term. This strong background may pose experimental challenges. A comparison between
the squared DVCS amplitude, squared BH amplitude and the interference term for an unpolarized initial electron and proton at typical JLab
kinematics is depicted bellow:
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This plot was produced using the KM15 model, which is an LO
model fitted to low-x HERA and JLab kinematics. We can see

that all of the terms are symmetric with respect to ¢.



Factorization and the structure of the proton

How does the structure of hadrons come into play?

GPD

P p P P

Factorization theorems tell us that the process can be separated into a hard (perturbative) part, which is the upper blob denoted by C, and a soft
(unperturbative )part, which contains functions that describe the 3D structure of hadrons, the generalized parton distributions (GPDs). GPDs describe
the transition between the initial hadron state into the final hadron state.



Compton form factors (CFFs)

Owing to the factorization theorem, we can depict DVCS Y o~ 4 LRV - L
using hand-bag diagrams, where the upper part is ,L J\ M'\’i\"jff‘;.i?;-w:f.;’.l;":
perturbatively calculated, and the lower part, which h > N ol g
contains GPDs, is not.
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Unfortunately, we cannot access GPDs directly. The cross

section IS parametrized in terms of Compton form factors (:ff::f::ff:ff:%ffﬁffﬁfffi) Q::::::::::::::::::::::::)
(CFFs), which are convolutions of the hard and soft parts in
the process. We can write them in general as:
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hard scattering amplitude

1
i< g (ol

a) s-channel b) u-channel

Hand-bag diagram for LO DVCS

\ LO CFFs:
twist 2 GPDs: F € {H,E, H, E)

1 A
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Cross section

In order to calculate the cross section, we need to choose a frame. A common
choice is depicted bellow:

Y1 Because we have a 2 — 3 process, it cannot happen in one
plane. We define the leptonic plane, where the initial and
final lepton are contained, as well as the virtual photon. At

an angle ¢ to this plane, we have the hadronic plane, which
contains the initial and final hadron, as well as the real
photon. The virtual photon is contained in the intersection

of these two planes, and we define the z-axis so that the
virtual photon moves along it in the negative direction. In
the BKM formalism, the cross section is written as:
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The fact that the BH process, which we can describe sufficiently well at the level of precision we have for DVCS, comes into the full /N — £ Ny cross
section provides a unique opportunity to access CFFs linearly and quadratically!
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We can also write the cross section in terms of helicity amplitudes: dxydQ%d | | dpdghs atd ‘ TDVCS‘
I
. A, AL A2 A<1>, AQ@ — 02(1 — o) {F vu,r + €Fyy + €Cos 29F (C](;M
OpA = . Z < DVCS AA) TDVCS NG =1 Z fZ y cos ¢ ' Sin ¢
AS) AD +\/ e(e+ 1) cosoF oo T (2h)\/ 2¢(l — €) sin @pF U
ADAG (1) AP . In ¢ . in 2¢
lepton tensor: & 7 7 = Z A A A +(2A) [\/G(G + D singFy, 7 + esin2¢F
/\(1)./\(2)
Y Y

+(2h)<\/ L= 2Fyy +2/e(T = &) cos " )

b

lepton helicity amplitude: A" = Lth(k’ h)y*u(k h)(eAy*(q)> #
h T 02 ’ ’ H

ADA® A<1> A<2>

(o) [ (0 ) (P04 1 =)
hadron tensor: H,’ r= Z

UT, T UT,L

+ € Sln <¢ + ¢S> Sln(¢ + (/75) + ¢ Sln (3¢ ¢S) Sm(3¢ (/75)

A(1)A(2) i A(}Q,A’ A(%),A’ . : . sm 2¢ — ¢ _
hadron helicity amplitudes: F, 7, = VO A +y/2e(1 +¢) (Sln(ﬁSF s+ sin (29— ps) ! S>>

@) (2A7) [VI= ¢ cos (¢ — ) Fig 4=
+4/2¢e(1 =€) cos ¢gF, Is

+4/2¢(1 — €) cos (2¢ — ¢g) F, COS(2¢ ¢S>]}




Deeply virtual meson production 7(k,) + N(P,) — ¢(k,) + N'(P,) + M(qg,)

Factorization was proven for light pseudoscalar mesons and longitudinally
polarized vector mesons. The structure of the hadron is contained inside

transition form factors:
hard scattering amplitude

N2
oA 2 N2 _fCF [1 EJI A Q° Q° 07 A 2 2
#6000 =G| g ], avorr(onela o g ) s 0t
GPDs

are also unperturbative soft scale functions. They describe the transition

between vacuum and the final state meson, and v describes the fraction of the
longitudinal momentum of a parton inside the meson.

Depending on the charge of the final meson, the hadron in the final state can differ to the initial hadron. Due to an intricate flavor structure of the
final-state mesons, we can access several flavor combinations of GPDs through various DVMP measurements. We expect these GPDs to be
universal for all DVCS and DVMP variations, as well as other processes that probe GPDs (or more precisely, their convolutions).
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a) quark subprocess

The cross section is given as:

LO DVMP

d2 Gyf‘f —MN'’

dA2 dep

At LO we already probe gluons,
the final meson. Gluons only ap
NLO hard scattering coefficients.

b) gluon subprocess

2,2
aemxBy

3270%/1 + 2 1 =Y

1 -y
y2<2—xB>2
1 -y

2

y2 (2 — xB)

4(1—xg) | —x3 (HE* + EH*) —

—— S —

pecause we need gluons to produce
pear in DVCS through evolution or

A(1l=x )| Z V-2 (X E*+EH*)—x2—| & |
B B B

Because of gluons, we only have one

QED vertex, so the cross section should be larger. Due to two hadrons
in the final state, factorization is messier to prove.

2

Xé + (2 _xB>2M
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Other exclusive processes

a) TCS

(1

42
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b) DDVCS

Timelike Compton scattering and double DVCS contain the same GPDs, but probe them at different kinematics. TCS and DVCS are limiting cases of DDVCS.

+ processes with more particles in the final state, like two photons or two mesons
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Dispersion relations

Analysis of DVCS (and other processes) can be done at the amplitude level, i.e. at the CFF level. One property that comes from analyticity and causality
considerations of CFFs are (once subtracted) dispersion relations, which relate their real and imaginary parts as:

r 1

ReZ (&,1,0°) = ! PV.

T Jo

dE'ImA (&1, Q%) ( : ) + Ay (7, 0%)

E—¢ ¢+¢ .

Subtraction constant
The subtraction constant is necessary to cancel out divergences at the point £ = 0 and x = O that occur in CFFs. They rely on analytically continuing

\Ff

\/ —1 + 4M?

CFFs outside of the physical domain of &, which is defined as:

g1 <
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Observables

do'(¢p) — do' () N
do'(¢) + dol(¢h)

beam-spin asymmetry: A; (¢) =

do=(¢p) — do<(¢) s
do=(¢) + do=(¢)

target-spin asymmetry: A (¢p) =

do'(¢) — do'(¢) — da"™(¢) + do**(9)

Sm {Fl% + & (F) + F,)

—— A2
H —MFzg Sln(¢)

m |F, % +&(F, +F,) <% + %%) _¢ <X—BF1 + LFZ) Z | sin(g)

2 4M?

| | ) — .\ _
double spin asymmetry: A; ; (¢) = 4o + ol @) + doThdh) + doTvd) xRe |F\ H +E(F +Fy) <% 5 %) §<
oUy ~ Ouu _ — A
beam-charge asymmetry: A = xNe |F\Z +& (F1 + F2) H ———F,&| cos¢
G[_IJ_U + OouU 4M

1 | d'sa=+1) . d'si=-1)
2 _szdedtd¢ szdXBdtd¢_

1 |d'se=+1D dsu=-1
2 | d0*dvsdidg ~ dQ2dxadrdg

. 4
beam-spin sum: d ¢ =

beam-spin difference: A =

BF +

cos ¢ + BH
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Experiment Kinematics
zg | Q?[GeV?] | t[GeV?]
HERMES 0.09 2.50 -0.12
CLAS 0.19 1.25 -0.19
HALL A 0.36 2.30 -0.23
HERA 0.001 8.00 -0.30

Typical experiment kinematics

Experiment Observable Normalized CFF dependence
ALs09 ReH + 0.06%ReE + 0.240ReH
ALS? ReH + 0.05%eE + 0.15%ReH
A JmH + 0.05Jm€ + 0.12ImH
Alsing JmH + 0.10JmH + 0.01TmE
HERMES AdEm2e | gm3 — 0.97ImH + 0.49TmE — 0.03TmE
Ajtos09 1+ 0.05%e¢H + 0.019Re¢H
Ajeos? 1+ 0.79%e¢H + 0.11JmH
AR ey JmHReE — TmEReH
ARG o) cos® JmH — 0.56ImE — 0.12ImH
A sime JH + 0.06TmE + 0.21TmH
CLAS Agsind JmH + 0.12JmH + 0.04ImE
A2 | amH — 0.79FmH + 0.30TmE — 0.05TmE
Agsin ¢ JmH + 0.07ImE + 0.47ImH
HALL A g0 09 1+ 0.05%ReH + 0.007THH*
geos$ 1 4+ 0.12%eH + 0.05%ReH
HERA TDVCS HH* + 0.09EE* + HH*




Bonus: structure of the cross section

-

¥

/ - ~
q1 4> /\/\/ ’

A s
Z x€," (q)r"

, K, + * ,
rM(e, (q)* = ph— % ?’”%A “(g1)(e, (q,)*

K+ 4, (k; + gq1)?

| 2k, -
denomlnatOl‘t (kl + q1)2 — k12 + 2k1 - -+ q12 ~ 2k1 g — Q2 — Q2< — 14+ 1 QI)

Q2

02:26”

e {nmas)
— Insert = —
2

= 4 1 —1+(+ —)
( AR I
1/2¢s Epmé
L2
~2—§(X—5)

(we ignore quark masses everywhere)
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Structure of the numerator:

We ignore k; and set ¢, to move along the negative z-axis at high energy, which means q? N — q13 >qg"Tr0& g >

yHky + gy y" <y Tyt = gty — gy + gV TyE +ie sy,

Given that the outgoing photon is real, its polarization can only be transverse, so the index v can only take on the values 1 and 2, which we will write as i.
In terms of the light-cone coordinates, this index lives in the transverse space, so it is orthogonal to the indices =+.
o i +,,1 l,,+ I+ - OU+I _ +,,1 l,,+ . OU+i1
vyt =8y =gy 8T + 1€ sy, = gy — 8"y + e YsY,

7 7

-

twist-3 twist-2 axial twist-2 and 3

u has to be =+, u has to be =1,
longitudinal photon transverse photon
etio 1
Photon polarization in the hadronic plane: eil(q)ﬂ =——(0, ¥ 1,i,0), 8O(Q)ﬂ = —(qO,O,O, lq|)

V2 0

*

AN AN
y y

Hadronic tensor Z A A =
A(L)A(%)AJ’,A’ L -
Y Y
o if AD = A® = jthere is no ¢ dependence, twist-2
Y y
« if AD =0, A® =i wehave e®?, twist-3 Angle dependence corresponds to
Y Y

e if A}(j} ==+ 1, Aﬁ) = F 1, we have e**%, twist-2 gluon transversity GPDs twist expansion of GPDs

if A}(j} = Aﬁ) = 0 there is no ¢ dependence, twist-4



