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Part I: Exclusive processes and Compton 
form factors



Exclusive processes
Deeply virtual Compton scattering ( )ℓ(k1) + N(P1) → ℓ(k2) + N(P2) + γ(q2)

3

Gold standard channel due to a simple final state, the 3D 
structure of the proton is uncovered because the photon is 
emitted from the nucleon and because the initial and final 
nucleon states are not the same
Kinematic variables: 
• Photon virtuality:  

• Bjorken x:  

• Four-momentum transfer to the hadron:   

• Momenta combinations:  

• Skewness:  

• Generalized Bjorken variable: 

q2
1 = − Q2

xB =
Q2

2P1 ⋅ q1
t = Δ2 = (P2 − P1)2

q =
1
2

(q1 + q2), 𝒬2 = − q2, P = P1 + P2

ξ = −
Δ ⋅ q
P ⋅ q

ξB =
𝒬2

P ⋅ q
Generalized Bjorken limit: 

 
 the virtual photon has high energy to take a good look into the 

proton, but the momentum transfer is small enough to not excite or 
break apart the hadron 

 in this limit we have 

s = (P1 + q1)2 ∼ q2
1 → ∞, − Δ2 ≪ s, xB = fixed

→

→
ξB ≃ ξ, Q2 ≃ 2𝒬2, ξ ≃

xB

2 − xB
, s ≃ 2P ⋅ q



Bethe-Heitler ( )ℓ(k1) + N(P1) → ℓ(k2) + N(P2) + γ(q2)
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The same initial and final state as DVCS, but the real photon is emitted as Bremsstrahlung from the initial or final lepton.

Detectors cannot differentiate between DVCS or BH, so we need 
to add their amplitudes coherently in order to calculate the total 
cross section for the transition between  to :ℓ + N ℓ + N + γ

cross section:  dσ

dxBdyd Δ2 dϕdφ
=

α3xBy

16π2Q2 1 + ϵ2

𝒯
e3

2

amplitude:  |𝒯 |2 = 𝒯DVCS
2

+ 𝒯BH
2

+ ℐ

interference term: ℐ = 𝒯*DVCS𝒯BH + 𝒯DVCS𝒯*BH

This process gives access to elastic form factors, it does not see the 3D structure of hadrons.



BH usually dominates over the DVCS and the interference term. This strong background may pose experimental challenges. A comparison between 
the squared DVCS amplitude, squared BH amplitude and the interference term for an unpolarized initial electron and proton at typical JLab 
kinematics is depicted bellow: 

This plot was produced using the KM15 model, which is an LO 
model fitted to low-x HERA and JLab kinematics. We can see 
that all of the terms are symmetric with respect to .ϕ
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Factorization and the structure of the proton
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How does the structure of hadrons come into play?

Factorization theorems tell us that the process can be separated into a hard (perturbative) part, which is the upper blob denoted by C, and a soft 
(unperturbative )part, which contains functions that describe the 3D structure of hadrons, the generalized parton distributions (GPDs). GPDs describe 
the transition between the initial hadron state into the final hadron state.



Compton form factors (CFFs)
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Hand-bag diagram for LO DVCS

Owing to the factorization theorem, we can depict DVCS 
using hand-bag diagrams, where the upper part is 
perturbatively calculated, and the lower part, which 
contains GPDs, is not.

Unfortunately, we cannot access GPDs directly. The cross 
section is parametrized in terms of Compton form factors 
(CFFs), which are convolutions of the hard and soft parts in 
the process. We can write them in general as:

ℱA (ξ, Δ2, Q2) = ∫
1

−1

dx
2ξ

AT (x, ξ αs (μR),
Q2

μ2
F )FA (x, ξ, Δ2, μ2

F)

A ∈ {u, d, s, . . . , g}, ℱ = ∑
A

Q2
AℱA, Q2

G =
1
Nf ∑

q

Q2
q

⇓
twist 2 GPDs: F ∈ {H, E, H̃, Ẽ}

hard scattering amplitude
⇓

LO CFFs:

ℱA = ∫
+1

−1
dx ( 1

x − ξ − iϵ
−

1
x + ξ − iϵ ) FA(x, ξ, t)

= 𝒫∫
+1

−1
dx ( 1

x − ξ
−

1
x + ξ ) FA(x, ξ, t)

real part

− i π(FA(ξ, ξ, t) − FA(−ξ, ξ, t))

imaginary part
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In order to calculate the cross section, we need to choose a frame. A common 
choice is depicted bellow:

x

y

z

q

k

k S

q

P

1

2

1

2

2

ϕ

φ

Belitsky-Kirchner-Mueller frame

Because we have a  process, it cannot happen in one 
plane. We define the leptonic plane, where the initial and 
final lepton are contained, as well as the virtual photon. At 
an angle  to this plane, we have the hadronic plane, which 
contains the initial and final hadron, as well as the real 
photon. The virtual photon is contained in the intersection 
of these two planes, and we define the -axis so that the 
virtual photon moves along it in the negative direction. In 
the BKM formalism, the cross section is written as:

2 → 3

ϕ

z

𝒯BH
2

=
e6

x2
By2 (1 + ϵ2)2 Δ2𝒫1(ϕ)𝒫2(ϕ) {cBH

0 +
2

∑
n=1

cBH
n cos(nϕ) + sBH

1 sin(ϕ)}
𝒯DVCS

2
=

e6

y2Q2 {cDVCS
0 +

2

∑
n=1

[cDVCS
n cos(nϕ) + sDVCS

n sin(nϕ)]}
ℐ =

±e6

xBy3Δ2𝒫1(ϕ)𝒫2(ϕ) {cI
0 +

3

∑
n=1

[cI
n cos(nϕ) + sI

n sin(nϕ)]}, ε = 2xB
M
Q2

The fact that the BH process, which we can describe sufficiently well at the level of precision we have for DVCS, comes into the full  cross 
section provides a unique opportunity to access CFFs linearly and quadratically!

ℓN → ℓNγ

Cross section

𝒯DVCS
2

=
2 (2 − 2y + y2)
y2Q2 (2 − xB)2 [4 (1 − xB) ( |ℋ |2 + | ℋ̃ |2 ) − (x2

B + (2 − xB)2 Δ2

4M2 ) |ℰ |2 − x2
B (ℋℰ* + ℰℋ* + ℋ̃ ℰ̃* + ℰ̃ ℋ̃ *) − x2

B
Δ2

4M2
| ℰ̃ |2 ], y =

Q2

xs
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d5σDVCS

dxBjdQ2d | t |dϕdϕS
= Γ TDVCS

2

=
Γ

Q2(1 − ϵ) {FUU,T + ϵFUU,L + ϵ cos 2ϕFcos 2ϕ
UU

+ ϵ(ϵ + 1) cos ϕFcos ϕ
UU + (2h) 2ϵ(1 − ϵ) sin ϕFsin ϕ

LU

+(2Λ)[ ϵ(ϵ + 1) sin ϕFsin ϕ
UL + ϵ sin 2ϕFsin 2ϕ

UL

+(2h)( 1 − ϵ2FLL + 2 ϵ(1 − ϵ) cos ϕFcos ϕ
LL )]

+(2ΛT) [sin (ϕ − ϕS) (Fsin(ϕ − ϕS)
UT,T + ϵFsin(ϕ − ϕS)

UT,L )
+ϵ sin (ϕ + ϕS) Fsin(ϕ + ϕS)

UT + ϵ sin (3ϕ − ϕS) Fsin(3ϕ − ϕS)
UT

+ 2ϵ(1 + ϵ) (sin ϕSFsin ϕS
UT + sin (2ϕ − ϕS) Fsin(2ϕ − ϕS)

UT )]
+(2h)(2ΛT) [ 1 − ϵ2 cos (ϕ − ϕS) Fcos(ϕ − ϕS)

LT

+ 2ϵ(1 − ϵ) cos ϕSFcos ϕS
LT

+ 2ϵ(1 − ϵ) cos (2ϕ − ϕS) Fcos(2ϕ − ϕS)
LT ]}

We can also write the cross section in terms of helicity amplitudes:

σhΛ = Γ ∑
Λ′ γ,Λ′ 

(ThΛ′ γ
DVCS,ΛΛ′ )

*
ThΛ′ γ

DVCS,ΛΛ′ 
= Γ ∑

Λ(1)
γ* ,Λ(2)

γ*

ℒ
Λ(1)

γ* ,Λ(2)
γ*

h H
Λ(1)

γ* ,Λ(2)
γ*

Λ

lepton tensor: ℒΛ(1)
γ* Λ(2)

γ*

h = ∑
Λ(1)

γ* ,Λ(2)
γ*

A
Λ(1)

γ*

h A
Λ(2)

γ*

h

lepton helicity amplitude: AΛγ*

h =
1

Q2
u(k′ , h)γμu(k, h)(εΛγ*

μ (q))
*

hadron tensor: HΛ(1)
γ* Λ(2)

γ*

Λ = ∑
Λ′ 

F
Λ(1)

γ* Λ(2)
γ*

ΛΛ′ 

hadron helicity amplitudes: FΛ(1)
γ* Λ(2)

γ*

ΛΛ′ 
= ∑

Λ′ γ
[f

Λ(1)
γ* ,Λ′ γ

Λ,Λ′ ]
*

f
Λ(2)

γ* ,Λ′ γ

Λ,Λ′ 



Deeply virtual meson production ℓ(k1) + N(P1) → ℓ(k2) + N′ (P2) + M(q2)
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Factorization was proven for light pseudoscalar mesons and longitudinally 
polarized vector mesons. The structure of the hadron is contained inside 
transition form factors:

ℱA (ξ, Δ2, Q2) =
fCF

QNc ∫
1

−1

dx
2ξ ∫

1

0
dvφ(v)AT (x, v, ξ αs (μR),

Q2

μ2
F

,
Q2

μ2
φ

,
Q2

μ2
R )FA (x, ξ, Δ2, μ2

F)
⇓

GPDs

hard scattering amplitude
⇓

⇓
Distribution amplitude

DAs are also unperturbative soft scale functions. They describe the transition 
between vacuum and the final state meson, and  describes the fraction of the 
longitudinal momentum of a parton inside the meson.

v

Depending on the charge of the final meson, the hadron in the final state can differ to the initial hadron. Due to an intricate flavor structure of the 
final-state mesons, we can access several flavor combinations of GPDs through various DVMP measurements. We expect these GPDs to be 
universal for all DVCS and DVMP variations, as well as other processes that probe GPDs (or more precisely, their convolutions).
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LO DVMP

At LO we already probe gluons, because we need gluons to produce 
the final meson. Gluons only appear in DVCS through evolution or 
NLO hard scattering coefficients. Because of gluons, we only have one 
QED vertex, so the cross section should be larger. Due to two hadrons 
in the final state, factorization is messier to prove.

The cross section is given as:

d2σγ*L⟼MN′ 

dΔ2 dϕ
=

αemx2
By2

32πQ2 1 + ϵ2

1
1 − y

𝒯DVMP
2
,

𝒯VL
2

= 16
1 − y

y2 (2 − xB)2 [4 (1 − xB) |ℋ |2 − x2
B (ℋℰ* + ℰℋ*) − (x2

B + (2 − xB)2 Δ2

4M2 ) |ℰ |2 ],

𝒯PS
2

= 16
1 − y

y2 (2 − xB)2 [4 (1 − xB) | ℋ̃ |2 − x2
B ( ℋ̃ ℰ̃* + ℰ̃ ℋ̃ *) − x2

B
Δ2

4M2
| ℰ̃ |2 ]



Other exclusive processes
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+ processes with more particles in the final state, like two photons or two mesons

Timelike Compton scattering and double DVCS contain the same GPDs, but probe them at different kinematics. TCS and DVCS are limiting cases of DDVCS.



Dispersion relations
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Analysis of DVCS (and other processes) can be done at the amplitude level, i.e. at the CFF level. One property that  comes from analyticity and causality 
considerations of CFFs are (once subtracted) dispersion relations, which relate their real and imaginary parts as: 

ℜ𝔢ℋ (ξ, t, Q2) =
1
π

 P.V.  ∫
1

0
dξ′ ℑ𝔪ℋ (ξ′ , t, Q2) ( 1

ξ − ξ′ 

−
1

ξ + ξ′ ) + Δℋ (t, Q2)
⇓

Subtraction constant

The subtraction constant is necessary to cancel out divergences at the point  and  that occur in CFFs. They rely on analytically continuing 
CFFs  outside of the physical domain of , which is defined as:

ξ = 0 x = 0
ξ

|ξ | ≤
−t

−t + 4M2



CFF extraction
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Observables
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beam-spin asymmetry: ALU(ϕ) =
dσ↑(ϕ) − dσ↓(ϕ)
dσ↑(ϕ) + dσ↓(ϕ)

∝ ℑ𝔪 {F1ℋ + ξ (F1 + F2) ℋ̃ −
Δ2

4M2
F2ℰ} sin(ϕ)

target-spin asymmetry: AUL(ϕ) =
dσ⇒(ϕ) − dσ⇐(ϕ)
dσ⇒(ϕ) + dσ⇐(ϕ)

∝ ℑ𝔪 [F1 ℋ̃ + ξ (F1 + F2) (ℋ +
xB

2
ℰ) − ξ ( xB

2
F1 +

t
4M2

F2) ℰ̃] sin(ϕ)

double spin asymmetry: ALL(ϕ) =
dσ↑⇑(ϕ) − dσ↓⇑(ϕ) − dσ↑⇓(ϕ) + dσ↓⇓(ϕ)
dσ↑⇑(ϕ) + dσ↓⇑(ϕ) + dσ↑⇓(ϕ) + dσ↓⇓(ϕ)

∝ ℜ𝔢 [F1 ℋ̃ + ξ (F1 + F2) (ℋ +
xB

2
ℰ) − ξ ( xB

2
F1 +

t
4M2

F2) ℰ̃] cos ϕ + BH

beam-charge asymmetry: AC =
σ+

UU − σ−
UU

σ+
UU + σ−

UU
∝ ℜ𝔢 [F1ℋ + ξ (F1 + F2) ℋ̃ −

Δ2

4M2
F2ℰ] cos ϕ

beam-spin sum: d4σ =
1
2 [ d4σ(λ = + 1)

dQ2dxBdtdϕ
+

d4σ(λ = − 1)
dQ2dxBdtdϕ ]

beam-spin difference: Δ4σ =
1
2 [ d4σ(λ = + 1)

dQ2dxBdtdϕ
−

d4σ(λ = − 1)
dQ2dxBdtdϕ ]
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Typical experiment kinematics



Bonus: structure of the cross section
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μ ν

q1 q2

k1 k2

k1 + q1

ℒ ∝ εΛγ*
μ (q1)γμ 1

k1 + q1
γν(εΛ′ γ

ν (q2))* = γμ k1 + q1

(k1 + q1)2
γνεΛγ*

μ (q1)(ε
Λ′ γ
ν (q2))*/ /

/ /

denominator: (k1 + q1)2 = k2
1 + 2k1 ⋅ q1 + q2

1 ≈ 2k1 ⋅ q1 − Q2 = Q2( − 1 +
2k1 ⋅ q1

Q2

Q2≈2𝒬2

)

→ insert  {q1 = q +
Δ
2 }

= Q2( − 1 + (x + ξ)
P ⋅ q
2𝒬2

⏟
1/2ξB

) = Q2( − 1 + (x + ξ)
1

2ξB⏟
ξB≈ξ

)

≈
Q2

2ξ
(x − ξ)

(we ignore quark masses everywhere)
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Structure of the numerator:

γμ(k1 + q1)αγαγν ∝ γμγ+γν = gμ+γν − gμνγ+ + gν+γμ + iϵσμ+νγ5γσ

We ignore  and set  to move along the negative z-axis at high energy, which means  k1 q1 q0
1 ≈ − q3

1 ⇒ q+ ≈ 0 & q− ≫

Given that the outgoing photon is real, its polarization can only be transverse, so the index ν can only take on the values 1 and 2, which we will write as i. 
In terms of the light-cone coordinates, this index lives in the transverse space, so it is orthogonal to the indices ±.

γμγ+γν = gμ+γi − gμiγ+ + gi+γμ + iϵσμ+iγ5γσ = gμ+γi

⏟
twist-3

− gμiγ+

⏟
twist-2

+ iϵσμ+iγ5γσ

axial twist-2 and 3

 has to be = i, 
transverse photon   

μ has to be = +, 
longitudinal photon   

μ

Photon polarization in the hadronic plane: ε±1(q)μ =
e±iϕ

2
(0, ∓ 1,i,0), ε0(q)μ =

1
Q

(q0,0,0, |q | )

Hadronic tensor  

• if  there is no  dependence, twist-2  

• if , we have , twist-3 

• if , we have , twist-2 gluon transversity GPDs 

• if  there is no  dependence, twist-4

∝ ∑
Λ(1)

γ* Λ(2)
γ* Λ′ γΛ′ 

[f
Λ(1)

γ* ,Λ′ γ

Λ,Λ′ ]
*

f
Λ(2)

γ′ ,Λ′ γ

Λ,Λ′ 
⇒

Λ(1)
γ* = Λ(2)

γ* = i ϕ
Λ(1)

γ* = 0, Λ(2)
γ* = i e±iϕ

Λ(1)
γ* = ± 1, Λ(2)

γ* = ∓ 1 e±i2ϕ

Λ(1)
γ* = Λ(2)

γ* = 0 ϕ
} Angle dependence corresponds to  

twist expansion of GPDs


