LD2409 — DIDACT Project Financials

e Effort trailed planned rate through March
Budget vs. Actuals - LD2409 ($K loaded) . .
DIDACT * Operations contention for labor from
other projects (ENP, LQCD)
* One Staff member was temporarily on a
FY24 Budget = $380.6K part time schedule.
e Effort Changes Starting in April:
* Dedicating more Data Science time to
‘ 0 — ML model development effort.
) / (Additional Postdoc assignment)
200 * New technician time for hardware work
* Increased MLOps framework
development time
e Contributors
oi2s | Noeds | becas | s | rebas | weai | meot | wevar | s * Bryan Hess (PI), Malachi Schram (Co-Pl)
e pendle = = L = =8 ° 0 ° ° * Ops: Mark Jones (primarily), Laura Hild,
_ ven Ogptons |0 ’ ’ ’ ’ Wesley Moore, Stephanie Siebor (new)
e Data Science: Diana McSpadden,
Ahmed Mohammed, Zhenyu Dai (new)
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LD2409 — DIDACT Project Progress

« Good Progress on ML Operations
— Submission to IEEE Special Issue on
MLOps: Enabling MLOps for Continual
Learning in Computing Clusters
« Challenges to modeling
— Packaging Production Code
— Testbed’s evolving nature
— coarse sampling rate
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Milestones and Progress — Half 1

1. 8 Summary and detail dashboards in Grafana

2. 84 Continuous learning process with daily updates

3. ! Human in the loop to vet out-of-distribution events

4. ! Study the performance of Variational AutoEncoder
and Graph Neural Network (GNN) models

5. ¥4 Measure and characterize key timing characteristics
to understand continuous learning cadence

Management Changes for Q3, Q4
» Staffing increase for model development
» MLOps work to complete workflow automation

» Refactor software to fit existing architecture for
pluggable changes

» Increase effort to provide diverse NP jobs. This has
been more challenging than expected.
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MLOps Update

The manuscript "Establishing
MLOps for Continual Learning in
Computing Clusters" is under
review for an IEEE Software
MLOps special issue.

Code for daily continual learnin

with competition between models

has been manually tested on farm.
®* CPU and memory features

®* one model with a GNN layer and one
without the GNN layer.

®* Both saved to the MLFlow model
repository

* Daily champion model is used for real-
time reconstruction error results.
Continual Integration/Continual Deployment

®* Approved git pull request results in a
Container rebuild

® Container can be run on dt100

® Containers built on a timer on the dt100,
with built containers stored on Code
Gitlab instance
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Theme: MLOps — Bridging the Gap Between Machine Learning and
Operations

Establishing MLOps for Continual Learning in
Computing Clusters

Diana McSpadden, Thomas Jefferson National Accelerator Facility, VA, 23606, USA

Mark Jones, Thomas Jefferson National Accelerator Facility, VA, 23606, USA

Ahmed Hossam Mohammed, Thomas Jefferson National Accelerator Facility, VA, 23606, USA
Bryan Hess, Thomas Jefferson National Accelerator Facility, VA, 23606, USA

Malachi Schram, Thomas Jefferson National Accelerator Facility, VA, 23606, USA

Abstract—in our exploration of the evolving behavior of a computing cluster, we
focus on building a continual learning capability. This endeavor is funded through
a Laboratory Directed Research and Development project at Jefferson Lab, where
it was necessary to establish an MLOps capability within a basic scientific
research organization. Here, we describe a composable ML workflow, a custom
CGroupV2 exporter, and the implementation of Prometheus, MLFlow, and
Grafana. In addition to supporting versioning, monitoring, and comparison, this
integrated system also facilitates the delivery of models adapting to the dynamic
nature of a computing cluster.
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FIGURE 1: The DIDACT pipeline Python code modules, and server and database endpoints. Blue, green, and red
arrows represent the development pipeline, the continual-learning pipeline, and the real-time inference pipeline,

respectively.




AutoEncoder (AE baseline architecture) VS GNN-assisted AE

« The model is used for two different tasks:

1. The first task captures the salient features of
the data using an AE.

2. The second task clusters the job types based
on the salient features using techniques such
as UMAP.

» The baseline architecture is complete, and we will
explore the performance of these models when we
increasing the data volume and model

parameters.

« Based on the results, we see a clear separation
between to current job types. However, it is
unclear that one of the models does significantly
better than the other in this case

« We will study the performance of these models
when we include additional job types and

complexity

« Additional research directions: VAE (Variational
AE): Although vanilla AE does a very good job in
producing representative embeddings, VAE can
serve as a useful tool to quantify the uncertainty in

data.
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AutoEncoder (AE baseline architecture) VS GNN-assisted AE

We are working on stages of the models:

1. Capturing the salient features within the
traces. This is quantified through the

reconstruction error. Top figures compare the

AE vs the GNN-assisted AE in terms of the
reconstruction error of the "idle" and "user"
traces of the CPU.

2. Understanding the separation between the
jobs (PCA/UMAP). A representative model
would be able to reflect the jobs that are
separated in the original space (bottom left
figure) into a separated embedded latent
space (bottom right figure).

Based on the results, it is unclear that one of
the models does significantly better than the
other in this case

Pursued research direction: Although vanilla
AE does a very good job in producing
representative embeddings, VAE (variational
AE) can serve as a useful tool to quantify the
uncertainty in data (i.e., UQ analysis).

PCA2

Unnormalized Density

30 4

20 A

10 A

—10 4

Variable: idle
Model
05 3 AE
1 E-GNN-D
60
50 A
|
I
04—
30 4
20
10 A
’I k /\/l T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Reco Error
Model: Reduction on sum_traces
@® mpi 2
® mpi_16
® good_bin_gen
® bad_bin_gen
0 - PY
—-20 -10 0 10 20 30 40 50 60

PCA 1

Unnormalized Density

PCA 2

Variable: user

120 A

i

o

o
L

[+
o
L

o
o
L

N
[=)

N
o
L

o

Model
1 AE
E-GNN-D

0.04
Reco Error

0.06 0.08

Model: AE | Reduction on sum_z_cpu

300 4

200 4

100 A

—100 +

—200 A

® mpi_2

® mpi_16

® good_bin_gen
® bad_bin_gen




CPU Encoder-GNN-Decoder

Encoder E: Input traces of CPU#i =
compressed embedding z/7.

Decoder D: Tries to reconstruct original
traces from z;. Due to compression loss,
perfect reconstruction is impossible.

Hence, E learns the best compressed
representation of the input while D learns
the best reconstruction function.

We can optionally introduce a GNN module
between E and D such that each CPU
becomes aware of its neighbors activity by
sharing the latent embedding z:

1 0 0 _ 0
Zi( ) = zi( ) +f(zi( )+ Y ai Zj( )),

where f and «a are learnable functions.

Due to the additional information each CPU
gets, it is believed that the reconstruction
error would be less especially in multi-
threaded jobs where different cores affect
each other.
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