

The CaFe Experiment

Hall C CaFe Group:

N. Swan, C. Yero, D. Nguyen, H. Szumila Vance, L.B. Weinstein

July 15, 2024

Proposal: PR12-16-004

Spokespeople: D. Higinbotham (Jlab), F. Hauestein (Jlab), O. Hen (MIT), L. Weinstein (ODU)

THE CATHOLIC

UNIVERSITY

OF AMERICA

Outline

- Motivation
- Spectrometer Normalization H(e,e')
- HMS Proton Efficiency (Absorption)
- Radiative Corrections
- Nuclear Transparency
- Systematic Uncertainties
 - Cut Variations
- Results

Short Range Correlations

- SRCs are temporary short distance high momentum fluctuations
- High relative momentum (k_r>k_F~250 MeV/c)
 - Depends on the short-range part of the N-N interaction
- Unchanged center-of-mass momentum
- Open questions
 - Momentum structure
 - 3 nucleon correlations
 - Which nucleons pair

CaFe Motivation

Which nucleons form SRC pairs?

- Compare number of high-momentum (paired) protons in ⁴⁰Ca, ⁴⁸Ca, and ⁵⁴Fe
 - ⁴⁰Ca: filled 1s, 1p, and 2s/1d p and n shells
 - ⁴⁸Ca: add 8 f_{7/2} neutrons
 - ⁵⁴Fe: add 6 $f_{7/2}$ protons
 - First Paper
- Measure A(e,e'p) on d, ⁹Be, ^{10,11}B, ¹²C, ^{40,48}Ca, ⁵⁴Fe, and ¹⁹⁷Au at high and low missing momentum
 - ⁹Be-¹⁰B-¹¹B-¹²C quartet and ⁴⁰Ca-⁴⁸Ca-⁵⁴Fe triplet
 - Separate A and N/Z dependence on pairing

Hall C A(e,e'p): Experimental Setup

 $\vec{q} \equiv \vec{k} - \vec{k}'$

 $x_{\rm Bj} \equiv \frac{1}{2M}$

- $E_0 = 10.6 \, \text{GeV}$
- E'=8.55 GeV
- θ_e =8.3 Deg
- Q² =2.1 (GeV/c)²
- High P_{miss} (SRC)
 - $P_{miss} \approx 400 \text{ MeV/c}$
 - $|P_{p}| = 1.325 \text{ GeV/c}$
 - $\Theta_{\rm n} = 66.4^{\circ}$
- Low P_{miss} (Mean Field)
 - $P_{miss} \approx 150 \text{ MeV/c}$
 - |P_p| = 1.820 GeV
 - $\Theta_{\rm p} = 48.3 \, \text{Deg}$

Spectrometer Normalization H(e,e')

- H(e,e') is the simplest system
- If the H(e,e') cross section is correct then we have verified
 - Detector Calibrations
 - Optics Calibrations
 - Efficiencies
 - Cuts

Spectrometer Normalization H(e,e') Cuts

- 0.8 < $\frac{E_{tot}}{P_{cent}}$ < 1.3
- $0.92 < W < 0.97 \, \text{GeV}$
- Loose
 - -5 < z Target < 5 cm
 - $-0.0135 < SHMS x'_{tar} < 0.0135$ rad
 - + $-0.008 < SHMS \, y_{tar}^\prime < 0.008$ rad
- Tight
 - -2 < z Target < 2 cm
 - $-0.0068 < SHMS x'_{tar} < 0.0068$ rad
 - + $-0.004 < SHMS \, y_{tar}^\prime < 0.004$ rad

SHMS Dummy z-Target

-2 < z-Target (lab) < 2 (cm) to eliminate target walls

H(e,e') Simulation vs Data

Invariant Mass

Invariant Mass

- H(e,e') Cross Sections
- •Units: $10^{-2} \frac{\mu b}{sr}$
- World Data (J. Arrington)
 - 2.41
- Loose
 - Data: 2.07
 - Simulation: 2.17
- Tight
 - Data: 2.37
 - Simulation: 2.38

HMS Proton Efficiency

- Measure H(e,e'p)/H(e,e')p
- Select H(e,e') events that should have a proton in the HMS
 - $0.92 < W < 0.97 \, \text{GeV}$
 - -2 < z Target < 2 cm
 - + $-0.01 < SHMS~{x^\prime}_{tar} < 0.01$ rad
 - + $-0.002 < SHMS \, y_{tar}^\prime < 0.006$ rad
 - $0.8 < \frac{E_{tot}}{P_{cent}} < 1.8$
- H(e,e'p) events
 - Should +
 - -5 < ep Coin Time < 5 ns
 - + $-0.02 < \mathrm{E_m} < 0.9\,\mathrm{GeV}$
- Iteratively tightened cuts until ratios became flat

HMS Proton Efficiency

Radiative Corrections

- Take ratio of radiated / non-radiated SIMC cross sections
- Using Benhar Spectral Function because default SIMC does not account for SRCs

MF & SRC C12 pmiss: Benhar Simc vs Data

MF & SRC C12 $p_{\rm miss}$ Benhar Sim Radiative Correction

Radiative Correction Factors

Kinematics		MF		SRC			
Target	C12	Fe56	Au197	C12	Fe56	Au197	
Rad/Norad Ratio	0.618	0.577	0.451	0.742	0.734	0.604	
Stat Uncertainty	0.009	0.006	0.005	0.007	0.012	0.014	

- Ratios of corrections are important
 - MF to SRC
 - Different Nuclei
 - Small A dependence implies corrections mostly cancel

Proton Transparency

- Cancels in SRC to MF ratio
- Use measured ratios to C
- $T(A) \propto A^{-0.34 \pm 0.02}$

Hen et al, Physics Letters B 722 (2013) 63–68

Cut Variations

- Examine how sensitive the data is to cuts (systematic uncertainty)
- Data Selection Cuts (and 2σ cut variations)
 - PID
 - $0.8 < \frac{E_{tot}}{P_{cent}} < 1.3$
 - -2.0 < ep Coin Time < 2 ns
 - Acceptance
 - Collimator Cut $\pm 8 \%$
 - Kinematics
 - $Q^2 > 1.8 \pm 0.1$ GeV/c²
 - MF
 - $P_{\rm m} < 0.27 \pm 0.02$ GeV/c
 - $-0.02 < E_m < 0.09 \pm 0.005$ GeV
 - SRC
 - $0.375 \pm 0.025 < P_m < 0.7 \pm 0.1$ GeV/c
 - $x_{bj} > 1.2 \pm 0.1$
 - $\theta_{rq} < 40 \pm 4 \deg$

MF HMS & SHMS Collimator Cuts (±2o)

MF Q² & P_m Cuts ($\pm 2\sigma$)

Heavy MF 4-Momentum Transfer

Heavy MF Missing Momentum

MF E_m Cuts (±2 σ)

Heavy MF Missing Energy (Nuclear Physics)

Mean and σ /mean: MF

Mean and σ /mean: SRC

Cut Variation: Single & Double Ratios

Ratios to C										
Single Ratio (%)	Be9/C12	B10/C12	B11/C12	Ca40/C12	Ca48/C12	Fe54/C12	Au197/C12			
σ/μ (MF)	0.4	0.2	0.1	0.3	0.5	0.3	0.7			
σ/μ (SRC)	1.3	1.0	0.9	2.2	3.1	2.4	4.9			
Double Ratio (%)	Be9/C12	B10/C12	B11/C12	Ca40/C12	Ca48/C12	Fe54/C12	Au197/C12			
σ/μ	1.4	1.0	0.9	2.2	3.1	2.4	4.9			

Other Ratios									
Single Ratio (%)	Fe54/Ca48	Fe54/Ca40	Ca40/Ca48						
σ/μ (MF)	0.3	0.4	0.3						
σ/μ (SRC)	0.7	1.0	1.0						
Double Ratio (%)	Fe54/Ca48	Fe54/Ca40	Ca40/Ca48						
σ/μ	0.8	1.1	1						

SRC uncertainties dominate and increase with larger differences between nuclei.

Systematic Uncertainties CaFe Triplet

	Syste	matic Uncertain	ties (%)	
Ratio	Radiative Correction	Transparency	Cut Variation	Total
		MF Single Ratio	0	
Ca40/Ca48	0	1	1	1.4
Fe54/Ca48	2.5	1	1	. 2.9
		SRC Single Rati	0	
Ca40/Ca48	0	1	1	1.4
Fe54/Ca48	2.5	1	1	. 2.9
		Double Ratio		
Ca40/Ca48	1	1	C	1.4
Fe54/Ca48	1	1	C	1.4

• Single

• R =
$$\frac{Y_A}{Y_{C12}}$$

- Double
 - Normalization Factors Cancel
- MF should be proportional to number protons
- SRC should reflect probability of being in SRC
- Additional Corrections for
 - Random coincidences
 - Oil contamination (Ca targets)
 - Isotopic Impurity (Ca48 90.5%)
 - Chemical Impurity (B₄C)

$$Y_A: \frac{N}{Q \cdot \epsilon_i \cdot T_N \cdot \sigma_t \cdot Z/A}$$

 Y_A : nucleus A yieldN : (e, e'p) coincidence countsQ : total charge [mC] ϵ_i : detector/DAQ efficiencies T_N : nuclear transparency σ_t : target thickness [g/cm²]

$$\frac{A(e, e'p)^{SRC}/A(e, e'p)^{MF}}{^{12}C(e, e'p)^{SRC}/^{12}C(e, e'p)^{MF}}$$

MF Single Ratio

SRC Single Ratios

Double Ratio vs A

Double Ratio increases with A

M. Duer et al. (CLAS collaboration), Nature 560, 617 (2deytal 18)

Triplet Ratios MF Single 1.10 MF_A / MF_{Ca48} 1.05 1.00 A ⁴⁸ 40 54

- The MF accounts for ~70% of all nucleons
- Therefore, a small decrease in the MF single ratio should correspond to a large increase in the SRC single ratio
- We don't see this
- Ca48 target made in house

Conclusion

- Double Ratio generally increase with A
 - Linear increase within both Be9-B10-B11-C12 and Ca40-Ca48-Fe54
- Possible Ca48 target thickness issue?
- CaFe Triplet Double Ratio
 - Adding 8 neutrons increases correlated protons by ~11%
 - Adding 6 protons increases correlated protons by ~7%
 - Calculations predict decrease
 - Importance of shell effects?

Questions?

Back up

Calculating Electron Cross Section

- $N_{events into solid angle \Delta \Omega} = Data Counts * SIMC Ratio$
- $N_{incident} = \frac{Q(C)}{1.602 * 10^{-19}(C)}$
- $nx = \rho_{H2} * Target Length * N_A$
 - Target Length modified by z-Target cut
- Electron solid angle modified by hxptar and hyptar cuts

H(e,e'p) Elastics for			
Beam Energy (Eb) = 10.549	Ge	eV	
$e-angle$ (th_e) = 8.300	de	3	
e- momentum (kf)	1	9.438	GeV/c
proton angle (th p)	=	48.384	1 deg
proton momentum (Pf)	=	1.822	GeV/c
4-momentum transfer (Q2)	=	2.086	(GeV/c)^
3-momentum transfer (q)	=	1.822	GeV/c
energy transfer	=	1.111	GeV
x-Biorken	-	1.000	

H(e, e') Cross Section @ Central Kinematics
H(e,e') Elastic Cross Section:
 Eb = 10549.0 MeV
 kf = 9438.0 MeV
 th_e = 8.3 deg
d_sig/d_omega_e [ub/sr] (Bosted parametrization) = 2.449E-02
d_sig/d_omega_e [ub/sr] (Arrington parametrization) = 2.409E-02
• Use J. Arrington form-factor parametrization (more recent)

Ref. Physics 537/635 – D. Sober "An Introduction to Cross Sections" January 2005 (rev. 2007)

Solid Angle

 $N_{\text{events into solid angle }\Delta\Omega_e} = N_{\text{incident}} n x \frac{u \sigma}{d\Omega_e} \Delta\Omega_e$

 $\Delta \Omega_e = \Delta \Omega_p \times \frac{d\theta_e}{d\theta_p} \times \frac{d\phi_e}{d\phi_p}$

Solid

Angle"

Hall C spectrometers angular acceptance Ca48 MF Run 16979

0.08 0.96 0.04

 $\Delta \phi_e$ [rad]

SHMS (e-)

 $\Delta \theta_{e}[rad]$

 $d\sigma$

HMS (protons)

 $\Delta \theta_n$ [rad]

e-

21

Electron Cross Section Ratio (e,e') Data

• $\frac{d\sigma}{d\Omega_e} = \frac{N_{events\ into\ solid\ angle}}{N_{incident}*nx*d\Omega_e}$

	e,e'									
	loose rad (e,e') cuts									
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
26293	410267.38	224189.82	1.83	19.284	1.20E+17	4.35E+23	3.78E-04	2.07E-02	0.859	
				tight r	rad (e,e') cu	ıts				
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
2996	53625.03	29303.30	1.83	19.284	1.20E+17	1.74E+23	1.08E-04	2.37E-02	0.983	

Electron Cross Section Ratio (e,e'p) Data

• $\frac{d\sigma}{d\Omega_e} = \frac{N_{events\ into\ solid\ angle}}{N_{incident}*nx*d\Omega_e}$

e,e'p									
loose rad (e,e'p) cuts									
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm
205041	500254.81	273363.28	1.83	26.61	1.66E+17	4.35E+23	3.78E-04	1.83E-02	0.760
				tight ra	ad (e,e'p) c	uts			
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm
30823	81242.86	44395.01	1.83	26.61	1.66E+17	1.74E+23	1.08E-04	2.60E-02	1.079

Electron Cross Section Ratio SIMC

• $\frac{d\sigma}{d\Omega_e} = \frac{N_{events\ into\ solid\ angle}}{N_{incident}*nx*d\Omega_e}$

Simulation										
	loose rad (e,e'p) cuts									
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
1034393	442391.78	260091.86	1.70	26.61	1.66E+17	4.35E+23	3.78E-04	1.62E-02	0.672	
				tight ra	ad (e,e'p) cu	uts				
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
116625	74182.28	48370.63	1.53	26.61	1.66E+17	1.74E+23	1.08E-04	2.37E-02	0.986	
				loose r	ad (e,e') cu	its				
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
625496	429131.21	250013.25	1.72	19.284	1.20E+17	4.35E+23	3.78E-04	2.17E-02	0.899	
				tight r	ad (e <i>,</i> e') cu	ts				
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
70140	53874.13	31529.92	1.71	19.284	1.20E+17	1.74E+23	1.08E-04	2.38E-02	0.988	

HMS Proton Efficiency

$$\sigma_{ratio}^{exact} = \sqrt{should \frac{did}{should} (1 - \frac{did}{should}) / should}$$

	SHMS Y'tar										
Bin	Should Count	Did Count	σ_{approx}	$\sigma_{\rm exact}$	Did/Should	Weight	Numerator				
19	1012	919.8	0.009	0.009	0.91	12216.4	11102.9				
20	960	907.7	0.008	0.007	0.95	18644.5	17629.2				
21	873	845.5	0.006	0.006	0.97	28652.5	27751.1				
22	713	680.0	0.008	0.008	0.95	16171.4	15423.8				
23	669	628.9	0.009	0.009	0.94	11869.2	11157.5				
Total	3215	3062.2	0.004	0.004							

Result								
Unweighted Proton Transmission	Weighted	Proton	Transmission	Uncertainty				
0.952			0.955	0.004				

SHMS X'tar vs SHMS Y'tar SHMS X'tar VS SHMS Y'tar

SHMS X'_{tar} vs SHMS Y'_{tar}

Hall C: CaFe Experimental Setup

- A(e,e'p)
- 10.6 GeV
- Detect scattered electrons in the Super High Momentum Spectrometer (SHMS)
- Detect knocked-out protons in the High Momentum Spectrometer (HMS)

SRC HMS & SHMS Collimator Cuts (±2 σ)

SRC Q² & P_m Cuts ($\pm 2\sigma$)

SRC $x_{bj} \& \Theta_{rq}$ Cuts (±2 σ)

Heavy SRC x-Bjorken Heavy SRC In-Plane (recoil) Angle 3 0.06 2.5 0.05 Area Normalized 0.04 Area Normalized 0.03 0.02 0.5 0.01 0 0 0.2 0.4 0.8 1.8 50 0.6 1.2 1.4 2 10 20 30 40 60 70 80 90 100 1.6 θ_{rq} [deg] XB

Double Ratio vs N/Z

Triplet Ratios N/Z

Check C12 SRC FSI Effects

Data PWIA ratio stable for varying Θ_{rq} cuts, therefore data is largely unaffected by FSI

