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Lepton-nucleus scattering
Theoretical understanding of nuclear effects is extremely important for electron and 
neutrino experimental programs: oscillation experiments require accurate calculations of 
cross sections
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Electron scattering can be used to test our nuclear model (e4nu): 

• same nuclear effects 
• no need to reconstruct energies 
• abundant experimental data
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Lepton-nucleus scattering
Theoretical understanding of nuclear effects is extremely important for electron and 
neutrino experimental programs: oscillation experiments require accurate calculations of 
cross sections

Electron scattering can be used to test our nuclear model: 

• same nuclear effects 
• no need to reconstruct energies 
• abundant experimental data

Quasielastic
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Outline
• Ab initio description of nuclei: 

• Nuclear interaction and ground state wave functions 

• Electromagnetic interaction of leptons with nucleons and clusters of correlated nucleons 

• Electron-nucleus scattering: 

• Inclusive processes 

• Short-Time Approximation 

• Results 

• Conclusions and outlook



Lorenzo Andreoli

5

Many-body nuclear problem 

Many-body Nuclear Hamiltonian in coordinate space: Argonne v18 + Urbana X

are complex spin-isospin vectors in 3A dimensions with components
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6Spectra of light nuclei 
Piarulli et al. PRL120(2018)052503

Many-body nuclear problem 

Many-body Nuclear Hamiltonian in coordinate space: Argonne v18 + Urbana X
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Many-body nuclear problem

Quantum Monte Carlo method: 
Use nuclear wave functions that minimize the expectation value of E

The evaluation is performed using Metropolis sampling

Many-body Nuclear Hamiltonian in coordinate space: Argonne v18 + Urbana X
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Nuclear Wave Functions

Variational wave function for nucleus in J state

Two-body spin- and isospin-dependent correlations
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Electromagnetic interactions
Phenomenological Hamiltonian for NN and NNN 

The interaction with external probes is described in terms on one- and two-body 
charge and current operators 

Two-body currents are a manifestation of two-nucleon correlations 

one-body two-body

Charge operators

Current operators
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Electromagnetic interactions

• One body-currents: non-relativistic reduction of 
covariant nucleons’ isoscalar and isovector currents 

• Two-body currents: modeled on MEC currents 
constrained by commutation relation with the nuclear 
Hamiltonian 

• Argonne v18 two-nucleon and Urbana potentials, 
together with these currents, provide a quantitatively 
successful description of many nuclear electroweak 
observables, including charge radii, electromagnetic 
moments and transition rates, charge and magnetic 
form factors of nuclei with up to A = 12 nucleons 

Carlson, Schiavilla 1992. Marcucci et al. 2005
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Lepton-Nucleus scattering: 
Inclusive Processes  
Electromagnetic Nuclear Response Functions  

Longitudinal response induced by the charge operator  
Transverse response induced by the current operator  

5 responses in neutrino-nucleus scattering 

 
One can exploit integral properties of the response functions to avoid explicit calculation of 
the final states: CC + Lorentz Integral Transfor, GFMC + Euclidean  

OL = ρ
OT = j
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Short-time approximation
Factorization scheme: describe electroweak scattering from  without losing 
two-body physics, account for exclusive processes, incorporate relativistic 
effects

A ≥ 12

Response functions

The sum over all final 
states is replaced by a 
two nucleon propagator

S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, and R. B. Wiringa PRC101(2020)044612

Interference
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Short-time approximation
Factorization scheme: describe electroweak scattering from  without losing 
two-body physics, account for exclusive processes, incorporate relativistic 
effects

A ≥ 12
S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, and R. B. Wiringa PRC101(2020)044612

Response densities

Response functions
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Transverse response density

PRC101(2020)044612

Electron scattering from  in the STA: 

• Provides “more” exclusive information 
in terms of nucleon-pair kinematics via 
the Response Densities as functions of 
(E,e) 

• Give access to particular kinematics for 
the struck nucleon pair 

4He



Lorenzo Andreoli

15

Back-to-back kinematic

We can select a particular kinematic, and 
assess the contributions from different 
particle identities 

np dominance at high relative energy

PRC101(2020)044612
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Benchmark
L.A, J. Carlson, A. Lovato, S. Pastore, N. Rocco, RB Wiringa PRC105(2022)014002 

• We benchmarked three different methods  based on the same description of nuclear 
dynamics of the initial target state 

• Compared to the experimental data for the longitudinal and transverse electromagnetic 
response functions of 3He, and the inclusive cross sections of both 3He and 3H 

• Comparing the results allows for a precise quantification of the uncertainties inherent to 
factorization schemes



Lorenzo Andreoli

17

Benchmark
Longitudinal and transverse response function in 3He

PRC105(2022)014002 
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3H

PRC105(2022)014002 

Benchmark



Lorenzo Andreoli

19

Responses for 12C
Response densities are calculated for different values of momenta in the range 
300 < q < 800 MeV:

Transverse

Longitudinal
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https://arxiv.org/abs/2407.06986
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Two-body contributions
Transverse response density at q=570 MeV: 

https://arxiv.org/abs/2407.06986
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Cross sections results for  12C
11

FIG. 13: Inclusive double-di↵erential cross sections for electron scattering on 12C, for various values of the incoming
electron beam energy and scattering angle. Experimental data for ✓ = 11.95�, 13.54� is from [45], for ✓ = 15� is

from [46], for ✓ = 18� is from [47], and for ✓ = 36�, 60� is from [39]

physics, where the one-body term (includes both diago-
nal and o↵-diagonal components) is represented by the
dashed orange line, while the total cross section com-
prehensive of the two-body correction (includes both the
one- and two-body interference term along with the pure
two-body component) is shown by the solid orange line.
At these kinematics, given the combination of longitu-
dinal and transverse responses coming from equation 10,
two-body e↵ects provide an enhancement at the peak be-
tween 5 % and 15 %, for the ranges of energies and angles
considered.

Overall the STA accurately explains experimental data
in the quasi-elastic peak region, while it fails at higher
values of ! for which the inclusion of resonances and
meson-production, currently not accounted for in the the-
ory, is required.

VI. CONCLUSIONS

In this work, we performed VMC calculations within
the STA of inclusive electron scattering from 12C. Specifi-

https://arxiv.org/abs/2407.06986
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Cross sections results for  12C

11

FIG. 13: Inclusive double-di↵erential cross sections for electron scattering on 12C, for various values of the incoming
electron beam energy and scattering angle. Experimental data for ✓ = 11.95�, 13.54� is from [45], for ✓ = 15� is

from [46], for ✓ = 18� is from [47], and for ✓ = 36�, 60� is from [39]
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dashed orange line, while the total cross section com-
prehensive of the two-body correction (includes both the
one- and two-body interference term along with the pure
two-body component) is shown by the solid orange line.
At these kinematics, given the combination of longitu-
dinal and transverse responses coming from equation 10,
two-body e↵ects provide an enhancement at the peak be-
tween 5 % and 15 %, for the ranges of energies and angles
considered.

Overall the STA accurately explains experimental data
in the quasi-elastic peak region, while it fails at higher
values of ! for which the inclusion of resonances and
meson-production, currently not accounted for in the the-
ory, is required.

VI. CONCLUSIONS

In this work, we performed VMC calculations within
the STA of inclusive electron scattering from 12C. Specifi-

https://arxiv.org/abs/2407.06986
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Cross sections results for  12C

https://arxiv.org/abs/2407.06986
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Relativistic corrections

Necessary to include relativistic correction at higher momentum q. 

We are currently working on including relativistic corrections within the STA formalism: 

R. Weiss, J. Carlson (LANL), G. Chambers-Wall, S. Pastore (WashU)

• Relativistic kinematic: allowed by STA factorization scheme 

• Relativistic currents: expansion for a large value of the momentum transfer q 
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GENIE validation using e-scattering

• STA responses used to build the 
cross sections 

• Cross sections are used to generate 
events in GENIE 

• Electromagnetic processes (for 
which data are available) are used to 
validate the generator 

• Next step: use the information 
contained in the response 
densities to generate events

Barrow, Gardiner, Pastore, Betancourt et al. PRD 103 (2021) 5, 052001

GENIE HadronTensorModell Class: https://internal.dunescience.org/doxygen/
classgenie_1_1HadronTensorModelI.html

https://internal.dunescience.org/doxygen/classgenie_1_1HadronTensorModelI.html
https://internal.dunescience.org/doxygen/classgenie_1_1HadronTensorModelI.html
https://internal.dunescience.org/doxygen/classgenie_1_1HadronTensorModelI.html
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EW interactions:
• The current work on EM interactions allows for a thorough evaluation of the method, 

and a comparison with the abundant experimental data for electron-nucleus 
scattering 

The same STA formalism can be applied to neutrino-nucleus scattering: 

• G. King: neutral weak currents quasi-elastic responses evaluated for 2H
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Conclusion:
• The STA responses for  are in good agreement with the data, and are accurate up 

to moderate values of q (and consequently to moderate values of incoming electron 
beam for cross sections calculations) 

• It can describe electromagnetic scattering from  accounting for two-body 
physics (currents and correlations), and is exportable to other QMC methods to 
address larger nuclei, e.g. AFDMC 

Next: 
• Incorporate relativistic effects, pion production, heavier nuclei 
• Use of information from response densities in event generators: collaboration with 

GENIE Monte Carlo event generator (S. Gardiner, J. Barrow)

12C

A ≥ 12
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