DOE contracts: DE-SC0007981 DE-AC05-06OR23177

F₂ neutron data-driven extraction update from CJ collaboration

Li, Accardi, MC, Fernando et al., PRD 109 (2024)

Matteo Cerutti

Hall A/C Meeting

Main focus:Investigate the internal structure of nucleonsin their valence region

Main focus:Investigate the internal structure of nucleonsin their valence region

collinear factorization

$$d\sigma_{\text{hadron}} = \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{\text{parton}}^{f_1 f_2 \to ij} \otimes \phi_{f_2}$$

Main focus:Investigate the internal structure of nucleonsin their valence region

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchouk, J. F. Owens
- C. E. Keppel, S. Li, P. Monaghan, S. Park

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchouk, J. F. Owens
- C. E. Keppel, S. Li, P. Monaghan, S. Park

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchouk, J. F. Owens
- C. E. Keppel, S. Li, P. Monaghan, S. Park

Recent works:

- Extraction of PDFs at large x
 CJ22 Accardi, Jing, Owens et al., PRD 107 (2023)
- O Extraction of neutron $F_2(x, Q^2)$ **F2(n)** Li, Accardi, MC, Fernando et al., PRD 109 (2024)

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchouk, J. F. Owens A. Accardi
- C. E. Keppel, S. Li, P. Monaghan, S. Park

O Systematic uncertainties from HT and off-shell corrections

HTvsOS MC, Accardi, Fernando, Li, arXiv:2407.03589 (DIS24 Proceeding)

Coordinate theory+experiment effort within Jefferson Lab

- A. Accardi, MC, X. Jing, I. Fernando, W. Melnitchouk, J. F. Owens A. Accardi
- C. E. Keppel, S. Li, P. Monaghan, S. Park

Recent works:

Extraction of PDFs at large x
 CJ22 Accardi, Jing, Owens et al., PRD 107 (2023)

Extraction of neutron $F_2(x, Q^2)$

F2(n) Li, Accardi, MC, Fernando et al., PRD 109 (2024)

) Systematic uncertainties from HT and off-shell corrections

HTvsOS MC, Accardi, Fernando, Li, arXiv:2407.03589 (DIS24 Proceeding)

DIS on deuteron target

CJ global data set:

1000+ data points
high-*x* and low-Q²
W² > 3 GeV², Q² > 1.69 GeV²

DIS on deuteron target

CJ global data set:

1000+ data points
high-*x* and low-Q²
W² > 3 GeV², Q² > 1.69 GeV²

Full treatment of nuclear corrections

Binding effects, Fermi motion, off-shell corrections, Higher Twist (HT), Target Mass Corrections (TMC)

$$F_{2,D}(x_D, Q^2) = \int_{y_{Dmin}}^{y_{Dmax}} dy_D dp_T^2 f_{N/D}(y_D, p_T^2; \gamma) F_{2,N}\left(\frac{x_D}{y_D}, Q^2, p^2\right)$$

Smearing function

Structure function of a bound, off-shell nucleon

Bound, off-shell nucleon inside the deuteron

$$p^2 < m_N^2$$

Structure functions are deformed at large x

Bound, off-shell nucleon inside the deuteron

 $p^2 < m_N^2$

Structure functions are deformed at large x

 $\begin{aligned} \text{Off-shell expansion (in nucleon virtuality } p^2) \\ q_N(x,Q^2,p^2) &= q_N^{\text{free}}(x,Q^2) \Big[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \Big] \\ F_{2N}(x,Q^2,p^2) &= F_{2N}^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta F(x) \right] \end{aligned}$ $\begin{aligned} \text{Kulagin, Piller, Weise, PRC 50 (1994)} \\ \text{Kulagin, Melnitchouk, et al., PRC 52 (1995)} \\ \text{Kulagin and Petti, NPA 765 (2006)} \end{aligned}$

Bound, off-shell nucleon inside the deuteron

 $p^2 < m_N^2$

Structure functions are deformed at large x

Bound, off-shell nucleon inside the deuteron

 $p^2 < m_N^2$

Structure functions are deformed at large x

Higher Twist correction

Multiplicative

Additive

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$

Higher Twist correction

Multiplicative

Additive

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right) \qquad \qquad F_2 = F_2^{LT}(x,Q^2) + \frac{H(x)}{Q^2}$$

$$\begin{split} F_2^{LT}(x,Q^2) \bigg(1 + \frac{C(x)}{Q^2} \bigg) &= F_2^{LT}(x,Q^2) + F_2^{LT}(x,Q^2) \frac{C(x)}{Q^2} \\ &= F_2^{LT}(x,Q^2) + \frac{\tilde{H}(x,Q^2)}{Q^2} \end{split}$$

Higher Twist correction

Multiplicative

Additive

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$
$$C(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} \left(1 + a_{ht}^{(2)} x\right)$$

$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$

BIAS in isospin-symmetric case

MC, Accardi, Fernando, Li, arXiv:2407.03589

CJ fits

they are related

$$F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2} \right) = F_2^{LT}(x,Q^2) + F_2^{LT}(x,Q^2) \frac{C(x)}{Q^2}$$
$$= F_2^{LT}(x,Q^2) + \frac{\tilde{H}(x,Q^2)}{Q^2}$$

Basic idea

 $F_{2,n}$

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2\,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

- p, d data matching
- data cross normalization
- results based on CJ15 analysis
- extracted experimental bins centered for applications

Basic idea

 $F_{2,n}$

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2\,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

- p, d data matching
- data cross normalization
- results based on CJ15 analysis
- extracted experimental bins centered for applications

Neutron F2 data sets and grids available!!!

https://github.com/JeffersonLab/CJ-database/

Experimental data sets *extension of CJ15 DIS included data set*

Experiments	# of Proton F2 Data Points	
SLAC-Whitlow ^[2]	564	
BCDMS	351 ^[3]	
HERMES ^[5]	45	
JLab E-00-116 ^[6]	136	
NMC ^[7]	275	
SLAC-E140x ^[8]	9	
JLab E-03-103 ^[9]	37	
JLab CLAS6	609 ^[10]	
JLab E-94-110 [12]	112	
JLab E-06-009 ^[13]	0	
JLab E-99-118 ^[14]	2	

# of Deuteron F2 Data Points		
582		
254 ^[4]		
45		
136		
275		
13		
69		
1723 [11]		
0		
79		
2		

Experimental data sets *extension of CJ15 DIS included data set*

Experiments	# of Proton F2 Data Points	
SLAC-Whitlow ^[2]	564	
BCDMS	351 ^[3]	
HERMES ^[5]	45	
JLab E-00-116 ^[6]	136	
NMC ^[7]	275	
SLAC-E140x ^[8]	9	
JLab E-03-103 ^[9]	37	
JLab CLAS6	609 ^[10]	
JLab E-94-110 ^[12]	112	
JLab E-06-009 ^[13]	0	
JLab E-99-118 ^[14]	2	

mi			
Ma	tching conditions		
0	Same beam energy		
0	$ x_p - x_d < 0.01$		
0	$ Q_p^2 - Q_d^2 < 1\%$		

# of Deuteron F2 Data Points		
582		
254 ^[4]		
45		
136		
275		
13		
69		
1723 ^[11]		
0		
79		
2		

Experimental data sets *extension of CJ15 DIS included data set*

Experiments	# of Proton F2 Data Points	
SLAC-Whitlow ^[2]	564	
BCDMS	351 ^[3]	
HERMES ^[5]	45	
JLab E-00-116 ^[6]	136	
NMC ^[7]	275	
SLAC-E140x ^[8]	9	
JLab E-03-103 ^[9]	37	
JLab CLAS6	609 ^[10]	
JLab E-94-110 ^[12]	112	
JLab E-06-009 ^[13]	0	
JLab E-99-118 ^[14]	2	

Matching conditions

Same beam energy 0

$$|x_p - x_d| < 0.01$$

•
$$|Q_p^2 - Q_d^2| < 1\%$$

1192 matched data points

Experimental data sets

extension of CJ15 DIS included data set $W^2 > 3.5 \text{ GeV}^2$

1192 matched data points

Cross normalization

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2 \,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} \, - \, \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

Avoid large fluctuations due to their relative systematic uncertainties

Cross normalization

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2 \,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

Through CJ framework

$$\chi^{2} = \sum_{\text{exp}} \left[\sum_{i=1}^{N_{\text{data}}} \left(\frac{D_{i} + \Delta_{i} - T_{i}/n}{\delta D_{i}} \right)^{2} + \left(\lambda^{\text{norm}} \right)^{2} + \sum_{k=1}^{K} \lambda_{k}^{2} \right]_{\text{exp}}$$
Uncorrelated error

Avoid large fluctuations

$$n = 1 + \lambda^{\text{norm}} \delta n$$
$$\Delta_i = \sum_k \lambda_k \beta_{k,i}$$
Correlated error

Normalization error

Cross normalization

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2 \,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

Through CJ framework

$$\chi^{2} = \sum_{\text{exp}} \left[\sum_{i=1}^{N_{\text{data}}} \left(\frac{D_{i} + \Delta_{i} - T_{i}/n}{\delta D_{i}} \right)^{2} + \left(\lambda^{\text{norm}} \right)^{2} + \sum_{k=1}^{K} \lambda_{k}^{2} \right]_{\text{exp}}$$
Uncorrelated error

$$n = 1 + \lambda^{\text{norm}} \delta n$$
$$\Delta_i = \sum_k \lambda_k \beta_{k,i}$$

Normalization error

Correlated error

Fix theoretical prediction

Fit simultaneously the nuisance parameters λ

$$\widehat{D}_{i}^{(0)} = n^{(0)} \left(D_{i} + \Delta_{i}^{(0)} \right)$$

Uncertainties

$$\widehat{F}_2^n = \widehat{F}_2^{n(0)} \pm \delta \widehat{F}_2^n \pm \delta^{CJ} \widehat{F}_2^n$$

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2\,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \,\widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

Uncertainties $\widehat{F}_2^n = \widehat{F}_2^{n(0)} \pm \delta \widehat{F}_2^n \pm \delta^{CJ} \widehat{F}_2^n$

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2\,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

Uncorrelated uncertainties

 \Longrightarrow

standard propagation from d, p data

Uncertainties

$$\widehat{F}_2^n = \widehat{F}_2^{n(0)} \pm \delta \widehat{F}_2^n \pm \delta^{CJ} \widehat{F}_2^n$$

$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2\,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{CJ}(x,Q^2)} - \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

Uncorrelated uncertainties

$$\implies$$

standard propagation from d, p data

Procedural uncertainties:

Cross normalization \longrightarrow

Calculation of CJ ratio

(negligible)

Hessian method with "error PDF sets"

CJ15nlo_mod $2*N_{parameters} + 1 = 49$

$$\begin{split} \delta^{CJ} \lambda &= \frac{1}{2} \sqrt{\sum_{j=1}^{24} \left[\lambda^{(2j-1)} - \lambda^{(2j)} \right]^2} \\ \delta^{CJ} \widehat{D}_i &= \frac{1}{2} \sqrt{\sum_{j=1}^{24} \left[\widehat{D}^{(2j-1)} - \widehat{D}^{(2j)} \right]^2} \end{split}$$

Bin centering

Better visualization of data points

Better evaluation of structure function moments - applications

Bin centering

Better visualization of data points

Better evaluation of structure function moments - applications

Use CJ framework

$$\widetilde{F}_2(x,Q_0^2) \equiv R_{\rm bc}(Q_0^2,Q^2)\,\widehat{F}_2(x,Q^2)$$

$$R_{\rm bc}(Q_0^2, Q^2) \equiv \frac{F_2(x, Q_0^2)}{F_2(x, Q^2)} \bigg|_{CJ}$$

Procedural uncertainty: negligible

Basic idea

 $F_{2,n}/F_{2p}$

Using d/p data

$$\widehat{R}_{n/p}^{(0)} = \frac{2\widehat{R}_{d/p}^{exp,(0)}}{R_{d/N}^{CJ}} - 1$$

Using n/d data (BoNUS)

$$\widehat{R}_{n/p}^{(0)} = \frac{\widehat{R}_{n/d}^{exp,(0)} R_{d/N}^{CJ}}{2 - \widehat{R}_{n/d}^{exp,(0)} R_{d/N}^{CJ}}$$

 $F_{2,n}/F_{2p}$

What about MARATHON data set??

Jefferson Lab Hall A Collab., PRL 128 (2022) 13

What about MARATHON data set??

Jefferson Lab Hall A Collab., PRL 128 (2022) 13

 $\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R}_{ht} - F_2^h / F_2^t}{2F_2^h / F_2^t - \mathcal{R}_{ht}}$

• A=3 not available in CJ framework

 Experimental analysis based on AKP framework

0.9

 $F_{2,n}/F_{2p}$

What about MARATHON data set??

• A=3 not available in CJ framework

 Experimental analysis based on AKP framework

Be careful!

Systematic uncertainties in treatment of HT and off-shell corrections

Jefferson Lab Hall A Collab., PRL 128 (2022) 13

Application: GSR

Gottfried sum rule

$$S_G(Q^2) = \int_0^1 \frac{dx}{x} \left[F_2^p(x, Q^2) - F_2^n(x, Q^2) \right]$$

• x<0.01: Regge theory

- O 0.01<x<0.6: Exp. data
- **o x>0.6**: CJ15 model

Application: GSR

Gottfried sum rule

$$S_G(Q^2) = \int_0^1 \frac{dx}{x} \left[F_2^p(x, Q^2) - F_2^n(x, Q^2) \right]$$

O 0.01<x<0.6: Exp. data

o x>0.6: CJ15 model

GOOD AGREEMENT!

Application: non-singlet moments

Nachtmann moment

$$M_2^{p-n}(Q^2) = \int_0^1 dx \frac{\xi^3}{x^3} \left[\frac{3+9r+8r^2}{20} \right] F_2^{p-n}(x,Q^2) \qquad \begin{array}{l} \xi = \text{Nachtmann variable} \\ r = \sqrt{1+4x^2 \frac{M_N^2}{Q^2}} \end{array}$$

- Accounts for TMC
- Isoscalar F_2 from exp. data
- Relation to the non-singlet moment

$$\frac{3}{C_2}M_2^{p-n} = \langle x \rangle_{u^+ - d^+} + \text{ HT}$$

Application: non-singlet moments

$$M_2^{p-n}(Q^2) = \int_0^1 dx \frac{\xi^3}{x^3} \left[\frac{3+9r+8r^2}{20} \right] F_2^{p-n}(x,Q^2)$$

$$\frac{3}{C_2}M_2^{p-n} = \langle x \rangle_{u^+ - d^+} + \text{ HT}$$

- x<0.01: Regge theory
- O 0.01<x<0.6: Exp. data
- **o** *x***>0.6**: CJ15 model

$$\langle x \rangle_{u^+ - d^+} = \int_0^1 dx x [u(x) + \bar{u}(x) - d(x) - \bar{d}(x)]$$

$$f_A^{iso}(x,Q^2) \simeq \left(\frac{A}{2}\right) \frac{1 + F_2^n / F_2^p}{Z + NF_2^n / F_2^p}$$

EMC effect

 $CJ15nlo_mod$

Open database on GitHub

https://github.com/JeffersonLab/CJ-database/

CJ Unpolarized DIS Database Homepage @

Reference: arXiv:2309.16851.

See also

- CTEQ-JLab collaboration website.
- note for reduced cross section and F2 calculation.

World DIS data tables 2

World proton and deuteron data of unploarized DIS cross sections, F2 structure functions, and the longitudinal to transverse cross section ratio R are collected or extracted from various experiments. Data were collected for the CJ global fit and related analysis. Now open for general use. See details under the data directory.

Neutron F2 extraction 2

Based on the collected F2 data, we performed a data-driven extraction of neutron F2 and neutron-to-proton F2n/F2p ratio within the CJ15 framework (see eq. 7-9 in reference for details). Data from all experiemnts are cross-normalized and combined into a single Excel file, both in the original kineamtics, as well as rebinned in Q^2. Check the f2n directory.

Structure function grids 2

Within CJ framework, we calculated various structure functions (F2, F3, FL, etc) at given x, Q^2 grids. Results are provided under folder SFN_grids in the LHAPDF format. An example plotting script is available at src/plot_sfn.py

LHAPDF grids

 $F_2, F_L, F_3 = rac{\gamma, \gamma Z, Z}{\mathrm{w/, w/o \, HT}}$

Experiment	σr	F2	R
SLAC-Whitlow	p: <u>10014</u>	p: <u>10010</u>	p: <u>10064</u>
	d: <u>10015</u>	d: <u>10011</u>	d: <u>10065</u>
	d/p: 10034	d/p (*): 10034	
SLAC-Whitlow(rebinned)		rebinned p: 10012	
		rebinned d: 10013	
SLAC-E140			d: 10066
SLAC-E140x	p: <u>10037</u>	p: <u>10035</u>	p: <u>10067</u>
	d: 10038	d: <u>10036</u>	d: 10068
NMC	p: <u>10022</u>	p: <u>10020</u>	
	d: <u>10040</u>	d: <u>10039</u>	
	d/p: <u>10021</u>	d/p (*): <u>10021</u>	
BCDMS	p: <u>10018</u>	p: <u>10016</u>	p: <u>10069</u>
	d: 10019	d: <u>10017</u>	d: 10070
JLab E06-009	d: <u>10042</u>	d: <u>10041</u>	d: <u>10071</u>
(includes E04-001, E02-109)			
JLab E94-110	p: <u>10044</u>	p: <u>10043</u>	p: <u>10074</u>
JLab E03-103	p:10047	p:10045	
	d:10048	d:10046	
JLab E99-118	p: <u>10052</u>	p: <u>10049</u>	p: (A)
	d:10053	d:10050	p-d: (A)
	d/p:10054	d/p: <u>10051</u>	
JLab JLCEE96	p: <u>10055</u>	p: <u>10072</u>	
	d: <u>10056</u>	d: <u>10073</u>	
JLab E00-116	p: 10003	p: 10001	
	d: 10004	p: 10002	
CLAS6	p: <u>10059</u>	p: <u>10057</u>	
	d: <u>10060</u>	d: <u>10058</u>	
BONUS		n: <u>10061</u>	
		n/d: 10033	
HERA I+II	p: <u>10026 - 10032</u>		
HERMES	p: 10007	p: 10005	
	d: 10008	d: 10006	
	d/p: 10009		
E665		p: <u>10062</u>	
		d: <u>10063</u>	

We provided a data-driven extraction of F2n from *d* and *p* data, with our best knowledge of HT and nuclear effects

- We provided a data-driven extraction of F2n from *d* and *p* data, with our best knowledge of HT and nuclear effects
- We treated with modern techniques the procedural uncertainties

- We provided a data-driven extraction of F2n from *d* and *p* data, with our best knowledge of HT and nuclear effects
- We treated with modern techniques the procedural uncertainties
- World data on F2p, F2d and the extracted F2n are sorted into a database with clear documentation on uncertainties

- We provided a data-driven extraction of F2n from *d* and *p* data, with our best knowledge of HT and nuclear effects
- We treated with modern techniques the procedural uncertainties
- World data on F2p, F2d and the extracted F2n are sorted into a database with clear documentation on uncertainties
- **F2n grids** are available also in **LHAPDF format**

- We provided a data-driven extraction of F2n from *d* and *p* data, with our best knowledge of HT and nuclear effects
- We treated with modern techniques the procedural uncertainties
- World data on F2p, F2d and the extracted F2n are sorted into a database with clear documentation on uncertainties
- **F2n grids** are available also in **LHAPDF format**
- The F2n data set has been used for different applications

Are experimental observables independent of the choice of the HT?

$$\frac{F_{2,n}}{F_{2,p}} = \frac{n}{p} \xrightarrow{x \to 1} \frac{4d + u}{4u + d} \simeq \frac{1}{4}$$

$$\underbrace{\text{Mult HT}}_{[C_{p}(x) = C_{n}(x) = C(x)]} \frac{(4d + u)(1 + C/Q^{2})}{(4u + d)(1 + C/Q^{2})} \simeq \frac{1}{4}$$

$$\underbrace{\text{Add HT}}_{[H_{p}(x) = H_{n}(x) = H(x)]} \frac{4d + u + H/Q^{2}}{4u + d + H/Q^{2}} \simeq \frac{u + H/Q^{2}}{4u + H/Q^{2}}$$

$$expansion in \frac{H}{uQ^{2}} \simeq \frac{1}{4} + \frac{3\frac{H}{16uQ^{2}}}{16uQ^{2}} + p.s$$

Bias in n/p function

Impact of HT on n/p ratio

Are experimental observables independent of the choice of the HT?

Bias not present!

Results in the CJ fitting framework

Case 1: isospin symmetry

Add HT

Unnaturally large n/p BUT smaller d/u than Mult

Bias identified

Off-shell compensates n/p bias

Results in the CJ fitting framework

Case 2: isospin breaking

Compatible n/p $H_n(x) \simeq \frac{1}{2} H_p(x)$

Bias removed

No need of compensation by off-shell Theory calculation confirmed!

Results in the CJ fitting framework

After removing the bias $\delta f(x) \simeq 0$

Is the nucleon inside the deuterium almost on-shell?

Need A=3 data to assess flavour dependence of off-shell function

MARATHON data Adams, et al., PRL 128 (2022) Akp Alekhin, Kulagin, Petti, PRD 107 (2023)

No significant differences seen between HT Add and Mult

<u>DISCLAIMER</u>: off-shell function parametrized at the structure function level (δF) and many other differences in the implementation

Fit to A=3 data: $\delta F_p(x) \simeq \delta F_n(x)$ (baseline)

JAM Collaboration, PRL 127 (2021)

Only multiplicative HT considered

<u>DISCLAIMER</u>: off-shell function parametrized at the pdf level (δf) but many differences in the implementation

Fit to A=3 data: $\delta f_u(x) \neq \delta f_d(x)$

Off-shell table

Higher-Twist table

AKP vs CJ

AKP results

JAM results

JAM Fit including A=3 data $\delta f_u \delta f_d$

JAM Collaboration, PRL 127 (2021)

Mult HT (p=n) as default choice

$$\delta f(x)|_{\text{CJ-like}} = \frac{u\delta f_u + d\delta f_d}{u+d}$$

Some implementation differences

	Theoretica	al choices			
Corrections (КР	АКР	CJ15	AKP-like
	shadowing	yes	yes (which one?)	MST x<0.1	(same)
	smearing	Paris	AV18	AV18 x>0.1	(same)
n n	pi-cloud	yes	yes		
easing-x)	ТМС	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
	HT	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n & p!=n
	HT(x)	??	5 pt. spline	parametrized	parametrized
	off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
	df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3rd
	pi thresh.	yes	yes		