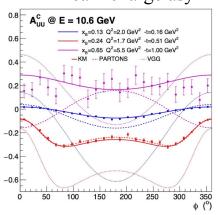
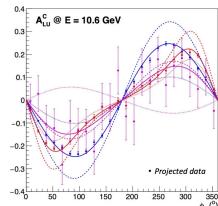
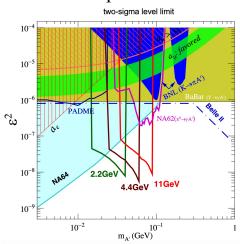

Hall A/C Positron Program

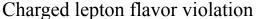
Michael Nycz Hall A/C Summer Collaboration Meeting July 15-16 2024

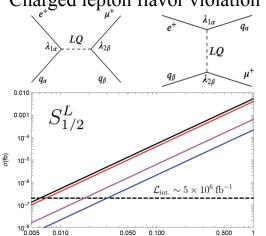


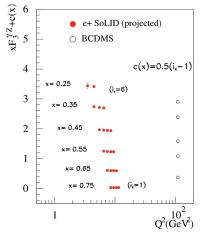



An Experimental Program with Positron Beams at Jefferson Lab

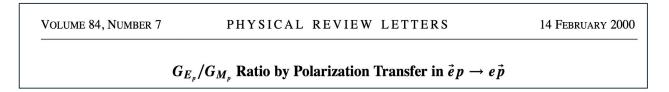
Beam charge asymmetries with CLAS12

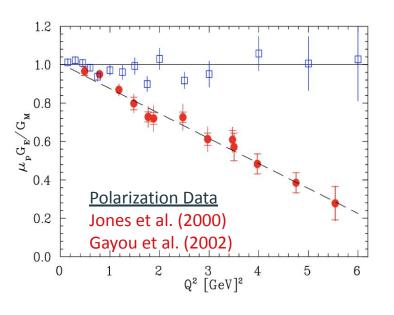


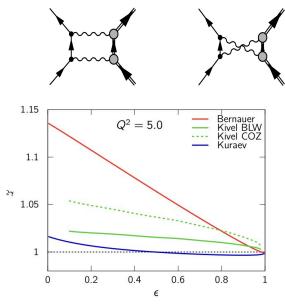

Dark photon search

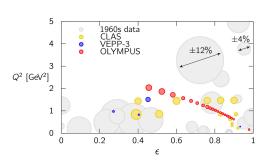

TPE with CLAS12

Electroweak structure function $F_3^{\gamma z}$

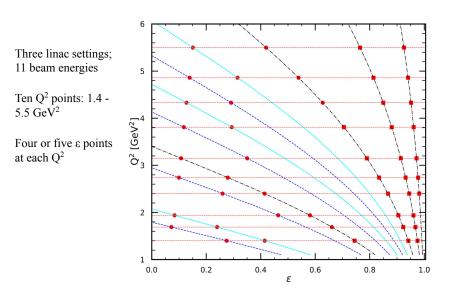

Approved Positron Experiments


Experiment	Title	Contact Person	Hall	Days Awarded	Scientific Rating	PAC Decision
PR12+23-002	Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12	Eric Voutier	В	100	A-	C1 (PAC 51)
PR12+23-003	Measurement of Deep Inelastic Scattering from Nuclei with Electron and Positron Beams to Constrain the Impact of Coulomb Corrections in DIS	Dave Gaskell	C	9.3	A-	C1 (PAC 51)
PR12+23-006	Deeply Virtual Compton Scattering using a positron beam in Hall C	Carlos Munoz Camacho	С	137	A-	C1 (PAC 51)
PR12+23-008	A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12	Axel Schmidt	В	55	A	C1 (PAC 51)
PR12+23-012	A measurement of two-photon exchange in unpolarized elastic positron–proton and electron–proton scattering	Michael Nycz	C	56	A-	C1 (PAC 51)
PR12+24-004	A Dark Photon Search with A JLab positron beam	Bogdan Wojtsekhowski	В	55	A-	C1 (PAC 52)
PR12-24-010	High-precision measurement of $\mu_{\rm p} {\rm G_E}^{\rm p}/{\rm G_M}^{\rm p}$ at Q^2 =3.7 GeV 2 via Polarization Transfer	Andrew Puckett	A	2	A-	PAC 52


Approved Positron Experiments

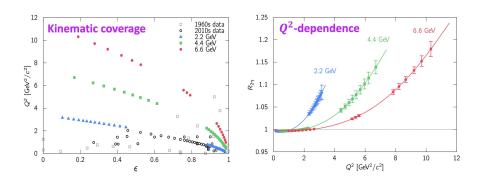

Experiment	Title	Contact Person	Hall	Days Awarded	Scientific Rating	PAC Decision
PR12+23-002	Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12	Eric Voutier	В	100	A-	C1 (PAC 51)
PR12+23-003	Measurement of Deep Inelastic Scattering from Nuclei with Electron and Positron Beams to Constrain the Impact of Coulomb Corrections in DIS	Dave Gaskell	C	9.3	A-	C1 (PAC 51)
PR12+23-006	Deeply Virtual Compton Scattering using a positron beam in Hall C	Carlos Munoz Camacho	С	137	A-	C1 (PAC 51)
PR12+23-008	A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12	Axel Schmidt	В	55	A	C1 (PAC 51)
PR12+23-012	A measurement of two-photon exchange in unpolarized elastic positron–proton and electron–proton scattering	Michael Nycz	C	56	A-	C1 (PAC 51)
PR12+24-004	A Dark Photon Search with A JLab positron beam	Bogdan Wojtsekhowski	В	55	A-	C1 (PAC 52)
PR12-24-010	High-precision measurement of $\mu_p G_E^{\ p}/G_M^{\ p}$ at Q^2 =3.7 GeV 2 via Polarization Transfer	Andrew Puckett	A	2	A-	PAC 52

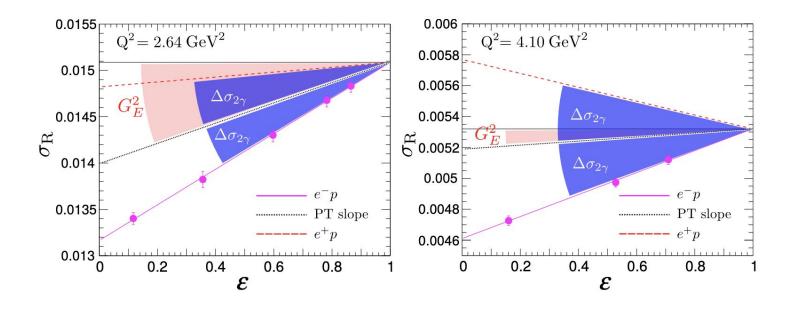
Two-Photon Exchange



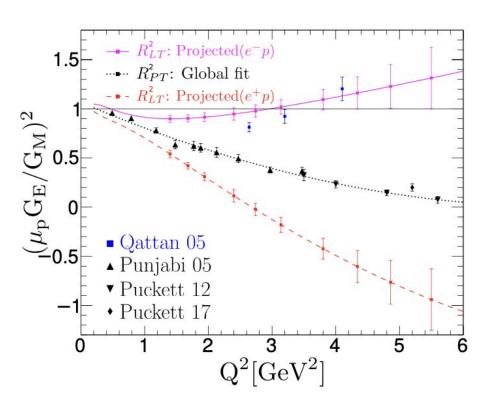
Understanding the Two-Photon Exchange with e^+ (and e^-)

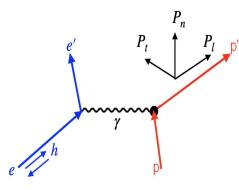
Hall C


A measurement of two-photon exchange in unpolarized elastic positron—proton and electron—proton scattering

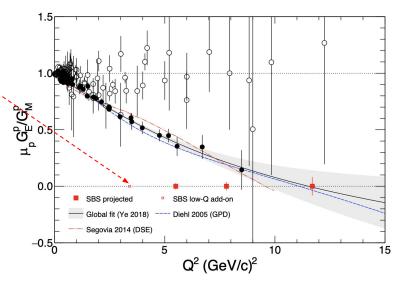

Hall B

A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12 (A. Schmidt, et. al)


$$R \equiv \frac{\sigma^{+}p}{\sigma^{-}p} = \frac{|M_{1\gamma} + M_{2\gamma}|^{2}}{|M_{1\gamma} - M_{2\gamma}|^{2}} \to R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

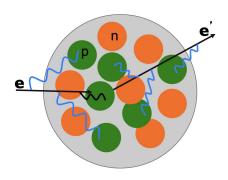

Two-Photon Exchange: Super Rosenbluth


Two-Photon Exchange: Super Rosenbluth



Two-Photon Exchange: Polarization Observables

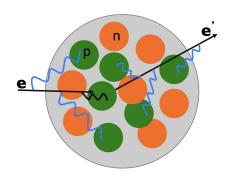
Low $Q^2 e^-$ point 1.0 measured with SBS approved at PAC 52


- e^- data will be collected with SBS G_E^p Experiment (E12-07-109):
- Future e^+ proposal

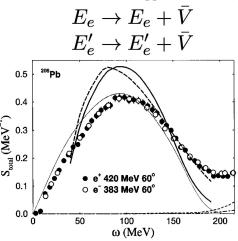
Approved Positron Experiments

Experiment	Title	Contact Person	Hall	Days Awarded	Scientific Rating	PAC Decision
PR12+23-002	Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12	Eric Voutier	В	100	A-	C1 (PAC 51)
PR12+23-003	Measurement of Deep Inelastic Scattering from Nuclei with Electron and Positron Beams to Constrain the Impact of Coulomb Corrections in DIS	Dave Gaskell	C	9.3	A-	C1 (PAC 51)
PR12+23-006	Deeply Virtual Compton Scattering using a positron beam in Hall C	Carlos Munoz Camacho	C	137	A-	C1 (PAC 51)
PR12+23-008	A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12	Axel Schmidt	В	55	A	C1 (PAC 51)
PR12+23-012	A measurement of two-photon exchange in unpolarized elastic positron–proton and electron–proton scattering	Michael Nycz	C	56	A-	C1 (PAC 51)
PR12+24-004	A Dark Photon Search with A JLab positron beam	Bogdan Wojtsekhowski	В	55	A-	C1 (PAC 52)
PR12-24-010	High-precision measurement of $\mu_p G_E^{\ p}/G_M^{\ p}$ at Q^2 =3.7 GeV ² via Polarization Transfer	Andrew Puckett	A	2	A-	PAC 52

Constraining the Impact of Coulomb Corrections in DIS

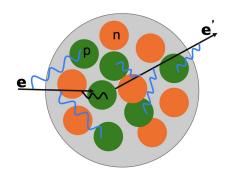

1. Leptons can be accelerated / decelerated in Coulomb field of nuclei

From D. Gaskell PAC Presentation

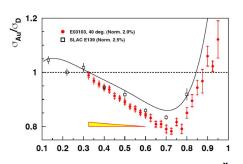

Constraining the Impact of Coulomb Corrections in DIS

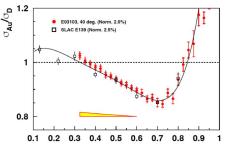
 Leptons can be accelerated / decelerated in Coulomb field of nuclei

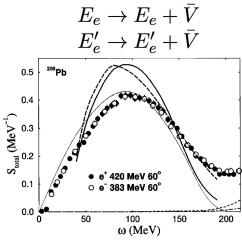
From D. Gaskell PAC Presentation


- 2. Quasielastic scattering:
 - a. Effective Momentum Approximation (EMA)

P. Gueye et al., *Phys. Rev. C*, 1999

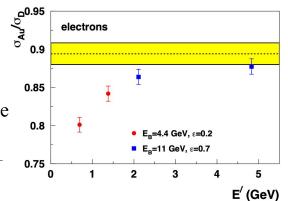

Constraining the Impact of Coulomb Corrections in DIS

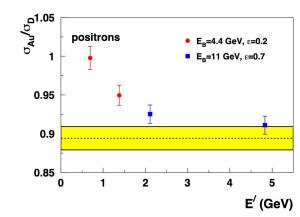

 Leptons can be accelerated / decelerated in Coulomb field of nuclei

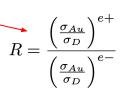

- 3. Inelastic Scattering Less clear
 - a. Important for JLab kinematics
 - b. EMA (not yet verified for inelastic)

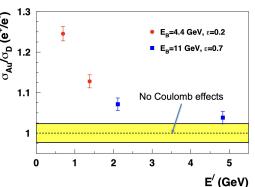
From D. Gaskell PAC Presentation

- 2. Quasielastic scattering:
 - a. Effective Momentum Approximation (EMA)

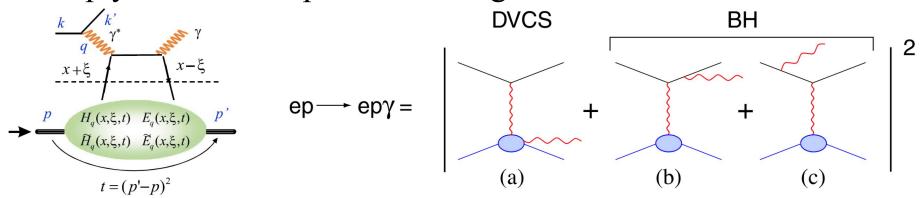

P. Gueye et al., *Phys. Rev. C*, 1999


PR12+23-003


W. Henry, S. Alsalmi, M. Christy, D. Gaskell, T. James Hague, S. Malace, D. Nguyen, P. Solvignon-Slifer


Bill Henry, Dave Gaskell, Nadia Fomin

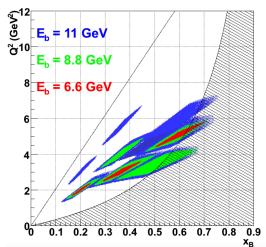
- E12-14-002
 - e measurements
- PR12+23-003
 - Perform CC test using e^+ at same kinematics as E12-14-002
- Allows direct comparison of $e^- \& e^+$
- Target ratios $\left(\frac{\sigma_{Au}}{\sigma_D}\right)^{\dagger}$
- Super-ratio for e^+/e^-
 - Cleanest measurement of CC
 - Insensitive to assumptions in electron/positron-only CC test



Approved Positron Experiments

Experiment	Title	Contact Person	Hall	Days Awarded	Scientific Rating	PAC Decision
PR12+23-002	Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12	Eric Voutier	В	100	A-	C1 (PAC 51)
PR12+23-003	Measurement of Deep Inelastic Scattering from Nuclei with Electron and Positron Beams to Constrain the Impact of Coulomb Corrections in DIS	Dave Gaskell	C	9.3	A-	C1 (PAC 51)
PR12+23-006	Deeply Virtual Compton Scattering using a positron beam in Hall C	Carlos Munoz Camacho	С	137	A-	C1 (PAC 51)
PR12+23-008	A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12	Axel Schmidt	В	55	Α	C1 (PAC 51)
PR12+23-012	A measurement of two-photon exchange in unpolarized elastic positron–proton and electron–proton scattering	Michael Nycz	C	56	A-	C1 (PAC 51)
PR12+24-004	A Dark Photon Search with A JLab positron beam	Bogdan Wojtsekhowski	В	55	A-	C1 (PAC 52)
PR12-24-010	High-precision measurement of $\mu_{\rm p} {\rm G_E}^{\rm p}/{\rm G_M}^{\rm p}$ at Q^2 =3.7 GeV 2 via Polarization Transfer	Andrew Puckett	A	2	A-	PAC 52

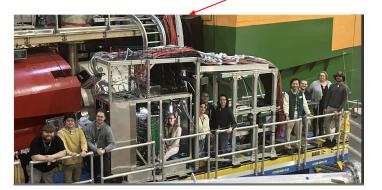
Deeply Virtual Compton Scattering



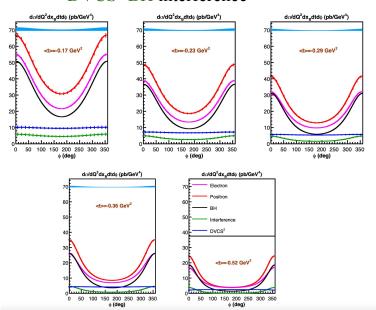
$$|\mathcal{T}(\pm ep \to \pm ep\gamma)|^2 = |\mathcal{T}^{BH}|^2 + |\mathcal{T}^{DVCS}|^2 \mp \mathcal{I}$$

"The simplest hard exclusive process related to Generalized Parton Distributions (GPDs)"

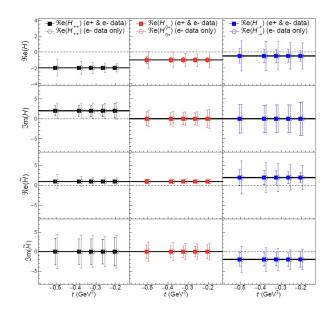
Interference term: opposite sign for e^- and e^+


PR12+23-006 (C. Munoz Camacho and M. Mazouz)

NPS Y

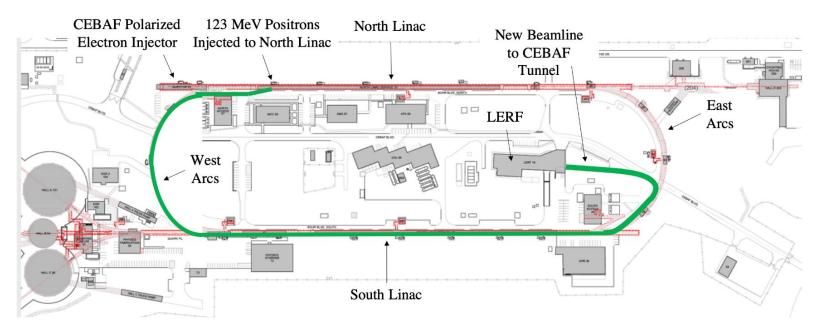

- Precision cross section measurements
 - HMS $(e^- \text{ or } e^+)$ + NPS (neutral particle spectrometer)
- Clean, model-independent separation of DVCS² and DVCS-BH interference
- * Combining $e^- \& e^+$ allows for more stringent constraints on Compton Form Factors (CFF)
- Same kinematics as *E12-13-010*

See talk by M. Kerver

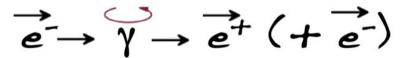


Projections

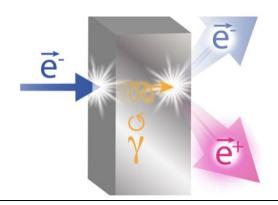
- Combination of e^- and e^+ cross sections
 - Separation of the DVCS² contribution and the DVCS- BH interference


 $\sim 4-6$ times improvement in CFF

(Possible) Future Proposals


- 1. <u>PR12-21-006</u>: Measurement of the Asymmetry $A_d^{(e+e)}$ between $e^+ 2H$ and $e^- 2H$ Deep Inelastic Scattering Using SoLID and PEPPo at JLab (X. Zheng)
- 2. <u>LOI12+23-005</u>: *Amplitude-level Searches for Dark Photons in Bhabha Scattering* (D. Mack)
- 3. <u>LOI12+23-008:</u> *Polarization transfer in positron-proton elastic scattering* (A. Puckett, J. Bernauer, A. Schmidt)
- 4. <u>LOI12+23-015</u>: Energy dependence of dispersive effects in unpolarized inclusive elastic electron/positron-nucleus scattering (P. Gueye, J. Arrington, P. Giuliani, D. Higinbotham)
- 5. <u>LOI12+23-002</u>: The Axial Form Factor of the Nucleon from Weak Capture of Positrons (D. Dutta)
- 6. <u>LOI (PAC 52)</u>: Measurement of the Two-Photon Exchange Contribution to the Positron-Neutron Elastic Scattering Cross Section (E. Fuchey, S. Alsalmi)

Apologies for any recent LOIs I missed!

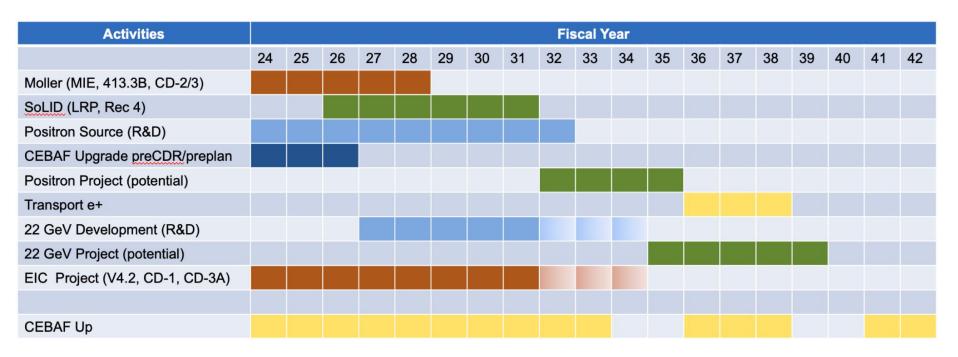


- → Positron upgrade would transform LERF into 123 MeV positron injector
- → A new transport line will transport the beam to CEBAF injection point

Machine Parameters

When a longitudinally polarized e-beam strikes matter, e+ produced in the shower carrying >50% of the e-beam energy are significantly longitudinally spin polarized...

	Machine parameter table now more comprehensive						
Machine Parameter	CEBAF	Ce+BAF					
	е-	e+	Degraded e-	e-			
Multiplicity	4	1 or 2					
Max. Energy (ABC/D)	11/12 GeV	11/12 GeV					
Beam Repetition	250/499 MHz	250/499 MHz					
Duty Factor	100% cw	100% cw					
Unpolarized Intensity	170 μΑ**	> 1 µA	>> 1 uA	170 μΑ**			
Polarized Intensity	170 μΑ**	> 50 nA	>> 1uA	170 μΑ**			
Beam Polarization	> 85%	> 60%	>85% ?	>85%			


^{**} Total beam power at Jefferson Lab is limited to 1.1 MW with a max. of 0.9 MW to individual high power dumps.

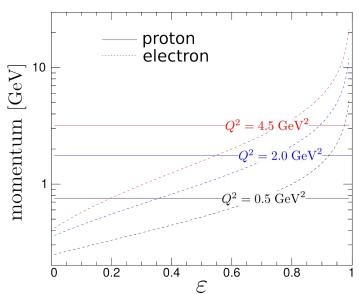
Yves Roblin JLUO 2024

See talk by Andriy Ushakov

Concept of a Positron Source at Ce+BAF

Timeline Scenarios (highly speculative)

Summary and Outlook


- Future JLab positron program will address long standing questions along with opening up new observables
- Currently 6 C1 approved experiments
 - PAC 51 5 approved experiments
 - PAC 52 1 approved experiment (+ additional e^- portion of polarization transfer)
 - ~400 PAC days (halls B & C)
- Experiments and proposals touch upon
 - TPE, DVCS, dark photon, electroweak couplings, etc...
- JLab positron program continues to grow
 - New LOI at PAC 52
- Look forward to new proposals at PAC 53
- Sign up to the Positron Working Group mailing list pwg@jlab.org
- Hadron Physics 2030 Workshop
 - October 21, 2024 to November 8, 2024 at Institut Pascal

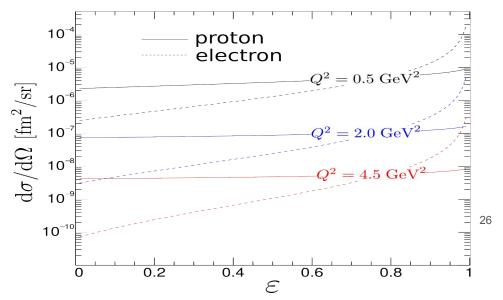
Advantages of Super-Rosenbluth:

Momentum

ε dependence of momentum:

Proton momentum fixed at fixed Q^2 Momentum dependent corrections No ε dependence

Advantages of Super-Rosenbluth:


Cross Section

ε dependence of momentum:

Proton momentum fixed at fixed Q^2 Momentum dependent corrections No ε dependence

ε dependence of cross section:

Higher statistical precision at low ε Minimal ε dependence Rate dependent corrections & uncertainties

